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Chronic Helicobacter pylori infection causes gastric cancer via the progression of
precancerous chronic atrophic gastritis (CAG). Therefore, repairing gastric atrophy
could be a useful strategy in preventing H. pylori–associated gastric carcinogenesis.
Although eradication of the bacterial pathogen offers one solution to this association, this
study was designed to evaluate an alternative approach using mesenchymal stem cells to
treat CAG and prevent carcinogenesis. Here, we used human placenta-derived
mesenchymal stem cells (PD-MSCs) and their conditioned medium (CM) to treat H.
pylori–associated CAG in a mice/cell model to explore their therapeutic effects and
elucidate their molecular mechanisms. We compared the changes in the fecal
microbiomes in response to PD-MSC treatments, and chronic H. pylori–infected mice
were given ten treatments with PD-MSCs before being sacrificed for end point assays at
around 36 weeks of age. These animals presented with significant reductions in the mean
body weights of the control group, which were eradicated following PD-MSC treatment
(p < 0.01). Significant changes in various pathological parameters including inflammation,
gastric atrophy, erosions/ulcers, and dysplastic changes were noted in the control group
(p < 0.01), but these were all significantly reduced in the PD-MSC/CM-treated groups.
Lgr5+, Ki-67, H+/K+-ATPase, andMusashi-1 expressions were all significantly increased in
the treated animals, while inflammatory mediators, MMP, and apoptotic executors were
significantly decreased in the PD-MSC group compared to the control group (p < 0.001).
Our model showed that H. pylori–initiated, high-salt diet–promoted gastric atrophic
gastritis resulted in significant changes in the fecal microbiome at the phylum/genus
level and that PD-MSC/CM interventions facilitated a return to more normal microbial
communities. In conclusion, administration of PD-MSCs or their conditioned medium may
present a novel rejuvenating agent in preventing the progression of H. pylori–associated
premalignant lesions.
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INTRODUCTION

There has been a broad paradigm shift in our understanding of
gastric cancer prevention over the last three decades. Gastric
cancers are the second leading cause of cancer-related deaths
worldwide (Koulis et al., 2019), and their development is strongly
associated with gastric ulcerations. The high number of gastric
cancer deaths and the clear link between gastric cancers and
Helicobacter pylori infections have led to the identification of
several pathways for preventing pathogenesis. These include the
possibility of reversing the pathogenesis of premalignant lesions
by rejuvenating chronic atrophic gastritis (CAG), the total
eradication of Helicobacter colonization and the concomitant
reduction in mutagenic inflammation/oxidative stress, and the
directed alteration of the tumor microenvironment and the
mucosal immune response via engineering of the microbiota
(Yashima et al., 2010; Chen et al., 2016; Liu et al., 2016) or

some combination of these interventions. Most gastric
carcinomas follow a documented and easily discernable
cascade of precursor lesions, slowly progressing from the
premalignant stages of CAG, to intestinal metaplasia (IM), and
dysplasia to gastric carcinoma (de Vries et al., 2007; Moss, 2017),
and since most of these lesions are a direct result of the chronic
inflammation of gastric mucosa associated with H. pylori
infection, multiple clinical interventions and trials have been
implemented to prevent this cascade and detour the
progression of this disease (Sipponen and Kimura, 1994;
Correa and Piazuelo, 2012; Correa, 2013; Piazuelo and Correa,
2013; Rugge et al., 2013). These interventions all rely on the
theory that gastric cancers associated with H. pylori infection can
be prevented by the application of antioxidants or equivalent
therapies via their reduction of the premalignant lesions
including CAG with IM and their so-called suspension of the
gastric precancerous cascade.

FIGURE 1 | Influence of PD-MSCs or their CM on an H. pylori–initiated, high-salt diet–promoted CAG mice model (36 weeks). (A) Scheme for groups: Group 1,
normal control; Group 2, H. pylori–associated CAG disease control; Group 3, disease control treated with 1x106 PD-MSCs (100 μl), 10 times during 22–25 weeks; and
Group 4, disease control treated with 10x concentrated CM (200 μl). (B) Body weight changes according to groups. Body weights were measured every 3 days in all
mice. (C) Representative photo of the resected stomach and mean gross lesion scores according to groups, see Supplementary Table 1 for the scoring system.
(D) Representational pathology and mean pathological scores according to groups, see Supplementary Table 2 for the scoring system. All data represent mean ± SD
(n � 10).
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In addition to interventions such as antioxidants,
phytoceuticals, and natural products, stem cells, including
embryonic stem cells (ESCs), somatic cell–derived induced
pluripotent stem cells (iPSCs), and mesenchymal stem cells
(MSCs), are well-known therapeutic agents possessing
unlimited self-renewal capacity and great potential to
differentiate into various cell types from any of the three
embryonic germ layers, including ectodermal, mesodermal,
and endodermal lineages (Gumucio et al., 2008; Wang H.
et al., 2020). Given this, we hypothesize that the
administration of MSCs or their conditioned medium (CM)
prior to irreversible dysplasia could facilitate the therapeutic
rejuvenation of CAG. Therapeutic use of human placenta-
derived MSCs (PD-MSCs) has been shown to exhibit
enormous clinical potential as a source of regenerative
medicine, with relatively low immunogenicity, easy
producibility, and high stability. These attributes make MSCs
uniquely qualified to support the regeneration of injured or
diseased organs which is modeled by the CAG phenotypes in
this study (Lu and Zhao, 2013; Quan and Wang, 2014).

The ability to replace defective cells in the stomach with cells
that can engraft, integrate, and restore a functional epithelium

could potentially cure atrophic gastritis. Stem cells or the factors
included in their CM could serve as an attractive therapeutic
strategy for dealing with H. pylori–associated gastric
precancerous cascades. Efforts to identify efficient therapeutic
agents or strategies capable of either rejuvenating H.
pylori–associated gastric atrophy or preventing gastric cancer
via their regulation of class I carcinogen H. pylori infection
(Vogiatzi et al., 2007) remain a top priority. However, in
addition to eradication, non-anti-microbial approaches,
including the use of antioxidants, probiotics, vitamin E,
Artemisia, and green tea, among others, have been evaluated.
It is from these strategies that we selected the administration of
PD-MSCs or their CM since multiple clinical trials involving
MSCs in a range of human diseases or as the primary cell source
in cell therapies and regenerative medicine strategies are already
underway (Bunpetch et al., 2017; Kimbrel and Lanza, 2020;
Maqsood et al., 2020; Shariati et al., 2020). In this study, we
investigated whether PD-MSCs or their concentrated CM
administered during H. pylori–associated CAG could induce a
rejuvenating effect on CAG and facilitate a reversion of these
lesions to their premalignant state while allowing us to explore the
molecular mechanisms underlying these actions.

Figure 1. | (Continued).
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MATERIALS AND METHODS

Cell Culture
PD-MSCs were obtained from CHA University (Prof. Yong Soo
Choi, CHAUniversity, Seongnam, Korea). The PD-MSC line was
cultured in α-MEM containing 1 μg/ml heparin, 25 mg/ml
fibroblast growth factor, 10% (v/v) fetal bovine serum, and
100 U/ml penicillin. The cells were maintained at 37°C in a
humidified atmosphere containing 5% CO2. The rat gastric
mucosal cells, RGM-1, were kindly given by Prof. Hirofumi
Matsui (University of Tsukuba, Japan) and were maintained at
37°C in a humidified atmosphere containing 5% CO2. RGM-1
cells were cultured in Dulbecco’s modified Eagle’s medium
containing 10% (v/v) fetal bovine serum, 100 U/ml penicillin,
and 100 μg/ml streptomycin. For co-culture experiments, PD-
MSCs were seeded in a six-well transwell system and cultured for
24 h before co-culture with RGM-1 cells. Just prior to co-culture,

PD-MSCs were washed with PBS three times and co-cultured
with RGM-1 in the RGM-1 cell culture medium.

H. pylori Culture
H. pylori strain ATCC43504 (American Type Culture Collection,
cagA+ and vacA s1-m1 type strain) was used for the in vitro cell
model and Sydney strain (SS1, a cagA+ and vacA s2-m2 strain
adapted for mice infection) for the in vivo model. H. pylori
bacteria (Figure 1A and Figure 4A) were cultured at 37°C in
a BBL Trypticase soy (TS) agar plate with 5% sheep blood (TSAII;
BD Biosciences, Franklin Lakes, NJ) under microaerophilic
conditions (BD GasPaK EZ Gas Generating Systems, BD
Biosciences) for 3 days. The bacteria were harvested in clean
TS broth, centrifuged at 3,000×g for 5 min, and resuspended in
the broth at a final concentration of 109 colony-forming units
(CFUs)/ml. In all experiments, cultures grown for 72 h on TS agar
plates were used.

FIGURE 2 | Changes of stemness according to groups relevant to gastric atrophy. (A) Scores for gastric atrophy: left, representational pathology of Group 2
showing significant changes of CAG featured with a loss of parietal cells, gastric inflammation, and a loss of gastric glands with some foci of erosions; right, scores
according to groups. See Supplementary Table 2 for the scoring system. (B) Immunohistochemical staining of the proton pump with antibody of H+/K+-ATPase. (C)
Confocal staining with LGR5+ antibody: left, representational staining with LGR5+, x100 magnification; right, mean scoring according to groups. (D)
Immunohistochemical staining of Ki-67 antibody and the mean positive scoring according to groups. (E) Immunohistochemical staining of Musashi-1 antibody and the
mean positive scoring according to groups. (F) Western blot for cell cycle, ERK among MAPK, and smad2/3. (G) RT-PCR for PDGF, FGF, and HGF mRNA. All data
represent mean ± SD (n � 10).

Frontiers in Pharmacology | www.frontiersin.org August 2021 | Volume 12 | Article 6754434

Park et al. Reverting Atrophic Gastritis With PD-MSCs

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Animals and Study Protocol: Experimental
Protocol of H. pylori–Infected Mice Model
Five-week-oldmale C57BL/6mice (WTmice) were purchased from
Orient (Seoul, Korea), and they were housed in a cagemaintained in
a 12 h/12 h light/dark cycle under specific-pathogen-free conditions
(n � 50). C57BL/6 mice were purchase from Central Lab Animal
Inc. (Seoul, Korea). Six-week-old female C57BL/6 mice were fed
sterilized commercial pellet diets (Biogenomics, Seoul, South Korea)
and sterile water ad libitum and housed in an air-conditioned
biohazard room at a temperature of 24°C. We divided 50 mice into
four groups: Group 1 (n � 10), WT mice in the vehicle control
group; Group 2 (n � 20), WTmice in theH. pylori–infected disease
control group; Group 3 (n � 10), WTmice in theH. pylori–infected
disease group administered 1x107/100ml PD-MSCs; and Group 4
(n � 10), WT mice in the H. pylori–infected disease group
administered CM obtained from PD-MSCs, 100 μl concentrated
from PD-MSC culture. We maintained these four groups up to
36 weeks, respectively. All groups were given intraperitoneal
injections of pantoprazole, 20mg/kg (Amore-Pacific Pharma,
Seoul, Korea), as the proton pump inhibitor (PPI), three times
per week, to increase successful H. pylori colonization through
lowered gastric acidity, and then, each mouse was intragastrically
inoculated with a suspension of H. pylori containing 108 CFUs/ml
or with an equal volume (100 μl) of clean TS broth using gastric
intubation needles. The H. pylori–infected mice were fed a special

pellet diet based on AIN-46A containing 7.5% NaCl (high-salt diet,
Biogenomics, Seongnam, Korea) for a total of 36 weeks (Figure 1A
and Figure 4A) to promote the H. pylori–induced carcinogenic
process in all infected animals. Randomized groups of mice (n � 10)
were sacrificed after 36 weeks of H. pylori infection, respectively,
based on our previous experience that CAG was generated at
24 weeks and gastric tumorigenesis was generated after 36 weeks
(Park et al., 2014). The body weight was checked in all mice every
3 days up to observational periods. The stomachs of mice were
opened along the greater curvature and washed with ice-cold PBS.
The numbers of either erosions/ulcers or protruded nodule/mass
were determined under the magnified photographs (Figure 1C).
Stomachs were isolated and subjected to histologic examination,
ELISA, western blotting, and RT-PCR. All animal studies were
carried out in accordance with protocols approved by the
Institutional Animal Care and Use Committee (IACUC) of
CHA University, CHA Cancer Institute, after IRB approval (IRB
17-0901).

Statistical Analysis
The results are expressed as mean (standard deviation (SD)).
Statistical analyses were conducted with GraphPad Prism
(GraphPad Software, La Jolla, CA) and SPSS software (version
12.0; SPSS Inc., Chicago, IL). Statistical significance between
groups was determined by a multi-variate Kruskal–Wallis test.
Statistical significance was accepted at p < 0.05.

Figure 2. | (Continued).
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Supplementary Information
Detailed experimental procedures for gross lesion index, index of
histopathologic injury, immunohistochemical staining, terminal
deoxynucleotidyl transferase–mediated dUTP nick-end labeling
(TUNEL) staining, RT-PCR, western blotting, cytokine protein
array, preparation of cytosolic and nuclear extracts, RNA
interference, zymography, bacterial DNA extraction from mouse
stool samples, bacterial metagenomic analysis using DNA from stool
samples, and analysis of bacterial composition in the microbiota can
be found in the Supplementary Materials.

RESULTS

Placenta-Derived Mesenchymal Stem Cells
(PD-MSCs) or Their Conditioned Medium
Ameliorates H. pylori–Associated CAG
Since we already have an established H. pylori–induced CAG
mouse, which relies on an H. pylori infection–initiated, high-salt

diet–promoted mouse model (Nam et al., 2004a; Nam et al.,
2004b; Park et al., 2014; Jeong et al., 2015; Han et al., 2016; An
et al., 2019), we went on to design this experiment to document
the ameliorating action of PD-MSCs or their conditioned
medium (CM) against H. pylori–induced CAG. We
administered ten doses of PD-MSCs or their CM following
22 weeks of H. pylori infection and then evaluated these
animals over a nine-week period until they were terminated
for end point analysis at 36 weeks (Figure 1A). Our CAG
model was initiated following four PPI injections, which
facilitates the successful colonization of H. pylori in the
lowered gastric pH and of cultured H. pylori into mice who
were then fed a 7.5% salt AIN-76A pellet diet until 20–24 weeks,
when the control mice (Group 2) showed significant changes in
CAG, manifested with erosions, ulcers, and a very thin atrophied
gastric wall (Figure 1C). To encourage the rejuvenating effects of
the PD-MSCs (1 × 107/100 μl PD-MSCs, Group 3) or their
concentrated CM (100 μl, concentrated from PD-MSC
culture), they were were administered to groups of mice via
the oral route approximately 10 times before the mice were

FIGURE 3 | Apoptotic status according to groups. (A) TUNEL staining with apoptotic index according to groups, x100magnification. (B)Western blot for apoptotic
executors, Bax, surviving, and Bcl-2. (C) Changes of RGM-1 cells’ viability after H. pylori infection in a different time point and different POI in a transwell co-culture
system. Cell counting using a hemocytometer and trypan blue for measuring cell viability was done after 24 hr of H. pylori infection in the absence or presence of PD-
MSCs. (D)Western blot for apoptotic executors in the presence or absence of PD-MSCs underH. pylori infection, 100 MOI, 24 hr. (E)Western blot for autophagy,
Beclin1, cleaved Beclin1, ATG5, and LC3B in the presence or absence of PD-MSCs under H. pylori infection, 100 MOI, 24 hr. (F) Confocal imaging of LC3B after CM
administration. (G) Cell viability after PD-MSCs in the presence of H. pylori infection in mock cells and LC3B siRNA transfection. All data represent mean ± SD (n � 10).
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sacrificed at 36 weeks and subjected to histological examination.
In addition, each mouse was evaluated for body weight over the
total course of treatment as this is an effective marker for atrophic
gastritis. Figure 1B clearly shows that the mean body weights of
the H. pylori control mice significantly decreased between week
24 and the end point of the experiment (p < 0.01), while there
were no significant changes in body weight in the groups treated
with PD-MSCs or their CM. There were also significant changes
in the gross lesions of the stomach in the control animals at
36 weeks, with these animals presenting with multiple scattered
nodular and elevated mass-like lesions, thinned corpus and
pylorus walls, and some scattered nodular changes, signifying
the development of typical CAG. The gross lesion index revealed
that there were significant changes in the H. pylori–infected
stomach and that intervention with PD-MSCs or their
concentrated CM (p < 0.01) significantly ameliorated the
severity of these lesions (Supplementary Table 1; Group 4, p
< 0.01, Figure 1C). The resected stomachs from each group were
also subjected to pathological evaluation, and the total
pathological scores describing gastric inflammation, gastric
atrophy, and tumorigenesis were significantly decreased in the
PD-MSC–treated group compared to the control group
(Supplementary Table 2; p < 0.001, Figure 1D). Gastric
atrophy is generally associated with a loss of parietal cells and
gastric glands and increased inflammatory cell infiltration. Our

evaluations revealed that Group 2 demonstrated a typical increase
in these parameters (p < 0.001), but that intervention with PD-
MSCs or their CM significantly ameliorated these effects (p <
0.05, Figure 2A; Supplementary Figure 1A). Further
investigation of the proton pump in the parietal cells, analyzed
via immunostaining of H+/K+-ATPase, revealed a significant
decrease in its expression in the control group (p < 0.01) but
an increase in its expression in Groups 3 and 4 (p < 0.05,
Figure 2B; Supplementary Figure 1B). These results suggest
that PD-MSCs and their CM exert a significant mitigating effect
on H. pylori–induced CAG.

Mitigated CAG in Response to PD-MSC
Treatment Is Closely Associated With an
Enrichment in the Number of Lgr5+ Cells
Lgr5+ cells have been identified as a possible source of
stemness in the stomach (Hata et al., 2018; Sigal et al.,
2019; Tang et al., 2019). Figure 2C shows that the
expression of Lgr5+ was significantly decreased in Group 2
(p < 0.05, Figure 2C) and that there was a loss of leucine-rich
repeat-containing G-protein–coupled receptor 5+ (Lgr5+)
cells following chronic H. pylori infection. On the contrary,
this trend was reversed following treatment with either
PD-MSCs or their CM (p < 0.01, Figure 2C). Ki-

Figure 3. | (Continued).
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67–mediated evaluation of cellular proliferation revealed
that there were significantly fewer Ki-67 cells in the
control group when compared to the healthy control.
However, Groups 3 and 4 showed significant increases in
Ki-67 expression (p < 0.01, Figure 2D; Supplementary
Figure 1C). Musashi-1 expression in the stomach reflects
stemness. Musashi-1 expression was increased in Groups 3
and 4 (p < 0.05, Figure 2E). In addition, the expressions of
cyclin A, cyclin E, p-ERK, and smad2/3, which are all
implicated in the pathogenesis of H. pylori–associated
CAG, were evaluated in response to treatment with PD-
MSCs or their CM. PD-MSCs significantly increased cyclin E
expression, and PD-MSCs and their concentrated CM
significantly decreased cell growth suppressive smad2/3
expression (Figure 2F; Supplementary Figure 2). The
expression of PDGF mRNA in the resected stomach
tissues was significantly increased in response to treatment
with either PD-MSCs or their concentrated CM. The expression
of HGF mRNA was increased in response to treatment with PD-
MSCs (Figure 2G).

PD-MSC Treatment Induces Preemptive
Amelioration of Apoptosis and Protease
Inhibition Alleviating CAG in the Mouse
Model
ChronicH. pylori infection induces considerable levels of apoptosis,
a loss of parietal cells in the corpus, decreased somatostatin-
secreting D cells in the antrum, and robust apoptosis in the
epithelial cells, which are responsible for atrophic gastritis, peptic
ulcer disease, and mucosal erosions (Alzahrani et al., 2014; Zhao
et al., 2020). Figure 3A shows that 36 weeks of chronic H. pylori
infection led to considerable levels of apoptosis (p < 0.001).
However, animals treated with PD-MSCs showed significantly
decreased levels of apoptosis, even during chronic H. pylori
infection (p < 0.01, Figure 3A). Western blot against the central
apoptosis-related molecules showed a significant increase in Bax in
response to CAG conditions (Group 2). However, the levels of Bcl-2
were significantly increased and Bax was significantly decreased in
Group 3 (p < 0.05, Figure 3B). Given this, we extended our
investigation to include an exploration of the anti-apoptotic

FIGURE 4 | Changes of COX-2 and 15-PGDH according to groups. (A) RT-PCR for COX-2 mRNA and western blot for COX-2. (B) Left: immunohistochemical
staining for 15-PGDH, x100 magnification; right: mean expressions according to groups. (C) Western blot for 15-PGDH. All data represent mean ± SD (n � 10).
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effects of PD-MSCs using a transwell co-culture system. Figures
3C,D demonstrate that H. pylori infection significantly decreased
RGM-1 cell viability, while the addition of PD-MSCs significantly
decreased the expression of H. pylori–induced apoptotic executors.
Further evaluations of the autophagy response in cells treated with
PD-MSCs or their CM demonstrated that there was a significant
increase in LC3B-II and ATG5 autophagosomes (Figures 3E,F;
Supplementary Figure 3) and that this increasewas lost in response
to LC3B siRNAs (Figure 3G).

PD-MSC–Mediated Preservation of
15-PGDH Afforded These Treatments’
Anti-Tumorigenic Effects and
Alleviated CAG
Increased expression of COX-2 is known to be responsible for
perpetuated gastric inflammation and gastric carcinogenesis in

chronic H. pylori infections (Resende et al., 2011; Thiel et al.,
2011; Cheng and Fan, 2013; Echizen et al., 2016). When we
measured COX-2 mRNA and COX-2 protein expressions
(Figure 4A), we noted a significant increase in both COX-2
mRNA and COX-2 protein in Group 2 (p < 0.001). However,
COX-2 expression was significantly decreased in both Groups 3 and
4 (p< 0.01, Figure 4A). COX induction can lead to an increase in 15-
PGDH as part of the hormetic response designed to retain
homeostasis. Expression of 15-PGDH is known to exert some
tumor suppressive effects and has been linked to reducing
tumorigenesis in response to H. pylori–mediated CAG. However,
themean expression of 15-PGDH inGroup 2was significantly lower
than that in Group 1 (p < 0.01; Figure 4B), while 15-PGDH levels
were significantly increased in Groups 3 and 4 compared to Group 2
(p < 0.05, Figure 4B). The results of the immunohistochemical
staining of 15-PGDHwere further confirmed bywestern blot against
this protein in each group (p < 0.01, Figure 4C).

FIGURE 5 | Changes of inflammatory mediators according to groups. (A) Left: RT-PCR for IL-1β, IL-6, IL-8, TNF-α, and NOX-1 according to groups; right: mean
expressions according to inflammatory genes. (B) Left: protein array for inflammatory proteins including IL-1α, RANTES, IFN-γ, IL-17, IL-6, and TNF-α; right: mean
changes of individual inflammatory proteins on the protein array panel. (C)Western blot for p-NF-κB p65 and p-STAT3. (D) Immunohistochemical staining for NF-κB p65
according to groups. (E) Immunohistochemical staining for F4/80 denoting the status of macrophages according to groups, x100 magnification. All data represent
mean ± SD (n � 10).
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PD-MSCs Exert an Anti-Inflammatory Effect
Which Lowers Mutagenic Inflammation and
Counteracts H. pylori–Induced Atrophy
Oncogenic perpetuated gastric inflammation following H. pylori
infection is the root cause of both CAG and gastric carcinogenesis
(Piazuelo et al., 2010; Kim E.-H. et al., 2011). The expressions of
inflammatory mediators such as IL-1β, IL-6, IL-8, TNF-α, and
NOX-1 were all significantly increased in Group 2. However,
administration of either the PD-MSCs or their concentrated CM
led to a significant decrease in the expression of these
inflammatory mediators (Figure 5). In this experiment, a
protein array comprising several cytokines and chemokines
was compared between the groups. The expressions of IL-1β,
RANTES, IFN-γ, IL-17, IL-6, and TNF-α were all significantly
increased in Group 2, but their expressions were all consistently
attenuated in Group 3, signifying the contribution of the PD-
MSCs to both the anti-inflammatory and anti-mutagenesis
responses (Figure 5A). The RT-PCR evaluating the expression
of the inflammatory mediators was then validated using a protein
array experiment (Figure 5B). NF-κB activation and STAT3
phosphorylation are known to be involved in the progression

of gastric inflammation following H. pylori infection. When we
compare the expression of NF-κB and the phosphorylation of
STAT3 between the groups (Figure 5C), we observed a significant
increase in the activation of NF-κB κ and STAT3 in Group 2 and
that the addition of PD-MSCs or their CM reversed these effects
almost entirely. Infiltrating macrophages are the primary source
of these inflammatory mediators following transcriptional
activation, and we examined the expression of NF-κB, p65,
and F4/80 through immunohistochemical staining. Figures
5C,D show that the highest expression levels of NF-κB and
F4/80 (Figure 5E) were seen in Group 2 and that their
expression was significantly decreased in Groups 3 and 4
(p < 0.01).

Changes in the Activation and Expression of
IL-10, IL-1β, and MMP Are All Critical in the
Rejuvenation of CAG Tissues in Response
to PD-MSC Treatment
Acute and chronic H. pylori infection leads to significant changes
in atrophic gastritis (Correa and Piazuelo, 2008; Piazuelo et al.,
2010; Correa and Piazuelo, 2011; Wroblewski et al., 2015), andH.

Figure 5. | (Continued).
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pylori infection is defined as a class I carcinogen. Although
eradication of H. pylori and non-anti-microbial interventions
have been evaluated in the prevention of gastric cancer, the data
suggest that the rejuvenation of precancerous atrophic gastritis
seems to be the best way to prevent malignancy. Homeostasis
seems to be very important in achieving rejuvenation in these
tissues, and we hypothesize that IL-10 and the regulation of the
inflammasome are critical to the success of therapeutic
interventions using PD-MSCs. H. pylori infection is associated
with increased inflammasome activity (Figure 6A;
Supplementary Figure 4A) as H. pylori infection leads to
increased NOD, LRR, and pyrin domain–containing protein 3
(NLRP3) and IL-1β expressions. PD-MSCs significantly
increased inflammasome activation in the presence of H.
pylori infection in the transwell co-culture system. However,
H. pylori infection led to a significant decrease in IL-1β/IL-18
activity, while the administration of PD-MSCs in the presence of
H. pylori infection led to significant inhibition of IL-18 and IL-1β
secretion (Figure 6B; Supplementary Figure 4B). Under these
conditions, IL-10 mRNA expression was significantly induced in

response to PD-MSCs (Figure 6C; Supplementary Figure 4C),
and where IL-10 induction was not feasible, the inhibitory action
of PD-MSCs on IL-1β was significantly reduced (Figures 6D,E).
This suggests that the significant anti-inflammatory actions of
PD-MSCs were largely reliant on the concerted activity of various
mechanisms for maintaining homeostasis. These actions were
further supported by the significant inhibitory action of PD-
MSCs on MMP, as seen in Figures 6F,G, which revealed a
significant attenuation in H. pylori–induced MMP activity in
response to these cells. Activated proteases, especially matrix
metalloprotease (MMP), have been implicated in the
propagation and aggravation of gastritis and the development
of CAG or ulcers. This is supported by the fact that the
expressions of MMP-2 and MMP-2 activity are significantly
increased in Group 2 (p < 0.001). The protein array revealed
that the expression of TIMP-1 was significantly increased in
Group 3 (p < 0.001, Figure 6G), and these results were validated
by a significant decrease in the expression ofMMP-2mRNA and
MMP-2 activity in the RT-PCR and zymography assays
(Figure 6F).

FIGURE 6 | Inflammasomes relevant to H. pylori infection and PD-MSC influence. (A) Left: RT-PCR for NLRP3, IL-1β, and ASC. RT-PCR for IL-1β and NLRP3
mRNA was repeated in the presence of PD-MSCs in RGM-1 cells using a transwell co-culture system. Right: western blot for NLRP3 and caspase-1 in the presence of
PD-MSCs. (B)Western blot for IL-1β and IL-18 in cell lysate and cultured media in the presence of PD-MSCs. (C) IL-10 expressions according to PD-MSC RT-PCR for
IL-10 mRNA. (D) IL-1β expression underH. pylori in the presence of PD-MSCs. (E) Left: IL-1β fold changes underH. pylori in the presence of PD-MSCs; right: IL-1β
ELISA levels under H. pylori in the presence of PD-MSCs. (F)Upper: RT-PCR forMMP-2; lower: zymography for MMP-2. (G) Protein array for MMP-2. All data represent
mean ± SD (n � 10).
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Changes in the Microbiome Reflect the
Rejuvenation of H. pylori–Associated
Atrophic Gastritis in Response to PD-MSC
Treatment
Changes in the microbiome in response to H. pylori infection are
responsible for various gastric pathologies as bacterial overgrowth
is closely associated with the changes in gastric atrophy and
decreased gastric acidity (Huang et al., 2020; Lahner et al., 2020;
Stewart et al., 2020; Ye et al., 2020). Although not clearly defined,
overt changes in the intestinal microbiota do occur as the gastric
pathology progresses toward atrophic gastritis. Figure 7A shows
that the changes in the microbiota can be defined according to the
group. Clear delineation was observed in PDA. Phylum analysis
clearly showed that the phyla in Group 2 were quite different
from those in Group 1 and Groups 3 and 4. Since the average
gastric pathology was CAG, we speculated that the genera in
Group 2 were also different from those in Group 1. However,
Groups 3 and 4 showed a similar pattern to Group 1, suggesting
that changes in CAG in Groups 3 and 4 might improve the
community composition of the microbiome in these mice and
facilitate their return to a more normal profile (Figure 7B,C). A
detailed analysis of the genera in these samples (Figure 7D)
revealed significant changes in the gastric microbiota in Group 2,
but not in Groups 3 and 4 when compared to Group 1. The
heatmap in Figure 7E and Supplementary Table 3 summarize

the detailed changes in the gastric microbiota of these animals.
We concluded that the administration of PD-MSCs and their CM
significantly rejuvenatedH. pylori–associated CAG, leading to the
expectation that MSCs can be used as potential cell therapeutics
to reverse precancerous atrophic changes after chronic H. pylori
infection.

DISCUSSION

This study sheds light on the potential of using PD-MSCs or their
CM as therapeutics to rejuvenate precancerous atrophic gastritis in
order to reduce pathogenic progression. In addition to the basic
proliferative, restorative, anti-inflammatory, immunomodulatory,
and regenerative effects of the MSCs, treatment with these agents
induces the expression of LGR5+ (Mills and Shivdasani, 2011; Ye
et al., 2018) and Musashi-1 (Murata et al., 2008) and promotes Ki-
67–mediated proliferation (Kim et al., 2004) and anti-apoptotic
effects while reducing NF-κB expression (Ralhan et al., 2009) and
inhibiting oncogenic STAT3 expression (Balic et al., 2020). The
application of PD-MSCs also promotes the cross-talk between the
inflammasome and autophagy pathways and 15-PGDH in a
chronic H. pylori infection model (Figure 8).

PD-MSCs have multiple properties, including strong self-
renewal, multi-potent differentiation, immunomodulatory,
anti-inflammatory, antioxidative, and regenerative capabilities

Figure 6. | (Continued).
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(Kim M. J. et al., 2011; Seok et al., 2020a; Chou and Chen, 2020;
Saleh et al., 2020; Yuan et al., 2020). Among the various types of
MSCs, including umbilical cord–derived MSCs, chorionic
plate–derived MSCs, adipose-derived MSCs, and bone
marrow–derived MSCs, PD-MSCs are best known for their
secretion of various cytokines, including growth factors such
as G-CSF; regulated upon activation, normal T cell expressed
and secreted (RANTES); and immunomodulators such as IL-6,
IL-8, and IL-10, and have been linked to the effective treatment
of various degenerative and destructive diseases (Lee et al., 2010;
Lee et al., 2012; Jung et al., 2013; Munir et al., 2019; Seok et al.,
2020b). The reasons why the MSCs have emerged among
the most promising regenerative tools are closely linked to
their multi-differentiation potential and immunosuppressive
capacity. PD-MSCs are preferred within the MSC cohort
because of their superior proliferation capacity, lower
immunogenicity, and likely lower mutation rates than other
kinds of MSCs originating from the amniotic membrane (AM),
umbilical cord (UC), decidua parietalis, and chorionic plate
(CP) (Wu et al., 2018; Chen et al., 2019; Guan et al., 2019; Ma
et al., 2019).

Robust apoptosis after H. pylori infection is one of the core
mechanisms responsible for atrophic gastritis (Figures 3A,B).

Multiple studies have attempted to clarify the related autophagy
mechanisms underlying apoptosis, clearing of damaged
organelles, cell debris, and external pathogens needed to
maintain the genomic integrity of cells, supply more energy,
maintain cell or tissue homeostasis, inhibit endoplasmic
reticulum (ER) stress, maintain ER function by degrading
unfolded protein aggregates, and promote cell growth and
proliferation in response to CAG (Lum et al., 2005; Karantza-
Wadsworth et al., 2007; Hu et al., 2020). In Figures 3E–G, we
clearly document the contribution of PD-MSCs to the protective
actions of induced autophagy as part of relieving H.
pylori–associated CAG for the first time, although multiple
reports have revealed modulating autophagy as a primary
mechanism in the protective effects of MSCs used to prevent
hypoxia and ischemia or infection-induced post-injury toxicity in
affected organs (Golpanian et al., 2016; Hu and Li, 2018; Hu et al.,
2019; Zhang et al., 2019). Although the impacts of the autophagic
processes are different, that is, protective against H. pylori,
determining the intracellular fate of H. pylori, and
carcinogenic in infected cells (Wang et al., 2009; Chu et al.,
2010; Deen et al., 2013; Pott et al., 2018), our study clearly shows
the therapeutic potential of autophagic processing of PD-MSCs at
the CAG stage of gastric cancer lesion development.

Figure 6. | (Continued).
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In this study, PD-MSCs exerted a significant rejuvenating
effect against H. pylori–induced atrophic gastritis by regulating
the inflammasomes associated with autophagy induction and
inducing a significant increase in anti-inflammatory IL-10
production (Figure 6). Cross-talk between the inflammasomes
and the autophagy pathways plays an important role in
intracellular homeostasis, inflammation, immunity, and
pathology, after which the dysregulation of these processes is
often associated with the pathogenesis of numerous cancers,
including H. pylori–associated pro-tumor and gastric cancer
(Chung et al., 2020). Inflammasomes are multi-protein
complexes that assemble in the cytosol of cells upon detection
of pathogen- or danger-associated molecular patterns (PAMP/
DAMP) (Broz and Monack, 2011; Russo et al., 2018; Seveau et al.,
2018). A critical outcome of inflammasome assembly is the
activation of serine protease caspase-1, which activates the
pro-inflammatory cytokine precursors pro-IL-1β and pro-IL-
18, as shown in Figure 6. However, in the presence of H.
pylori infection, PD-MSCs significantly inhibited secretion of
IL-1β via their active secretion of anti-inflammatory IL-10.

The question of whether the reversal of gastric atrophy
following H. pylori eradication is possible was not answered
before 1998 (Domellof, 1998), but extensive evaluations,
research, and nationwide trials in Japan have shown that it
may be possible to repair the damage associated with H. pylori

infection and prevent gastric cancer (Sugano et al., 2015; Tsuda
et al., 2017; Choi et al., 2018; Choi et al., 2020). Furthermore, the
non-microbial approach including the application of
phytochemicals, probiotics, n-3 polyunsaturated fatty acids (n-
3 PUFAs), walnut, and fermented kimchi (Chung and Hahm,
2010; Kim et al., 2010; Jeong et al., 2015; Lee et al., 2015; Park
et al., 2015; Han et al., 2016; Jeong et al., 2016) can rejuvenate
CAG. Given this success, this study was designed to evaluate the
application of stem cells or their conditioned medium as
candidates for clinically relevant therapeutic intervention in
CAG and the downstream prevention of gastric cancer. We
tried to apply stem cells at the atrophic gastritis stage as the
above non-microbial approaches were usually implemented
before CAG development and independent from H. pylori
eradication (Oh et al., 2006; Giannakis et al., 2008; Kim, 2019).

Moreover, in this study, we reported that PD-MSCs induced
more Lgr5+ cells, thereby facilitating the recovery from CAG
induced by H. pylori. A stem cell niche includes both Wnt and
BMP signaling pathways, and the balance between their signaling
is important within the intestine. In our recent study, the Wnt
signaling pathway has emerged as a potential regulator of self-
renewal for intestinal stem cells by PD-MSCs (Han et al., 2017).
Furthermore, induction of Wnt/β-catenin and growth factor
signaling rescues liver dysfunction through the induction of
Lgr5+ cells (Lin et al., 2017). PD-MSCs in the current study

FIGURE 7 | Fecal microbiota changes according to groups. (A) Principal coordinate analysis (PCoA) showing definite discrimination of microbiota according to PD-
MSC administration, that is, between PD-MSC–treated and non-treated groups under H. pylori–induced CAG. (B) Phyla changes showing bar display. (C) Phyla level
change. (D) Genus level changes with bar display. (E) Heatmap with microbiota nomination.
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faithfully contributed to the regeneration of the ulcerated tissue
structure. PD-MSCs effectively enhanced or maintained the
regeneration process along with significantly concerted actions
of anti-inflammation, anti-apoptosis, and induction of autophagy
and inflammasomes.

Lastly, this study revealed several interesting observations
related to the fecal microbiome and its ability to reflect
improvements in CAG associated with PD-MSC treatment.
Figure 7 clearly shows the changes in the distribution of the
phyla and genera in each group, with significant changes in the
composition of the microbiota noted in Group 2 when
compared with that in Group 1, signifying a relationship
between this microbiome and atrophic changes in the gastric
tissues. However, these microbiome changes could be reversed
following the application of either the PD-MSCs or their CM.
Detailed microbiomes are presented in Supplementary Table 3
and support our conclusion that PD-MSCs afforded some repair
to the microenvironment producing one that is more favorable
to supporting non-atrophic conditions. Although the exact
changes in the gastric microbiome across stages of neoplastic
progression remain poorly understood, the study by Wang
et al.(Wang Z. et al., 2020) showed that the bacterial

diversity and abundance of Armatimonadetes, Chloroflexi,
Elusimicrobia, Nitrospirae, Planctomycetes, Verrucomicrobia,
and WS3 decrease as atrophy progresses and Actinobacteria,
Bacteroides, Firmicutes, Fusobacteria, SR1, and TM7 were
enriched in the intestinal metaplasia (Coker et al., 2018; Park
et al., 2019; Yu et al., 2020). The results of our fecal microbiota
analysis according to therapeutic intervention to rejuvenate
CAG increased the potential MSCs or their CM as
therapeutics, similar to cosmetics for aged skin. Among the
microbes in the stomach, H. pylori remains the single most
important risk factor for gastric disease, its capacity to shape the
collective gastric microbiota as well as its contribution to
pathogenesis should be further elucidated (Rajilic-Stojanovic
et al., 2020), and current results suggest a definite role for this
pathogen in CAG since the addition of PD-MSCs significantly
changed the fecal microbiome.

In this study, we have shown that oral administration of
PD-MSCs or their CM rejuvenated the H. pylori–associated
CAG by stimulation of gastric stem cells, induction of
autophagy, inhibition of inflammation, and induction of
inflammasomes. As a non-microbial approach for H.
pylori–associated CAG, supplementation or treatment with

Figure 7. | (Continued).

Frontiers in Pharmacology | www.frontiersin.org August 2021 | Volume 12 | Article 67544315

Park et al. Reverting Atrophic Gastritis With PD-MSCs

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


long-term phytochemicals, antioxidants, and probiotics was
proven to be very efficacious in the prevention of H.
pylori–associated CAG and carcinogenesis. These treatment
strategies were supported by anti-inflammation and
cytoprotection activities by targeting small molecules or
regulating signaling cascades. Although MSC administration
has a significant inhibitory effect on the inflammatory
response, there remain problems in clinical trials of stem
cell therapy, including embolism risk and immunogenic
adverse effect. Therefore, a lot of studies have been
conducted to know the effect and underlying mechanism of
MSC–CM on inflammation-related diseases. Factors secreted
by MSC have been reported to include inflammatory
modulators such as transforming growth factor-β (TGF-β),
TNF-stimulated gene-6 (TSG-6), prostaglandin E2 (PGE2),
and hepatocyte growth factor (HGF). However, to the best
of our knowledge, the effect of oral administration of MSCs
and CM on inflammatory diseases has not yet been reported.
The data obtained suggested the use of MSCs and CM to treat
inflammatory diseases without any cell transplantation.

In conclusion, this study shows that the administration of
PD-MSCs or their CM at the CAG stage can produce a

significant rejuvenation of the gastric tissues and help to
prevent or revert the H. pylori–induced pro-tumor conditions
in these tissues. Our evaluations revealed several novelmechanisms
facilitating these effects which add to the basic proliferative, self-
renewal, and regenerative capability of these cells. PD-MSCs
exerted inflammasomes/autophagy/15-PGDH induction/IL-10
induction (Figure 8). The next step is to evaluate these effects
in careful clinical trials.
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