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The term myeloid-derived suppressor cells (MDSCs) was first suggested in 2007 in order
to reflect the origin and function of myeloid cells during immunosuppression in cancer and
other pathologic conditions. Emerging evidence suggests that MDSCs suppress CTL and
Th1 responses in malignant diseases while they regulate effective immune responses in
parasitic and helminth infections as well as Th17 inflammatory response during autoim-
mune diseases. Based on these data, the term myeloid regulatory cells (Mregs) more
accurately reflects their function and interactions with different cells of the immune sys-
tem during diseased conditions. Here, we provide evidence on the multifaceted function
of Mregs during diseased states.
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MREGS OPERATE AS MDSCs FOR THE SUPPRESSION OF
ANTI-TUMOR IMMUNE RESPONSES
Myeloid-derived suppressor cells (MDSCs) were originally
described as immunosuppressive cells of myeloid origin. These
cells are known to be a heterogeneous mixture of myeloid cells
at different stages of differentiation. They were initially named
“immature myeloid cells” or “myeloid suppressor cells” (MSC)
until they matured into MDSCs in 2007 (1). Most of the attention
was initially focused on the role of these cells in cancer, because
tumor-derived factors were shown to facilitate the production
of MDSCs as well as their accumulation in the secondary lym-
phoid tissues and at the tumor site. In mice, MDSCs are broadly
defined by the expression of CD11b and Gr-1, and could be subdi-
vided into monocytic (CD11b+Ly6ChiLy6G−) and granulocytic
(CD11b+Ly6ClowLy6G+) subsets (2). In human being, MDSCs
are characterized by the expression of CD33+CD11b+HLA-
DR−/low. Human MDSCs are classified into monocytic and
granulocytic subsets based on Lin−CD11b+CD14+CD15− and
Lin−CD11b+CD14−CD15+, respectively (3). In fact, MDSCs
reflect a mechanism by which myeloid regulatory cells (Mregs)
suppress the host’s anti-tumor immune responses in favor of the
tumor.

The ability of MDSCs to suppress anti-tumor Th1 and CTL
immune responses has been demonstrated by their direct and
indirect impacts on the immune system. The direct immune
suppressive function of MDSCs is accomplished through at
least three different pathways which include contact-dependent
and/or contact-independent suppression of effector T cells (4–
8), induction of Tregs (9), and inhibition of T cell trafficking
(10). Contact-dependent suppression of T cells by MDSCs causes
nitration of tyrosine residues in the TcR–CD8 complex, thereby
disrupting the tumor antigen-MHC class I recognition by the

TcR (4). Suppression of T cell proliferation during stimulation
with anti-CD3/CD28 antibodies was also shown to be due to a
contact-dependent mechanism (5). Cell contact is also required
for MDSC-mediated suppression of NK cells in patients with
hepatocellular carcinoma (6). It was reported that membrane-
bound TGF-β1 on MDSCs is responsible for MDSC-mediated
suppression of NK cell cytotoxicity, NKG2D expression, and IFN-γ
production (11). Recently, it was reported that granulocytic MDSC
subset can negatively regulate NK cell activation and function in
response to vaccinia virus infection via producing reactive oxygen
species (12). Most groups have found contact-independent mech-
anisms of T cell suppression by MDSCs releasing soluble factors
such as IDO, arginase-1, nitric oxide, reactive oxygen species, and
peroxynitrites (13, 14). MDSCs also produce IL-10 and TGF-β,
resulting in the induction of Tregs in an antigen-specific manner
(15). Finally, MDSCs can downregulate the expression of CD62L,
which is an important receptor for T cell homing to the lymph
nodes. This is accomplished by the expression of a disintegrin
and metalloproteinase (ADAM)-17 on MDSCs which cleaves and
results in shedding of the ectodomain of CD62L (10).

Indirect mechanisms of T cell suppression by MDSCs, which
are mediated by granulocytic subset, include expression of matrix
metalloproteinases (MMPs). MMPs can support the bioavailabil-
ity of VEGF, thereby acting as tumor angiogenic factors; MMPs
can also help to break down the extracellular matrix, facilitating
dissemination and metastasis of the tumor (16).

MREGS MODULATE Th1 RESPONSE AND SUPPORT Th2
RESPONSE: PROTECTIVE IMMUNE RESPONSES AGAINST
PARASITIC AND HELMINTH INFECTIONS
While Mregs are harmful to anti-tumor immunity and some
other diseases in which a robust Th1 response or CTL response
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FIGURE 1 |The multifaceted function of Mregs.

is required, the ability of the Mregs to limit and modulate Th1
responses or support a skewed Th2 immunity could be beneficial
during parasitic and helminth infections. The Th1 modulatory
function of Mregs is evident during infection with intracellular
protozoan parasites such as Leishmania and Trypanosoma, expul-
sion of which typically requires a controlled Th1 immunity to
prevent the host tissue damage. In fact, the acute immune response
to protozoan infection is associated with a strong IFN-γ produc-
ing Th1 response (17) associated with the expansion of MDSCs.
For instance, in Trypanosoma cruzi infection, expansion of MDSCs
is regulated by the induction of IFN-γ producing Th1 cells (18).
In Leishmania major infection, IL12-induced IFN-γ production
by Th1 cells promotes resistance to infection and facilitates the
expansion of MDSCs (19); MDSCs could also kill the intracellular
parasite L. major in a NO-dependent manner (20). Although Th1
response plays a critical role against these infections, excessive Th1
response could be detrimental to the host. Thus, MDSCs modu-
late Th1 inflammatory response in order to protect the host from
tissue damage. Consequently, during T. cruzi infection, depletion
of MDSCs results in an excessive production of IL-6 and IFN-γ,
an elevated Th17 response, leading to mortality of the host (21).
Similar observations were made in Toxoplasma gondii infection, in
which an antiparasite Th1 inflammatory response results in exten-
sive intestinal necrosis in the absence of monocytic MDSCs (22).

Host-protective immunity against helminth infections involves
a skewed Th2 response associated with elevated levels of MDSCs,as
shown during infection with Schistosoma mansoni (23, 24), Tae-
nia crassiceps (25), Nippostrongylus brasiliensis (26), and Brugia
malayi (27). In fact, MDSCs support a skewed Th2 response by
the helminth antigens such as glycans that act as Th2 adjuvants
(28). Very recently, it was demonstrated that adoptive transfer of
monocytic (CD11b+Ly6ChiLy6G−) MDSCs, strong suppressors
of Th1 responses, failed to protect N. brasiliensis-infected mice,
whereas granulocytic MDSCs were found to be protective (29).
This immunoregulatory role of MDSCs was shown to be mediated
by mast cell-derived histamine (30).

MREGS DIRECTLY INDUCE HOST-PROTECTIVE Th17 IMMUNE
RESPONSES
Immunoregulatory functions of Mregs on Th17 differentia-
tion and inflammatory responses have been reported in exper-
imental autoimmune encephalomyelitis (EAE). We showed
that the progression of EAE in mice was accompanied by a

profound expansion of CD11b+Gr-1+ MDSCs, which resembled
tumor-expanded MDSCs, phenotypically and functionally (31).
However, EAE-associated Mregs were found to be highly efficient
in producing IL-1β, thereby promoting the differentiation of naive
CD4+ T cells into Th17 cells. Depletion of Mregs using gemc-
itabine markedly reduced the severity of EAE as well as Th17 cells
and the inflammatory cytokines IL-17A and IL-1β in the lym-
phoid tissues and spinal cord (31). The pathogenic activities of
CCR2+Ly6Chi or CD11b+Ly6Chi cells, likely due to monocytic
Mregs, have also been reported by other studies (32, 33).

Intriguingly, the ability of Mregs to induce Th17 differentia-
tion has also been shown in tumor-bearing mice (34) and patients
with ovarian cancer (34). Development of Th17 cells from naive-,
memory-, or tumor-infiltrating CD4+ T cells was shown to be
driven by Mregs that produce IL-1β/IL-6/IL-23/NO (34). Indeed,
recent studies also support a positive correlation between Mregs
levels and the levels of Th17 cells or IL-17 production in patients
with esophageal cancer (35) or gastrointestinal cancer (36). These
new findings not only unmask the different aspects of Mreg func-
tions in the regulation of Th17 cells other than Th1 or Th2 cells,
but also highlight the proinflammatory effects of these cells. It
is unclear whether the immunosuppressive and proinflammatory
activities of Mregs can be uncoupled. However, the proinflamma-
tory feature of these cells may represent a pathogenic factor given
the intimate link between inflammation and tumorigenesis, and
the progression of inflammatory autoimmune diseases. Although
the therapeutic benefits of targeting Mregs in autoimmune disor-
ders remain to be clarified, these studies provide evidence support-
ing the pleiotropic regulatory effects of Mregs in different contexts.

The multifaceted function of myeloid cells in the exacerbation
and amelioration of different diseases associated with the suppres-
sion or induction of specific types of the immune response suggests
that the term Mregs can better explain their function (Figure 1). In
addition, controversial reports on the role of these cells in autoim-
mune diseases can be consolidated and understood in the context
of their regulatory function under certain conditions, which is not
merely limited to their immune suppressive function.
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