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Abstract: Smuggling of drugs and cigarettes in small inflatable boats across border rivers is a serious
threat to the EU’s financial interests. Early detection of such threats is challenging due to difficult
and changing environmental conditions. This study reports on the automatic detection of small
inflatable boats and people in a rough wild terrain in the infrared thermal domain. Three acquisition
campaigns were carried out during spring, summer, and fall under various weather conditions.
Three deep learning algorithms, namely, YOLOv2, YOLOv3, and Faster R-CNN working with six
different feature extraction neural networks were trained and evaluated in terms of performance and
processing time. The best performance was achieved with Faster R-CNN with ResNet101, however,
processing requires a long time and a powerful graphics processing unit.

Keywords: thermal infrared; deep learning; neural networks; automatic object detection

1. Introduction

The eastern border of the European Union often runs through wild winding and
meandering rivers located in hard-to-reach wooded or mountainous areas like the Bug
River in Poland or the Prut River in Romania. The marshy banks of these rivers are covered
with trees and bushes and the water level can change significantly. Despite being a natural
border, these rivers are often destinations for smuggling people, drugs, and cigarettes into
the EU [1]. Due to the significant price difference, cigarette smuggling is a particularly
common case causing large financial losses. Such smuggling usually takes place with the
use of several-meter-long inflatable boats, in which 1 or 2 people transport packages. The
packages are picked up from the boat by people on the shore and immediately hidden in
the bushes for later collection.

The fight against such smuggling activities is usually based on intelligence information
combined with the use of electro-optical observation heads equipped with acoustic sensors,
infrared, and visible light cameras [2–5]. The heads are mounted on stationary towers or
mobile platforms temporarily observing a selected area. In both cases, monitoring from a
distance of several kilometers requires expensive highly-sensitive long-range imagers as
the suspected activities are detected mainly by an operator. Currently, the wide market
offers relatively inexpensive short- and medium-range cameras, which allows using several
cameras successively to observe key sections of the river several hundred meters long. In
this case, intruders in a boat can be detected early on when they cross the border, which is
predominantly defined by the river midline. However, this approach requires an automatic
boat detection software that is likely to distinguish the boat from other floating objects such
as tree branches or waves on the water.
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Visible light cameras offer higher detectability due to higher spatial and image res-
olution, but their performance decreases under low visible light conditions. Infrared
illuminators can slightly improve the situation, but usually they have a short range and
can be easily detected by smugglers. On the other hand, thermal cameras usually pro-
vide images of lower spatial and pixel resolution than visible light cameras, but they can
operate in any lighting conditions. Under moderate lighting conditions, contrast of the
boat in the river can be higher with thermal cameras since the water surface reflects the
low-temperature sky radiance. Considering the above rationales, we selected thermal
cameras as the optimal for further studies.

Commercially available thermal cameras are sometimes equipped with embedded
intelligent video analytics (so-called edge computing) which can automatically detect
various events. They can reliably detect, track, and analyze objects, as well as alert an
operator when a predefined alarm is triggered [6–8]. The alarm rules include detection of an
object in the selected area, crossing the selected line, or entering/leaving the selected area.
The object can be filtered considering its size, aspect ratio, speed, movement direction, and
duration of an event. Due to the limited capabilities of the processors built into cameras,
such analytics are usually based on a smart comparison of subsequent images in the video
stream and an analysis of differences between them. They cannot distinguish, among
others, floating trees from the boat. Moreover, if the person or boat is stationary, the alarm
is not triggered. On the contrary, the methods used in the presented study analyze each
image individually and look for specific shapes present during CNN training.

Object detection as a research field has been intensively studied with a variety of
approaches being proposed. The introduction of machine learning algorithms resulted in
some novel object detection methods. Several various descriptors were proposed which
differ in methodology and performance. Appearance-based methods, such as principal
component analysis (PCA) [9], linear discriminant analysis (LDA) [10], and independent
component analysis (ICA) [11], which project an object into a subspace, have reached
high popularity. Other methods including local binary pattern (LBP) [12,13], Gabor jet
descriptors [14], histograms of Weber linear descriptor features [15,16], and histograms of
oriented gradients (HOG) [17] propose the local-matching approach. These methods create
an object representation based on its image divided into blocks. Finally, global matching
approaches such as scale invariant feature transform (SIFT) and speeded-up robust features
(SURF) [18,19] are used.

Increasing computational performance of current graphic processing units (GPU)
resulted in increasing applicability of neural networks for detection and classification of
objects. Most of these architectures rely on convolutional neural networks (CNN). These
CNN architectures include: (1) single pass approaches performing detection within single
step (single shot multi-box detector (SSD) [20], YOLO [21]) and (2) region-based approaches
exploiting a bounding box proposal mechanism prior to detection (faster regional-CNN
(Faster-RCNN) [22], region-based fully convolutional networks (R-FCN) [23], PVANET [24],
Local R-CNN [25]). Since single pass networks are considered very fast, they sometimes
suffer from low detection performance. Region-based networks achieve high accuracy but
are reported to be significantly slower than single-shot networks. After proper training,
the algorithms can process the video stream frame by frame and classify the detected
objects. State-of-the-art CNNs have proven their superiority in a variety of image-based
object classification tasks, including autonomous driving on roads [26]. Considering water
surface applications, mainly in the field of autonomous navigation and collision avoidance
for marine vessels [27], there are some papers dealing with DNNs (deep neural networks)
for automatic detection and classification of objects. Scholler et al. [28] comparatively
studied three architectures of DNNs (RetinaNet, YOLO, Faster R-CNN) to investigate
their performance for ship classification. For the same task, Kim et al. [29] proposed a
probabilistic method using Faster R-CNN, Leclerc et al. [30] applied pretrained CNNs
based on the inception and ResNet architectures, while Dao et al. [31] used AlexNet deep
convolutional neural network. Object detection in thermal infrared imagery finds various
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applications including detection of human subjects from UAVs [32] and autonomous
driving [33,34] and detection capability enhancement [35]. Since many works rely on
known detection frameworks [32,34–36], new methods directly suited for thermal infrared
imaging are introduced [33]. Dai et al. proposed TIRNet, a CNN for object detection
in thermal infrared images for autonomous driving. The network uses VGG to extract
features and so-called residual branches in the training stage. The TIRNet is fast but the
detection accuracy decreases in case of small objects.

Compared with the above applications, we consider a scenario with only two classes
of objects (inflatable boats and people) that need to be detected with high probability in
various external conditions and distinguished from natural disturbances such as floating
tree branches or waves on water. In this paper, we focused on two types of methods—
the region proposal network (Faster R-CNN) and the single pass network (YOLO) with
different configurations. YOLO has gained several improvements through the years. For
this study, YOLOv2 and YOLOv3 have been selected. YOLOv4 [36], which offers improved
speed and detection accuracy was not considered in this study since it was introduced a
year after the start of this project. To the best of our knowledge, such networks have never
been used in such an application.

The study presents the results of the analysis of three state-of-the-art algorithms
for detecting small boats on the river and people in difficult, changing conditions. The
selected deep learning methods are meant to combine real-time processing capability with
high detection probability and low false detection rates. The study is concluded with an
evaluation of the performance results and analysis of the processing methods.

The paper is organized as follows. Description of experiments is provided in Section 2.
Section 3 introduces the selected algorithms, namely, YOLOv2, YOLOv3, and Faster R-CNN
working with different feature extraction neural networks and describes the development
process. Discussion on performance evaluation of the algorithms with regard to selected
parameters is included in Section 4. Section 5 presents the summary of the study.

2. Experimental Conditions

To develop the algorithms, we acquired a large dataset of thermal images presenting a
wide range of situations and conditions. All experiments were carried out in two testing
fields on the Elblag and Bug rivers in Poland (Figure 1). For tests we used 3-m-long
inflatable oars and a motor-powered boat (pontoon) designed for two individuals–Figure 1
inset. The people wore normal clothes adapted to the ambient temperature.
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Figure 1. Photos of the test sites on the Elblag (a) and Bug (b) rivers. Inset shows a photo of the inflatable boat used for tests.

We considered the following scenario, which is very popular among the smugglers. A
boat with packages of contraband flows from one bank to the other at various distances,
typically between 50 and 200 m. The packages are collected from the boat by a person
waiting on the shore. Next, the packages are hidden in the bushes for later pickup.
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The first tests were carried out in June on the 45-m-wide Elblag River in the northern
part of Poland. The fairly regular banks of the river (Figure 1a) were partly covered with
reeds with a maximum height of 2 m and the river was adjacent to a flat meadow. The water
current was of about 1 m/s, while its temperature was equal to 18 ◦C. Air temperature was
about 15 ◦C at night and about 20–25 ◦C during the day. The sky was partly cloudy with
no rain. The wind was rather weak in the range of 10–20 km/h. Visibility was very good;
no fog was noticed.

The second field tests took place on the approximately 100-m-wide Bug River at the
eastern border of Poland. Here, the river’s wild and diverse banks were partly covered
with reeds, bushes, and trees (Figure 1b) and the river was adjacent to the forest. These
tests were performed in April and October.

During the trials in October, the water current was about 2–3 m/s, while its temper-
ature was equal to about 12 ◦C. The air temperature was about 8 ◦C at night and about
12–18 ◦C during the day. The sky was partly cloudy and sometimes there was a little
precipitation. The wind was rather weak in the range of 10–20 km/h. Visibility was quite
good, although a slight fog was noticed.

During the two-week trials in April, the weather was rainy with air temperatures
between 3 and 8 ◦C and the water temperature of about 4 ◦C. The water current was of
about 3 m/s. The sky was partly cloudy and the wind was rather weak in the range of
10–20 km/h. High air humidity was noticed.

Tests on the Elblag River lasted 5 days, where 120 crossings at various distances–80 in
daylight and 40 at night—were recorded. A typical crossing (one-way) lasted about 30 s.
Tests on the Bug River lasted 4 days. Due to the fact that the state border, which could not
be crossed, runs in the middle of the river, we only reached the middle of the river and
turned back. We recorded 90 crossings at various distances—70 in daylight and 20 at night.
Since the water current was faster in the Elblag River, the typical crossing time was longer
(about 50 s) and the boat had to maneuver more.

In both tests, the camera was placed on the shore on a table situated on a 4-m-high
pole, a few meters from the river. For the tests, we used the DH-TPC-BF2221-B7F8 pant tilt
dome hybrid camera developed by Dahua [37]. It consisted of visual and thermal imagers
enclosed in a robust outdoor housing. The thermal camera features a VGA resolution of
640 × 480 pixels at 30 fps and is based on an uncooled vanadium oxide microbolometer
with a pixel pitch of 17 µm and a thermal sensitivity (NETD) of 40 mK. The camera was
equipped with a focus-free athermalized 50 mm lens which provided a field of view (FoV)
of 12.4◦ horizontally and 9.9◦ vertically. According to the datasheet, under ideal conditions,
the detection/identification range of a 1.8 × 0.5 m people is of 1471/180 m, while a
4 × 1.4 m vehicle-like object can be detected/identified up to 3268/420 m. Video streams
were compressed using the H.264 codec. The thermal camera worked in the auto-scale
mode which means that the temperature range in the image was adopted automatically.
The thermal imaging camera was integrated with Dahua DH-PFM861-B300 microwave
perimeter surveillance radar, which could effectively detect boats and people within a
range of up to 200 m. When the radar detected the target, its x-y coordinates were sent
to a camera which converted them into pan-tilt coordinates and automatically aimed the
camera at that point. Since we worked with a focus-free camera, the observed scene was
wide, especially for distant targets, and varied (different azimuth and elevation angles).
Figures 2 and 3 present examples of thermal images of a boat with two people crossing
the rivers, as well as people walking along the shores at night and during the day, under
various conditions and locations, respectively. There are variations in the intensity of
people, boats, rivers, and surroundings mainly due to changes of ambient temperature and
the position of the Sun. High variability of the scene of the recorded images requires the
use of many different images for the correct learning of neural networks.
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3. Algorithms

Object detection is designed to automatically determine the size and coordinates of
objects of interest in an image. We selected three algorithms presenting two different
approaches to object detection. The study concerns YOLOv2, YOLOv3, and Faster R-CNN
working with different feature extraction neural networks. YOLOv2 and YOLOv3 are real-
time processing object detection methods, while Faster R-CNN represents a region-proposal
approach and is known as highly efficient but computationally complex [21,22].
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3.1. YOLO

In YOLOv2 and YOLOv3, the object detection process relies on a single convolutional
network that simultaneously predicts multiple bounding boxes and class probabilities for
those boxes [21]. The YOLO framework considers object detection as a single regression
problem, straight from the image pixels to the coordinates of bounding box and class
probabilities. The network uses batch-normalization to normalize the output of hidden
layers and anchor boxes (v2) or residual blocks (v3) to predefine the bounding box size,
thus, improving detection performance. The classification is done with independent logistic
classifiers to calculate the likeliness that the input belongs to a specific label. It predicts all
bounding boxes in all classes simultaneously for an image. During image processing, the
image is taken globally to make predictions. The main improvement in the third version
of the algorithm concerns the detection of small-scale objects. The detection is done by
applying 1 × 1 detection kernels on feature maps of three different sizes at three different
places in the network.

During the training, YOLO learns the generalizing representations of objects. The sec-
ond version of YOLO introduced anchor boxes which allowed improving of the algorithm
performance while maintaining the processing speed. The anchor boxes must be calculated
before the training for the training dataset. YOLOv3 uses residual blocks instead of anchor
boxes which allowed for more variants of the scale of objects.

3.2. Faster R-CNN

The Faster R-CNN algorithm is based on the idea of a region proposal network (RPN)
which generates an object-oriented score for many of the proposed bounding boxes. The
initial bounding boxes indicate whether the image section selected contains a background
or a foreground object. All the boxes are examined by a classifier and a regressor to
check for the presence of objects. The Faster R-CNN is composed of two networks: a
region proposal network (RPN) for generating region proposals and a network using these
proposals to detect objects. This algorithm, similarly to YOLO, uses anchor boxes, however,
they are generated automatically, not predefined before training. It uses a bank of k2
position-sensitive score maps for each category. Those features are calculated by the last
convolutional layer.

3.3. Feature Extraction Methods

Faster R-CNN as well as YOLO may use several backbone networks for feature extrac-
tion. We have selected a common set of feature extraction networks for YOLO and Faster
R-CNN including GoogLeNet [38,39], ResNet18 [40], ResNet50 [40], and ResNet101 [40].
Both GoogLeNet and ResNet networks are state-of-the-art networks providing high perfor-
mance in classification tasks.

ResNet is a set of neural networks proposed as a solution for training very deep
networks by using so-called identity shortcut connections. Typical ResNet models are
implemented with double- or triple-layer skips that contain nonlinearities (ReLU) and
batch normalization in between. The network constructs pyramidal cells in the cerebral
cortex during data processing. ResNet networks are proposed in many variants with
different number of layers and identity connections. During this study, three variants,
namely, ResNet18, ResNet50, and ResNet101, were investigated. These three networks
bring a wide spectrum of ResNet networks capabilities.

GoogLeNet is an example of so-called inception networks. GoogLeNet introduced
Inception layers which replaced fully connected network architectures. Each inception
layer is a combination of a 1 × 1 convolutional layer, a 3 × 3 convolutional layer, and a
5 × 5 convolutional layer with their output filter banks concatenated into a single output
vector forming the input of the next stage. The idea of an inception network aims to reduce
redundancy or unnecessary activations, thus it improves performance. Moreover, the
inception network finally replaces the fully connected layers with a global average pooling
which averages the channel values across the 2D feature map, after the last convolutional



Sensors 2021, 21, 5330 7 of 13

layer. This operation reduces the total number of parameters and makes the network less
prone to overfitting.

3.4. Implementation

The selected algorithms require large datasets of thermal images for training purposes.
The greater the variety of objects, the better trained and resistant to interference the network
will be. Here, neural networks were trained with a set of images presenting objects of
interest. Since no publicly accessible datasets are available to properly carry out this phase,
we registered a series of video sequences for different weather conditions, distances, and
locations. Two classes of objects were selected for the scenario under consideration: a boat
with two people floating on a river and a man walking on the shore.

For further training of the networks, we carried out the following procedure. First,
from the recorded video streams with a resolution of 640 × 480 pixels we selected 2500
images with targets containing an equal number of objects from both analyzed classes. The
selection of images was made to ensure a wide range of scenes and variety of distances
between the camera and the objects (see Figures 2 and 3). Afterwards, we manually
extracted rectangular images of boats and people from the original images, adding a few
pixels on all sides. As a result, images were provided with a resolution in the range
from 10 × 25 up to 130 × 70 pixels, often defined as the ground truth bounding boxes
(Figures 4–6).
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During the experiments, two people were always on the boat for safety reasons
imposed by the regulations although in a real situation there is usually only one person on
the boat. However, in some views of the boat, one person was obscuring another, thus only
one subject was visible in an image as shown in Figure 4 (row 3, columns 2–4). Thus, a
diverse set of 2500 boat and people images were created, further used for the DNN training
and testing. Figures 4 and 5 present the images extracted from the original images shown
in Figures 2 and 3, respectively.
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During collection of images presenting subjects on the river’s shore, there were up to
5 walking subjects in various configurations. Subjects were moving in various scenarios,
including grouped and distributed persons, at various distances from the camera.
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Finally, this dataset was divided into training and test subsets, respectively. The
training–test split ratio was set at 75% and 25%, respectively. The training dataset consists
of 1875 images presenting equal number of both objects of interest. All the models used
during this study have been pre-trained on ImageNet database. To achieve a higher
variability of data, augmentation (mirroring) was applied. For the training process, we set
up a threshold for training accuracy up to 0.95. Each algorithm was trained with a number
of epochs between 50 and 100, depending on how fast the threshold was achieved during
the training phase. All algorithms were implemented and tested in the MATLAB 2021a
environment with a workstation equipped with an NVIDIA RTX 2080 graphics processing
unit and 64 GB of RAM.

4. Results and Discussion

The selected algorithms, namely, YOLOv2, YOLOv3, and Faster R-CNN, working
with different feature extraction neural networks, were tested using the testing dataset
composed of 625 images representing different thermal images of boats and people under
different experimental and environmental conditions. All algorithms were evaluated with
regard to the following parameters: detection rate and false detection rate, classification
rate, intersection over union metric, and processing time using GPU and CPU. Table 1
presents the average values determined for various conditions and distances in the range
of 50–200 m.

Table 1. Algorithms’ evaluation results.

CNNs for Feature
Extraction

Detection Rate
(%)

False Detection
Rate (%)

Classification
Rate (%) Mean IoU (%)

Processing Time (s)

GPU CPU

YOLOv2

GoogLeNet 56 12 91 47 0.04 0.44

ResNet18 51 18 81 41 0.03 0.43

ResNet50 59 10 83 43 0.04 0.49

ResNet101 61 10 90 28 0.06 0.76

YOLOv3

SqueezNet 61 10 88 66 0.06 0.60

DarkNet53 65 10 90 69 0.07 0.69

Faster R-CNN

GoogLeNet 71 7 90 60 0.51 16.51

ResNet18 69 7 89 73 0.43 15.43

ResNet50 75 6 91 61 0.53 17.53

ResNet101 83 4 95 79 0.71 24.71

Figure 6 shows the examples of images from the testing set showing both classes of
objects at short, medium, and long distances in the range of 50–200 m. The predicted bound-
ing box (red) and the ground-truth bounding box (yellow) are marked for comparison and
determination of the IoU metric (see Section 4.3).

4.1. Detection Rate and False Detection Rate

Detection rate (DR) determines the percentage of the objects correctly detected in the
testing dataset, while false detection rate (FDR) describes the percentage of false alarms
raised while evaluating an algorithm at the testing dataset. The threshold for IoU used to
consider a detection matching the ground truth was set to 70%.

The results presented in Table 1 indicate that Faster R-CNN outperforms other meth-
ods. These results clearly show that it may deliver high performance, but DR and FDR
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vary depending on a feature extraction method and the highest performance was obtained
for Resnet101 (DR = 83% and FDR = 4%).

Performance of YOLOv3 and YOLOv2 is almost similar with DR in the range of
50–65%. Detection rates show the same trend for both YOLOv2 and Faster R-CNN, with
ResNet101 as the best performing feature extraction network. Surprisingly, all ResNet
networks in combination with the YOLO framework perform better when having less
layers. However, both algorithms suffer from a relatively high, unacceptable for practical
applications, level of the false detection rate (10–18%).

4.2. Classification Rate

Classification rate (CR) is the ratio of the number of correctly classified objects to the
total number of correctly detected objects. Here, all algorithms show high CR value in the
range of 81–95%. Faster R-CNN with Resnet101 slightly outperforms other methods, while
the second place, with CR = 91%, belongs to YOLOv2 with GoogLeNet, as well as to Faster
R-CNN with ResNet50.

4.3. Intersection over Union

During the study, we used the intersection over union (IoU) metric, which is mostly
used to measure the accuracy of object detectors [41]. IoU describes how well the predicted
bounding box fits to the ground truth bounding box. This metric determines the percentage
of overlap between a predicted bounding box (red) and a ground-truth bounding box
(yellow) as presented in Figure 6. The ratio of the common part of the areas of two
rectangles (yellow and red boxes) to the sum of these two areas defines IoU, as well as the
detection accuracy.

One can notice that Faster R-CNN with ResNet101 reaches IoU = 79% and outperforms
other methods. The performance of YOLOv3 is approximately 20–30 percentage points
higher than YOLOv2 and reaches similar values to Faster R-CNN with other feature
extraction networks.

IoU metric is important for the theoretical comparison of the methods, but from the
operation point of view, even finding a small part of the object is satisfactory. Correct
detection, indication of the place, and classification are more important than a high value
of IoU.

4.4. Processing Time

Table 1 presents the average image frame processing time for each of the algorithms
investigated during this study. The values were achieved for two processing units–CPU
(central processing unit) and GPU (graphics processing unit). We used an NVIDIA RTX
2080 and Intel Core i7-8700K as GPU and CPU, respectively.

Faster R-CNN, the best method in terms of performance parameters, requires the
powerful GPU to process the single image frame in the time range of 0.5–0.7 s regardless
of configuration. This algorithm may also operate with a high-power CPU; however, the
processing time is unacceptably high (15–25 s) for real time processing systems.

On the other hand, the single image frame processing time achieved by YOLOv2
and YOLOv3 is relatively short. When performing the GPU-based processing, even
15–30 frames per second (fps) can be achieved. Moreover, these algorithms also allow
for fairly fast processing of images using the CPU, reaching the processing rate of about
1–2 fps.

4.5. Discussion on Real Life Applications

Based on Table 1, it can be concluded that the price for outperforming results of Faster
R-CNN-based algorithms is a longer processing time. On the one hand, the performance
of both YOLO-based algorithms in terms of DR, FDR, CR, and IoU is lower by about 20,
6, 5, and 10 percentage points, respectively, in comparison to the best Faster R-CNN with
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ResNet101. On the other hand, the processing time of YOLOv3 is about 10 and 30 times
shorter for GPU and CPU, respectively.

Hence, two opposite approaches, both based on GPU, can be considered. Imple-
mentation of Faster R-CNN with ResNet101 provides high detection and classification
rates, but with a low processing time of 1 fps. YOLOv3 with DarkNet53 should achieve a
medium detection and classification performance but with a high, up to 25 fps, real-time
processing speed.

In practice, the selection of the right algorithm depends on many parameters, including
distance to the objects, exposure time (i.e., time, when the boat or people are visible in
the camera FoV), and variability of external conditions. For shorter distances, up to about
100 m, detection and classification rates will be higher than the mean values presented
in Table 1. Therefore, YOLOv3 may offer a higher, possibly acceptable, performance.
On the other hand, for higher distances, probably only Faster R-CNN can provide the
acceptable yield.

Let us assume that the typical exposure time (e.g., time of crossing the river) is 30 s.
During this time, YOLOv3 is able to process 750 images, while Faster R-CNN only 30. In
the scenario under consideration, it is not necessary for all image frames to give the correct
results. Even if one in ten images is correct, it should be enough to detect subjects or boats.
In the next phase of our project, we plan to evaluate the developed algorithm over a longer
period of time, for various scenarios and environmental conditions. Based on our previous
results and experience, it is expected that the detection rate of at least one object (boat,
person) per event will be around 95/90% for boats up to 100/200 m and 90/85% for a
single person up to 100/200 m, respectively.

Analysis of Figures 4 and 5 clearly shows that the visibility of objects, even for a
similar pixel resolution depends on environmental conditions, including temperature,
insolation, and transmission of the atmosphere. Thus, in areas with higher variability of
environmental conditions, more reliable algorithms with higher detection rates should
be applied.

5. Summary

This study reports on the detection of small inflatable boats and people in various
difficult terrains of wild rivers from a distance of 50–200 m using deep learning algorithms
in the thermal infrared domain. Three acquisition sessions were carried out during spring,
summer, and fall under various weather conditions that resulted in a selection of 2500
images. The images were next used to train and test three state-of-the-art deep learning
algorithms, namely, YOLOv2, YOLOv3, and Faster R-CNN working with six different
feature extraction neural networks.

The algorithms were evaluated in terms of performance parameters and processing
time. The best performance was achieved with Faster R-CNN with ResNet101, which,
however, suffers from high processing time (0.5–0.7 s) even for the powerful GPU. The
performance of both YOLO-based algorithms was lower by about 5–20 percentage points,
but their processing times were noticeably faster (about 10 times), which provides real time
processing capability.

In conclusion, the detection of river crossings in small inflatable boats is difficult due
to the diverse and changing environmental conditions. Moreover, the detection capabilities
are limited by the spatial resolution of the observed scene and the thermal contrast between
the objects and the background. The presented analysis shows that the greatest challenge
remains the correct detection of the object of interest while maintaining a low false alarm
rate. It seems that currently with the use of fairly advanced computers with powerful
GPUs, the much-desired high detection rate can only be achieved with the use of complex,
resource-consuming, and, therefore relatively slow algorithms. On the other hand, 1-s
processing time seems to be sufficient to detect objects within seconds when the protected
area is crossed.
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