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Bacterial coinfection restrains antiviral CD8 T-cell
response via LPS-induced inhibitory NK cells
Tobias Straub1, Marina A. Freudenberg2,3, Ulrike Schleicher4,5, Christian Bogdan4,5, Georg Gasteiger6,7 &

Hanspeter Pircher1

Infection of specific pathogen-free mice with lymphocytic choriomeningitis virus (LCMV) is a

widely used model to study antiviral T-cell immunity. Infections in the real world, however,

are often accompanied by coinfections with unrelated pathogens. Here we show that in mice,

systemic coinfection with E. coli suppresses the LCMV-specific cytotoxic T-lymphocyte (CTL)

response and virus elimination in a NK cell- and TLR2/4-dependent manner. Soluble TLR4

ligand LPS also induces NK cell-mediated negative CTL regulation during LCMV infection. NK

cells in LPS-treated mice suppress clonal expansion of LCMV-specific CTLs by a NKG2D- or

NCR1-independent but perforin-dependent mechanism. These results suggest a TLR4-

mediated immunoregulatory role of NK cells during viral-bacterial coinfections.
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Infection of mice with lymphocytic choriomeningitis virus
(LCMV) is widely used to study innate and adaptive immune
responses. Depending on viral strain and virus dose, LCMV

induces either an acute infection, characterized by a potent virus-
specific cytotoxic CD8+ T-lymphocyte (CTL) response followed
by rapid virus clearance, or a chronic infection with T cell
exhaustion and virus persistence. In most cases, clean laboratory
mice kept under specific pathogen-free (SPF) conditions have
been used for these studies. However, viral infections in real life
may be accompanied by coinfections with unrelated pathogens
that have the potential to modulate anti-viral immune responses1.
The impact of a LCMV infection on a coinfection with bacterial
pathogens has been analyzed in a number of studies. These data
show that the LCMV infection can aggravate secondary infections
with certain bacteria but may also protect against Gram-positive
pathogens2–4. Enhanced susceptibility of LCMV-infected mice to
LPS treatment has also been reported5–7. However, the reverse
scenario, i.e., the effect of a bacterial coinfection on LCMV-
specific T-cell immunity, has so far only been analyzed in a
polymicrobial sepsis model8. These experiments showed that
sepsis induced by cecal-ligation and puncture strongly impaired
subsequent induction of a LCMV-specific CTL response9–12.
Mechanistically, these findings have been explained by apoptosis-
induced loss of antigen presenting cells12, decrease in LCMV-
specific precursor T-cells10, alterations in memory CD8 T-cell
function11 or exacerbation of T-cell exhaustion9.

NK cells are well-known for their potent antiviral and anti-
tumoral activity but it is also evident that they function as
important regulators of adaptive immunity during viral infec-
tions. In the murine cytomegalovirus (MCMV) infection model,
NK cell-depletion prior to infection has been shown to improve
T-cell responses and consequently virus elimination13–15. For
infection with LCMV, which is not primarily controlled by NK
cells, it was demonstrated that NK cells suppress antiviral
immunity by killing activated CD4 and CD8 T-cells16–18.
Accordingly, ablation of NK cells before or during chronic LCMV
infection led to a stronger T-cell response and more efficient virus
clearance19,20. By suppressing the CD4 T-cell response, NK cell
regulatory activity also effects immune memory and B cell
immunity during LCMV infection21,22. Importantly, these reg-
ulatory activities of NK cells during LCMV infection were only
observed when high (>104 pfu) infectious doses were used for
inoculation. In low dose (200 pfu) infection settings, NK cell
depletion did not improve the LCMV-specific CTL response and
virus clearance23–25.

NK cells activated during bacterial infections were found to
contribute to bacteria elimination but also to disease pathogen-
esis26. NK cell activation in these infections can occur both
directly by sensing of bacteria through pattern recognition
receptors and indirectly via bacterial stimulation of dendritic cells
or macrophages27. In case of E. coli infection and its major
pathogen-associated molecular pattern LPS, it was demonstrated
that NK cell activation is facilitated via IL-2, IL-18 and IFN-ß
produced by dendritic cells28. In view of the reported regulatory
activity of NK cells, we hypothesized that bacterial coinfection
may result in enhanced NK cell regulatory activity. Indeed, we
here demonstrate that NK cells in LPS-treated mice suppress
clonal expansion of LCMV-specific CTLs by a NKG2D-
independent or NCR1-independent but perforin-dependent
mechanism. These results suggest a TLR4-mediated immunor-
egulatory role of NK cells during viral-bacterial coinfections.

Results
E. coli coinfection interferes with LCMV control. To determine
whether a bacterial coinfection can interfere with LCMV-specific

CTL immunity, C57BL/6 (B6) mice were infected with a low dose
(200 pfu) of LCMV (strain WE) followed by inoculation with 5 ×
105 cfu of E. coli one day later. At day 8 post-infection (p.i.), the
LCMV-specific CTL response was analyzed by MHC class I tet-
ramer staining and by assessing viral titers. Without coinfection,
the mice generated a robust virus-specific CTL response and
decreased viral titer to low levels. Interestingly, coinfection with
E. coli significantly reduced the LCMV-specific CTL response and
strongly impaired virus elimination in spleen and liver. Most
strikingly, antibody-mediated depletion of NK cells almost
completely restored the LCMV-specific CTL response and virus
clearance in E. coli coinfected mice (Fig. 1a–c).

To determine whether the negative effect of E. coli coinfection
on anti-LCMV CD8 T cell immunity was mediated by bacterial
cell wall components such as LPS or peptidoglycans, TLR2/4-
deficient mice were used. In striking contrast to wild-type (wt)
mice, E. coli coinfection (2 × 106 cfu) of TLR2/4-deficient mice
did neither inhibit the LCMV-specific CTL response nor impair
viral clearance. In addition, depletion of NK cells before
coinfection did not significantly improve the antiviral CTL
response in these mice (Fig. 1d, e). Taken together, these data
suggest that cell wall components released during E. coli infection
enabled NK cells to interfere with induction of LCMV-specific
CTL and virus clearance.

TLR ligands inhibit the anti-LCMV CTL response. To provide
direct evidence that TLR4 triggering was able to interfere with the
induction of LCMV-specific T cell immunity, purified LPS (1 μg)
was injected into B6 mice that had been infected with LCMV one
day earlier. At day 8 p.i., the LCMV-specific CTL response and
viral titers were analyzed. Similar to the E. coli coinfection, LPS
injection also strongly reduced the LCMV-specific CTL response
and prevented rapid virus clearance. Importantly, NK cell
depletion again reverted the negative effects of LPS treatment on
induction of the LCMV-specific CTL response and virus elim-
ination (Fig. 2a, c). Absolute numbers of splenocytes were com-
parable in all experimental groups indicating that gp33- and
np396-tetramer+ CTL were de- or increased not only in relative
but also in absolute numbers (Fig. 2b). Similar to LPS, injection of
TLR3 ligand poly(I:C) or TLR9 ligand CpG oligodeoxynucleo-
tides (ODN) also markedly suppressed the virus-specific T-cell
response and virus clearance through a NK cell-dependent
mechanism (Supplementary Fig. 1). LPS treatment did not sup-
press the anti-LCMV CTL response in TLR2/4-deficient mice.
However, injection of poly(I:C) resulted in a decreased CTL
response and impaired virus control, demonstrating that these
mice were still responsive to NK cell activating signals (Supple-
mentary Fig. 2). Taken together, these data show that TLR ligands
when present at an early time point after LCMV infection
strongly interfered with rapid viral clearance by a NK cell-
dependent mechanism.

NK cell-mediated inhibition of CTL is perforin-dependent. To
analyze the effect of LPS on the induction of LCMV-specific CTL
at early time points, we used an adoptive transfer system with
LCMV gp33-specific CD8 T-cells from P14 TCR transgenic mice.
A tracer population of P14 T-cells (Thy1.1+) was transferred into
B6 recipient mice followed by LCMV infection and LPS or PBS
injection at day 1 p.i.. At day 4 after infection, P14 T-cell fre-
quencies in spleens of infected mice were slightly increased
compared to non-infected controls. This initial expansion was,
however, not affected by the LPS treatment (Fig. 3a, left). Like-
wise, the rate of BrdU incorporation in P14 T cells was not
influenced by LPS administration (Fig. 3a, right). These data
indicate that LPS-treatment in the context of a LCMV infection
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did not interfere with the initial priming of the CTL response. In
sharp contrast to this, one day later (day 5 p.i.), frequencies and
absolute numbers of clonally expanded P14 T-cells were con-
siderably lower in LPS-treated mice compared to controls
(Fig. 3b). As in the polyclonal setting, the LPS-induced decrease
in P14 T-cell expansion was prevented by NK cell depletion
(Fig. 3c). To confirm the importance of NK cells for the decreased
expansion of P14 T cells after LCMV infection and LPS treat-
ment, IL-15-deficient mice were used as recipients of P14 T cells.
These mice almost completely lack NK cells but mount a fully
functional CTL immune response after LCMV infection29. In
contrast to wt recipient mice, LPS injection did not lower the

LCMV-induced expansion of P14 T cells in IL-15-deficient mice
(Fig. 3d).

Regulation of T-cells by NK cells frequently operates through
cell-mediated lysis via perforin16,17,30. To determine whether the
decrease in expansion of P14 T-cells by LPS was perforin-
dependent, perforin-deficient mice were used as recipients of P14
T cells. Unlike to wt recipients, LPS did not decrease the LCMV-
induced expansion of P14 T-cells in hosts lacking perforin
(Fig. 3e). For the LCMV clone 13 infection model, it was
postulated that NK cells negatively regulate T cell priming by cell-
mediated lysis of antigen presenting cells (APC)19. The unaltered
initial P14 T cell expansion until day 4 p.i. (Fig. 3a), however,
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already suggested that APC capacity is unlikely to be affected in
our setting. To further determine whether LPS injection
interfered with priming of T cells, we used splenic APC from
LCMV-infected mice (day 4 p.i.) to stimulate proliferation of
naïve P14 T-cells. As depicted in Fig. 3f, APC isolated from LPS-
treated mice showed an even slightly increased capacity to
stimulate P14 T cell proliferation in vitro. Taken together, these
data indicate that NK cells activated directly or indirectly by LPS
during an ongoing LCMV infection negatively regulated
proliferating LCMV-specific CD8+ T-cells by a perforin-
dependent mechanism.

LPS promotes NK cell accumulation after LCMV infection. NK
cells become activated during LCMV infection31 but their num-
bers hardly increase (Fig. 4a). Interestingly, LPS given at day 1
after LCMV infection led to significantly increased NK cell fre-
quencies and numbers in the spleen at day 4 p.i.. Likewise, NK
cell numbers in liver and lungs were also considerably increased
in LCMV/LPS- compared to LCMV/PBS-treated mice (Supple-
mentary Fig. 3). Without infection, LPS treatment did not
increase splenic NK cell frequencies and numbers. The cytolytic
activity of LCMV/LPS-activated NK cells was tested in 51Cr
release-assays using NK cell-sensitive YAC-1 target cells. Sple-
nocytes from LCMV/LPS-treated mice showed a 3 to 5-fold
increase in lytic activity against YAC-1 cells compared to sple-
nocytes from LCMV-infected mice without LPS treatment
(Fig. 4b, left). This difference was primarily due to the increased
NK cell frequency since lytic activity of NK cells on a per cell
basis was only slightly increased by LPS injection (Fig. 4b, right).
NK cells from LPS-treated LCMV-infected mice also displayed a
more mature phenotype with smaller CD11b−CD27+ but larger

CD11b+CD27+ subsets and increased KLRG1 expression
(Fig. 4c).

To test whether direct TLR signaling in NK cells was required
for LPS-induced cell proliferation during LCMV infection, CFSE-
labeled NK cells from TLR2/4-deficient or wt mice were
transferred into wt mice, followed by LCMV infection and LPS
injection. After 4 days, cell division of the transferred NK cells
was analyzed by CFSE dye dilution. LPS injection into LCMV-
infected recipients significantly increased NK cell division as
evident by an increased portion of CFSElow NK cells. This
increase was also evident in NK cells lacking TLR2/4 (Fig. 4d).
Thus, LPS given in the context of a LCMV infection promoted
NK cell proliferation indirectly by a NK cell-extrinsic pathway.

Role of IL-15 in negative T-cell regulation. IL-15 is an impor-
tant cytokine for NK cell survival and activation that is also
induced by LPS32,33. To block IL-15 signaling, we used a
monoclonal antibody (mAb) that specifically targets the IL-15/IL-
15R complex. Without LPS treatment, blocking IL-15/IL-15R did
not affect induction of LCMV-specific CTL and virus clearance
(Fig. 5d–f) confirming previous findings that IL-15 is not required
for effector T-cell induction29. Anti-IL-15/IL-15R mAb treat-
ment, however, limited the increase of NK cells after LPS injec-
tion in the context of a LCMV infection (Fig. 5b). Nonetheless,
anti-IL-15/IL-15R mAb treatment did not restore the LCMV-
specific CTL response and virus elimination after LPS injection
(Fig. 5a, c). Thus, IL-15 signaling was dispensable for the LPS-
triggered negative T-cell regulation by NK cells. In addition, these
data imply that the increased NK cell numbers observed after LPS
injection were not a prerequisite for their suppressive effect on
the LCMV-specific CTL response.
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IFN-β, IL-2 and IL-18 have also been shown to be necessary
and sufficient for NK cell activation following exposure to E. coli
or LPS administration; induction of NK cell cytotoxic activity
required IFN-β and IL-15 but not IL-2 or IL-1828. In our setting,
however, IFN-β and IL-18 were dispensable for the suppressive
effect of LPS-activated NK cells on the LCMV-specific T-cell
response (Supplementary Fig. 4A to D). Also the combined
deficiency of IL-18 and IL-12 did not prevent suppression of
LCMV-specific T-cell immunity by LPS-activated NK cells
(Supplementary Fig. 4E to F).

NK cell-mediated inhibition is independent of NKG2D or
NCR1. NKG2D and NCR1 have both been reported to be

responsible for killing of activated LCMV- and MCMV-specific
CD8 T-cells by NK cells16,23,30. The importance of NKG2D in
our model system was tested using NKG2D-deficient mice. The
data show that LPS given in the context of a LCMV infection also
strongly decreased the LCMV-specific CTL response and virus
elimination in the absence of NKG2D (Fig. 6a–d). To assess the
role of the activating NK cell receptor NCR1, we utilized two
different mouse strains. First, similar to Crouse et al.23, we used
NKp46icre/icre mice which exhibit a strongly impaired NCR1
expression34. In these mice we found that LPS injection still
suppressed the LCMV-specific CTL response and impaired virus
elimination (Fig. 6e, g, h). However, NK cell frequencies in
LCMV-infected NKp46icre/icre mice were considerably decreased
when compared to wt mice (Fig. 6f). Therefore, we tested an
additional recently described mouse line termed B6.CD45.1-
NcrC14R that lacks NCR1 cell surface expression due to a point
mutation in the NCR1 signal peptide35. In these mice, NK cell
frequencies were not affected by the lack of NCR1 expression
(Fig. 6j). Nonetheless, LPS injection also significantly suppressed
the anti-LCMV CTL response and increased viral burdens in the
absence of NCR1 (Fig. 6i, j, l). Together, these results demonstrate
that NKG2D and NCR1 were dispensable for LPS-induced NK
cell-mediated suppression of the anti-LCMV CD8 T cell immune
response.

Discussion
Several studies have previously shown that NK cells are able to
kill antigen-specific T-cells after LCMV infection. Importantly,
this type of negative regulation of T-cells by NK cells in LCMV
infection is only observed after inoculation with high virus doses
(>104 pfu)16,17,19. When mice were infected with low doses (200
pfu) of LCMV-WE, as it was done in the present study, NK cell-
depletion did not significantly improve the LCMV-specific CTL
response and virus clearance23–25. Using this low-dose infection
setting, we now demonstrate that TLR2/4 ligands generated
during a coinfection with E. coli caused a NK cell-mediated
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4 p.i., cell division of the transferred NK cells (CD45.2+CD3–NK1.1+) in
spleen was analyzed by CFSE dye dilution. Representative histograms are
shown, numbers indicate mean values ± SEM; dots represent values of
individual mice. The positions of the gates were determined by the utmost
right peak of the CFSE dilution histograms which represents undivided cells.
The gates include all cells with lower fluorescence intensity when compared
to the undivided CSFEhigh cells. Data are derived from five independent
experiments with 1–3 mice per group (for wt NK cells, n= 7) and two
independent experiments with two mice per group (for TLR2/4–/– NK cells,
n= 4). *p < 0.05, **p < 0.01, ***p < 0.001; ANOVA with Tukey-Kramer
post-test (a, left); Kruskal-Wallis with Dunn’s post-Test (a, right); unpaired
t-test with Welch-correction (d)
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suppression of the anti-viral CTL response and thereby prevented
rapid virus control. Similarly, injection of the soluble TLR ligands
LPS, poly(I:C) or CpG ODN also impaired the LCMV-specific
CTL response and virus elimination through a NK cell-dependent
mechanism. These findings reveal a hitherto unknown mechan-
ism by which bacterial infections incapacitate a central antiviral
effector pathway.

NK cells in LPS-treated mice suppressed the expansion of
LCMV-specific P14 CD8 T-cells by a perforin-dependent
mechanism. This suppression took place between day 4 and
day 5 p.i., when the activated P14 cells underwent an extensive
proliferative burst. Besides activated T-cells, LCMV antigen pre-
senting cells (APC) may also serve as targets for NK cells19.
However, LPS injection did not affect the capacity of ex vivo
isolated splenic APCs from LCMV-infected mice to stimulate P14
T-cell proliferation in vitro. In addition, LPS treatment did not
impair initial in vivo expansion of P14 T-cells up to day 4 p.i. and
did not affect BrdU incorporation in P14 T-cells at day 4 p.i..
Hence, these data suggest that upon TLR ligand treatment NK
cells kill proliferating virus-specific CD8 T-cells. In line with
previous studies showing that CD4 T-cells can also serve as tar-
gets of NK cell regulatory activity16,17, we observed that LPS-
treatment decreased clonal expansion of LCMV-specific
SMARTA CD4+ T-cells after LCMV infection as well (Supple-
mentary Fig. 5). Since control of low dose LCMV infection is
predominantly dependent on CD8+ T-cells, it is, however, unli-
kely that impaired virus elimination after LPS injection was pri-
marily due to the missing LCMV-specific CD4+ T-cell response.

Dendritic cells are able to sense pathogens through pattern
recognition receptors and, in turn, activate NK cells36–38. IL-15
induced by type I IFN-receptor signaling is further important for
TLR4-triggered NK cell activation28,37. Antibody blockade of IL-
15-signaling significantly impaired the LPS-induced

accumulation of NK cells during LCMV infection in our system.
Nonetheless, this treatment failed to prevent their suppressive
effect on the LCMV-specific CTL response. This indicates that the
sole increase in NK cell numbers as observed in LCMV-infected
mice after LPS injection was not a prerequisite for the suppres-
sion. Remarkably, IL-12, IL-18, and IFN-β were also dispensable.
This suggests that the cytokine requirement for the inhibitory
effect of NK cells on the LCMV-specific CTL response after
TLR4 stimulation exhibits a considerable redundancy. This could
be due to the two potent immunological stimuli, LCMV infection
and LPS injection, used here.

Several receptors have been reported to be important for killing
of activated CD4+ or CD8+ T-cells by NK cells. A crucial role of
NKG2D was shown in two studies performed in the LCMV and
in the MCMV model systems16,30. In contrast, Waggoner et al.18

showed that absence of 2B4 promoted NK cell-mediated killing of
LCMV-activated CD8+ T-cells but found no evidence for the
involvement of NKG2D. Similar to Waggoner et al.18 and Crouse
et al.23, we also did not observe a role of NKG2D in the negative
regulation of LCMV-specific CD8+ T-cells by NK cells. The
reason for this discrepancy is unknown and remains to be solved.

Absence of the type I IFN receptor (IFNAR) has been shown to
render activated LCMV-specific CD8+ T-cells more susceptible
to NK cell killing23,25. In addition, adoptive transfer experiments
with IFNAR-deficient P14 T-cells into Ncr1icre/icre mice revealed
an essential role of NCR1 in this process. In our experiments with
Ncr1icre/icre mice, LPS treatment was still able to significantly
decrease the LCMV-specific CD8+ T-cell response. However, the
extent of this decrease as well as the increase in viral titers after
LPS treatment was less pronounced in NKp46icre/icre mice than
in wt mice. This could be due to the lower NK cell frequencies
in NKp46icre/icre mice or non-defined strain differences.
Importantly, LPS-treatment also significantly lowered the
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LCMV-specific CTL response and increased viral burdens in B6.
CD45.1-NcrC14R mice that lack NCR1 cell surface expression but
contain normal NK cell numbers35. Thus, these data indicate that
NCR1 was not involved in the interaction of LPS-activated NK
cells with activated LCMV-specific CD8+ T cells.

T-cells protect themselves from NK cell killing by expression of
ligands for inhibitory NK cell receptors or by suppression of
ligands for activating NK cell receptors18,23,39. For instance, type I
IFNs are known to induce expression of MHC class I and Ib
molecules that function as ligands for NK cell inhibitory
receptors25,40. We observed that IFN-α and IFN-β levels in serum
of LCMV-infected mice were roughly two-fold reduced at 24 h
after LPS injection as compared to control mice. However, this
decrease did not alter H-2Kb, H-2Db and Qa-1b expression levels
on LCMV-specific P14 CD8 T-cells isolated from NK cell-
depleted hosts at day 5 p.i. (Supplementary Fig. 6). Thus, negative
T-cell regulation by NK cells in LPS-treated mice occurred
despite high expression of MHC class I and Ib molecules.

While the impact of viral infections on bacterial coinfections
has been extensively studied in the past41–44, the reverse regula-
tion as described here has been poorly recognized to date. There
are a few reports that previously demonstrated an effect of
coinfection on LCMV-specific T-cell immunity. Polymicrobial
sepsis analyzed in a cecal-ligation and puncture model has been
shown to impair LCMV-specific T-cell immunity by various
mechanism including loss of APC function, decrease in precursor
T-cell frequencies and alterations in T-cell functions9–12. Mice
co-infected with LCMV and Schistosoma mansoni further show
enhanced early LCMV replication and impaired viral clearance in
the liver most likely due to a decreased type I IFN response in this

organ45. Similarly, decreased type I IFN production that limits
expansion of LCMV-specific CTL has been observed in mice co-
infected with Ectromelia virus and LCMV46. Finally, coinfection
of mice with Pichinde virus led to a decreased number of LCMV-
specific CTL but increased variability in immunodominance that
can be rationalized by the competition between two simultaneous
immune responses47.

In conclusion, the present study sheds light on an additional
aspect in the complex network of viral-bacterial coinfections. In
particular, it links TLR stimulation by bacterial pathogens to NK
cell-mediated suppression of virus-specific T cells, which has not
been reported previously. The results have important implications
for our understanding of the immune defense and mechanisms of
evasion when the organism is simultaneously exposed to two
different pathogens.

Methods
Mice. C57BL/6 (B6) mice were obtained from Janvier (Le Genest St-Isle, France).
B6-Ly5.2/Cr (CD45.1+), IL-15-deficient48, IL-18-deficient49, perforin-deficient50,
TLR2/4-deficient51, NKG2D-deficient52, NKp46icre/icre53, IFN-βluc/luc54, P14 TCR
tg55, SMARTA TCR tg56 and B6.CD45.1-NcrC14R35 mice were bred locally. P14
chimeric mice were generated by adoptive transfer (i.v.) of 1 × 105 splenic P14
TCR+ tg T-cells into B6 mice. Mice were bred and kept in our animal facility under
specific pathogen-free conditions. Animal care and use was approved by the
Regierungspräsidium Freiburg. All experiments were performed in accordance
with the German law for animal protection.

Infections and treatments. Mice were infected i.v. with 200 pfu LCMV-WE. For
coinfection experiments, B6 and TLR2/4-deficient mice were infected one day later
with 5 × 105 or 2 × 106 cfu E. coli EH100, respectively, in Lysogeny Broth (LB)
medium (200 μl, i.v.). E. coli were grown in LB medium and frozen at −80 °C in
glycerol stocks. Before infection, E. coli were regrown in LB medium until an
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optical densitiy (OD 600 nm) of 0.4 was reached. Infection dose of bacteria was
calculated from the linear relationship between turbidity and the number of cfu
grown after 24–48 h at 37 °C. Control mice received sterile LB medium. For TLR-
ligand treatment, mice received one day after LCMV infection 1 µg LPS derived
from E. coli O111:B4 (Sigma-Aldrich), 50 µg poly(I:C) (Enzo) or 50 µg CpG ODN
1668 (InvivoGen) in 200 μl PBS via the intravenous route; controls received PBS
only. NK cells were depleted by injection of 300 µg and 200 µg purified anti-NK1.1
mAb (clone PK136, BioXcell) at day 2 and day 1, respectively, before LCMV
infection. In the P14 T-cell transfer experiments (Fig. 3c), control (ctrl) mice
received mouse IgG2a isotype control mAb (clone C1.18.4, BioXcell). Since
treatment with isotype control mAb had no effect on the anti-LCMV CTL response
and virus clearance (Supplementary Fig. 7), isotype control antibodies were omitted
for the NK cell-depletion experiments without P14 T-cell transfers (Fig. 1 and
Fig. 2). For blocking IL-15 signaling, mice were treated at day 1 and 3 after
infection (i.p.) with anti-IL-15/IL-15R α chain complex antibody (50 μg, clone
GRW15PLZ, eBioscience) or isotype control mAb (clone HRPN, BioXcell) or left
untreated. For blocking IL-12, anti-IL-12 p40 antibody (200 μg, clone C17.8,
BioXcell) was given (i.p.) at day 0 and at day 1 and 3 after infection.

Flow cytometry. For isolation of lymphocytes, spleens were meshed through a
metal strainer. Livers were meshed through a cell strainer (Greiner) and lym-
phocytes purified using a Percoll (Sigma) gradient. Lungs were digested using
Collagenase II (Roche, 140 Uml-1) and DNaseI (Sigma,10 µg ml−1) and meshed
through a cell strainer. The following mAbs were purchased from BioLegend (BL),
eBioscience (eB) or Miltenyi Biotec (MB): anti-CD8α (clone 53.6.7, cat. # 100723
(BL), diluted 1:100), anti-Thy1.1 (HIS51, #14-0900-81 (eB), 1:1000), anti-CD3ε
(145-2C11, #100312, 1:100), anti-CD11b (M1/70, #101217 (BL), 1:100), anti-CD27
(LG.7F9, #124211 (BL), 1:500), anti-KLRG1 (2F1, #138418 (BL), 1:150), anti-
CD45.1 (A20, #110724 (BL), 1:200), anti-NK1.1 (PK136, #108714, 1:500), anti-CD4
(GK1.5, #47-0041-82 (eB), 1:100), anti-H-2Kb (AF6-885, #116505 (BL), 1:100),
anti-H-2Db (KH95, #111508 (BL), 1:50), anti-Qa-1B (6A8.6F10.1A6, #13−105-048
(MB), 1:10). Zombie NIR dye (BioLegend) or DAPI (Sigma) was used for dead cell
exclusion. To detect virus-specific CD8+ T cells, lymphocytes were stained with
DbGP33 and DbNP396 tetramers57 (produced in-house). Staining was performed
for at least 20 min at 4 °C. Samples were measured on a LSR Fortessa or Canto II
cytometer (both BD Biosciences) and data were analyzed with FlowJo software
8.8.7 (Tree Star).

51Chromium-release assay. Cytolytic activity of NK cells was determined by a
standard 51Chromium-release assay. In brief, serial 1:3-dilutions of effector cells
were mixed in 96-well round bottom plates with YAC-1 target cells (obtained from
Dr. Rolf Zinkernagel, Zürich) that had been loaded with 51Chromium (Perki-
nElmer) for 2 h at 37 °C. Total splenocytes or enriched NK cells (MojoSort NK cell
isolation kit, BioLegend) were used as effector cells. After incubation at 37 °C for 5
h, radioactivity in the supernatant was measured using a gamma-counter. Dupli-
cate wells were assayed for each effector-target ratio and percentages of specific
lysis were calculated.

In vitro T-cell stimulation assay. To test antigen presenting cell (APC) function,
spleens from LPS-treated and control-treated LCMV-infected mice at day 4 p.i.
were digested with collagenase II (Roche, 2000 U/ml) for 30 min at 37 °C and
subsequently minced through a metal strainer. Afterwards, 2 × 105 splenocytes
depleted of Thy1.2+ and B220+ cells by positive selection (Dynabeads Magnetic
Separation, ThermoFisher) were co-cultured with 2 × 105 CFSE-labeled enriched
(mouse CD8 T-cell isolation kit, Miltenyi Biotec) P14 TCR+ T cells in in 96-well
plates for 3 days. Afterwards, cell division of P14 T-cells was analyzed by dye
dilution.

NK cell proliferation in vivo. NK cells were enriched from CFSE-labeled sple-
nocytes of indicated donor mice using mouse CD49b-Microbeads (Miltenyi Biotec)
or the MagniSort Mouse NK cell isolation kit (eBioscience). 3 × 105 to 8 × 105

enriched CFSE-labeled NK cells were transferred one day prior to infection into
indicated mice expressing a different CD45 isoform.

Viral titers. Viral titers were determined by standard focus-forming assay58. In
brief, organs were homogenized using a FastPrep-24 (MPBiomedicals). Serial 1:10-
dilutions of tissue homogenate were plated on MC57G fibrosarcoma cells (obtained
from Dr. Rolf Zinkernagel, Zürich) in 24-well plates and after 4 h incubation at
37 °C, an overlay containing 1% methylcellulose was added. After another incu-
bation for 40 h at 37 °C, supernatant was discarded and cells were fixed with 4%
formaldehyde in PBS, followed by permeabilization using 0.5 % Triton X-100 in
PBS, blocking with 10% FCS in PBS and staining with anti-LCMV NP mAb (clone
VL-4, made in-house) and horse radish peroxidase-conjugated polyclonal goat-
anti-rat IgG antibody (Jackson ImmunoResearch) as secondary antibody. Foci were
detected by incubation with SIGMAFAST OPD (Merck).

Serum type I IFN concentrations. Mouse sera were obtained using BD Micro-
tainer SST tubes. IFN-α concentration in the sera was determined using the

VeriKine Mouse Interferon Alpha ELISA Kit (pbl), IFN-β concentration was
determined using the BD Cytometric Bead Array Mouse inflammation Kit, both
according to the manufacturers instructions.

Statistics. Statistical differences between two groups were determined using
unpaired two-tailed t-test or Mann–Whitney test depending on whether data
demonstrated Gaussian distribution or not. When data were sampled from
Gaussian distribution but had different standard deviations, unpaired two-tailed t-
test with Welsh correction was used. Statistical differences between more than two
groups were determined using two-tailed one-way ANOVA with Tukey-Kramer
post-test or two-tailed Kruskal–Wallis test with Dunn’s post-test depending on
whether data demonstrated Gaussian distribution or not. All tests were performed
using the GraphPad InStat software.

Data availability
All relevant data are available from the authors upon request.
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