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Asthma is characterized by episodic, reversible airflow obstruction associated with vari-
able levels of inflammation. Over the past several decades, there has been an increasing 
appreciation that the clinical presentation of asthma comprises a diverse set of underlying 
pathologies. Rather than being viewed as a single disease entity, asthma is now thought 
of as a clinical syndrome with the involvement of multiple pathological mechanisms. 
While it is appreciated that eosinophilia is present in only a subset of patients, it remains a 
key feature of asthma and other eosinophilic disorders such as atopic dermatitis, eosino-
philic esophagitis, and chronic rhinosinusitis with nasal polyps. Eosinophils are bone 
marrow-derived leukocytes present in low numbers in health; however, during disease 
the type 2 cytokines [interleukins (IL)-4, -5, and -13] can induce rapid eosinophilopoiesis, 
prolonged eosinophil survival, and trafficking to the site of injury. In diseases such as 
allergic asthma there is an aberrant inflammatory response leading to eosinophilia, tissue 
damage, and airway pathology. IL-13 is a pleiotropic type 2 cytokine that has been 
shown to be integral in the pathogenesis of asthma and other eosinophilic disorders. 
IL-13 levels are elevated in animal models of eosinophilic inflammation and in the blood 
and tissue of patients diagnosed with eosinophilic disorders. IL-13 signaling elicits many 
pathogenic mechanisms including the promotion of eosinophil survival, activation, and 
trafficking. Data from preclinical models and clinical trials of IL-13 inhibitors in patients 
have revealed mechanistic insights into the role of this cytokine in driving eosinophilia. 
Promising results from clinical trials further support a key mechanistic role of IL-13 in 
asthma and other eosinophilic disorders. Here, we provide a perspective on the role 
of IL-13 in asthma and other eosinophilic disorders and describe ongoing clinical trials 
targeting this pathway in patients with significant unmet medical needs.
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INTRODUCTION

Eosinophils are bone marrow-derived leukocytes that are present in low numbers in the blood dur-
ing health (typically < 5% of all white blood cells) and rapidly migrate to select tissues where they 
reside. However, increased blood and tissue eosinophil counts have been associated with multiple 
pathologies. During parasitic infection and allergic diseases rampant eosinophilopoiesis occurs lead-
ing to increased numbers in the peripheral blood. Eosinophils then become activated and migrate to 
the site of injury where they can release mediators, including cytokines, chemokines, and cytotoxic 
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granule proteins. This ultimately leads to parasite expulsion, or in 
the case of allergic diseases, tissue injury (1).

Investigation of mouse models and human disease has found 
that increased eosinophil numbers are associated with type 2 
inflammation and an increase of interleukin (IL)-4, -5, and -13. 
Indeed, eosinophilic disorders are predominantly characterized 
by type 2 inflammation. IL-13 is a pleiotropic type 2 cytokine 
that has been shown to be important in the pathogenesis of 
asthma and other eosinophilic disorders. The effects of IL-13 in 
these conditions include induction of goblet cell metaplasia and 
increased mucus secretion, increased airway hyperreactivity, and, 
indirectly, trafficking of eosinophils to the site of tissue injury via 
chemotaxis (2).

The prevalence of eosinophilic syndromes is continuing 
to increase with more severe forms of disease refractory to 
standard of care thus necessitating a better understanding of 
underlying biology to enable the development of new treatments. 
Therapeutics targeting type 2 inflammation, including IL-4, IL-5, 
and IL-13, are currently in development to treat eosinophilic 
diseases. However, due to the overlapping biology of these 
cytokines it has been a challenge to delineate the exact roles each 
play in type 2/eosinophilic disease. Here, we provide a review 
of the literature describing the role of IL-13 and the ongoing 
clinical development of therapeutics targeting IL-13 in asthma 
and other eosinophilic disorders such as atopic dermatitis (AD), 
eosinophilic esophagitis (EoE), and chronic rhinosinusitis (CRS) 
with nasal polyps (CRSwNP).

INFLAMMATION IN EOSINOPHILIC 
DISEASES

Eosinophils develop from pluripotent progenitors in bone mar-
row and migrate into peripheral blood once mature. Mature 
eosinophils have distinct bilobed nuclei and secretory granules 
allowing them to be easily identified by routine tissue histology 
using hematoxylin and eosin staining. Eosinophils are terminal 
cytotoxic effector cells and make unique contributions to both 
innate and adaptive immunity (3). They have a half-life of ~18 h 
in blood and under homeostatic conditions quickly migrate 
to spleen, lymph nodes, thymus, gastrointestinal tract, uterus, 
and mammary glands, recruited by chemotactic factors (4). 
The evolutionary function of type 2 inflammation is primarily 
to respond to and control infection by extracellular parasitic 
organisms. Infection with parasitic worms elicits a Th2-mediated 
response that is required for the successful expulsion of the 
parasitic burden and protection of the host. Classical Th2 effec-
tor mechanisms are employed to expel the infectious organisms 
including mastocytosis, eosinophilia, increased mucus produc-
tion, smooth muscle hypercontractility, and IgE synthesis. At 
the site of infection, eosinophils degranulate releasing cytotoxic 
granules to assist with killing of the parasite. They also secrete 
many mediators including IL-4 and IL-13 to perpetuate further 
type 2 inflammation (5, 6).

However, the presence of eosinophils in classic type 2 diseases 
such as asthma, AD, EoE, and CRSwNP can be pathogenic. The 
relationship between the presence of eosinophils in tissue and 
pathology has long been established, as seen in postmortem 

examinations of patients who suffered from fatal asthma exacerba-
tions (7). In the instance of asthma, there is an aberrant response 
to non-parasite triggers such as allergens, viruses, or mucosal 
injury leading to epithelial cells producing cytokines, including 
IL-25, IL-33, thymic stromal lymphopoietin (TSLP), and IL-1α. 
These so-called type 2 alarmins can then promote differentiation 
of T helper 2 (Th2) cells, as well as activation of mast cells, mac-
rophages, and type 2 innate lymphoid cells (ILC2s). IL-4, IL-5, 
and IL-13 secreted from these cells can subsequently elicit further 
immune activation including eosinophilic responses. IL-5 is the 
major cytokine responsible for eosinophilopoiesis, along with 
granulocyte-macrophage colony-stimulating factor (GM-CSF) 
and IL-3, which also support eosinophil survival (8, 9). The role 
of IL-5 in eosinophilic diseases is reviewed elsewhere in this issue.

Human IL-13 was first discovered in 1993 and has since been 
shown to be produced by multiple cell types. Increased IL-13 
expression can elicit many of the pathological findings associ-
ated with type 2 diseases (10). The functions of IL-13 in  vivo 
were elucidated by the generation of a mouse strain selectively 
overexpressing IL-13 in the lung via a transgene regulated by the 
club cell-specific CC10 promoter (11). This airway-specific IL-13 
transgenic mouse presented with eosinophilic lung inflamma-
tion, airway epithelial cell hypertrophy, goblet cell metaplasia, 
mucus hypersecretion, subepithelial fibrosis, and airway hyper-
responsiveness (AHR). In an ovalbumin (OVA) challenge model, 
IL-13 was found to be essential for the maintenance of AHR and 
mucus hypersecretion as administration of an IL-13 neutralizing 
antibody resulted in attenuation of these responses (12). ILC2s 
were found to expand in vivo in response to the innate type 2 
cytokines IL-25 and IL-33 and represented the predominant 
early source of IL-13 during Nippostrongylus brasiliensis infec-
tion to allow for efficient helminth expulsion (13).

Interestingly, IL-4 and IL-13 both signal through the IL-4 
receptor α (IL-4Rα). IL-4Rα is a component of the type I (IL-4Rα 
and γc) and type II (IL-4Rα and IL-13Rα1) IL-4R complexes. IL-4 
can signal through both type I and II receptor complexes, whereas 
IL-13 signals only through the type II receptor complex. IL-4 and 
IL-13 activate the Janus kinase–signal transducer and activator of 
transcription (JAK-STAT) pathway. For example, IL-13 engages 
with its cell surface receptor IL-13Rα1 that then associates with 
IL-4Rα resulting in phosphorylation of JAK1 and TYK2. These 
activated kinases then phosphorylate the cytoplasmic domain of 
the receptor, creating binding sites for STAT6. STAT6 molecules 
are in turn phosphorylated, whereupon they dimerize and trans-
locate to the nucleus. There they regulate gene transcription, 
ultimately leading to the production of type 2 cytokines such 
as IL-13, eotaxins, and other mediators involved in eosinophilic 
inflammation (Figure 1) (14). IL-4Rα and IL-13Rα1 are expressed 
on both hematopoietic and non-hematopoietic cells such as 
macrophages, B  cells, fibroblasts, and airway epithelial cells. It 
is thought that this receptor configuration is responsible for the 
fact that IL-4 and IL-13 have overlapping functions as well as the 
ability to act independently of each other. For example, IL-4 alone 
has been implicated in initiating and potentiating polarization of 
naive T cells to Th2 cells and has a more dominant role than IL-13 
in antibody class switching to IgE (15). IL-13 on the other hand 
plays a key role in fibrosis and mucus secretion (2). These distinct 
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FIgURE 1 | Interleukin (IL)-4/IL-13 cytokine signaling. IL-4 signals through both the IL-4 receptor α (IL-4Rα)/γc (type I) and IL-4Rα/IL-13Rα1 (type II) receptor 
complexes, whereas IL-13 signals only through the IL-4Rα/IL-13Rα1 receptor complex. IL-13 can also bind to the IL-13Rα2 chain, which is thought to act primarily 
as a decoy receptor. Both IL-4 and IL-13 activate signal transducer and activator of transcription 6 (STAT6) via Janus kinase (JAK) family kinases leading to type 2 
responses and eosinophilic inflammation in tissues orchestrated by chemokines, growth factors, and factors that position eosinophils in the tissue (see text for 
details). Blocking antibodies including lebrikizumab, dupilumab, and tralokinumab have been developed to inhibit IL-4 and/or IL-13 signaling in eosinophilic diseases.
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functions may be due to both differential expression of type I 
and type II receptor complexes and differential spatiotemporal 
secretion of IL-4 and IL-13. However, both IL-4 and IL-13 can 
contribute to inflammation, AHR, and induction of chemokines 
that drive chemotaxis of blood eosinophils to injured tissue (16). 
Of note, IL-13 can also bind to the IL-13Rα2 chain, which does 
not contain a transmembrane-signaling domain and thus is 
thought to primarily act as a decoy receptor (17, 18).

In eosinophilic disorders such as asthma, there is increased 
eosinophilopoiesis and subsequent migration of eosinophils to 
the lung due to: (i) elevated levels of IL-3, IL-5, and GM-CSF to 
stimulate eosinophil development in bone marrow and survival 
in the blood and (ii) increased levels of type 2 cytokines (IL-4 and 
IL-13) to upregulate chemokine production, including CCL11 
(eotaxin 1), CCL24 (eotaxin 2), CCL26 (eotaxin 3), CCL13 
(MCP4), and CCL5 (RANTES), which enhance chemotaxis for 
eosinophil trafficking from the circulation to the airway (19). 
These chemokines bind to the chemokine receptor, CCR3, 
activating adhesion molecules such as integrins on the surface of 
blood eosinophils. In turn, this allows eosinophils to interact with 
endothelial cells via intracellular adhesion molecule-1 (ICAM-1), 
vascular cell adhesion molecule-1 (VCAM-1), and periostin lead-
ing to infiltration from blood to the airway tissue (20) (Figure 2). 
Chemokine knockout mice such as CCL11−/− and CCL24−/− show 
decreased trafficking of eosinophils to the airway during allergen 
challenge (21, 22). In an Aspergillus fumigatus-induced asthma 
model, CCR3 knockout mice had decreased eosinophilic airway 
inflammation along with reduced levels of type 2 cytokines, 
including IL-13 (23).

Two eosinophil-deficient mouse strains have been developed 
(ΔdblGATA and PHIL), however, studies inducing allergic 
airway inflammation in these models have reported conflicting 
results. OVA-challenged ΔdblGATA (24) mice had similar airway 

hyperreactivity and airway inflammation but reduced collagen 
deposition and airway smooth muscle mass compared to WT 
mice (25). However, OVA-challenged PHIL mice were protected 
from airway hyperreactivity and goblet cell metaplasia and mucus 
secretion (26). In another study, ΔdblGATA mice were protected 
from A. fumigatus-induced allergic airway inflammation and 
had decreased type 2 cytokines and airway mucus production 
(23). However, there are numerous caveats comparing these 
studies including the different strains of mice, variations in the 
models used, and disparities in experimental readouts. Further 
investigation is required to definitively characterize the relation-
ship between IL-13 and eosinophils in mouse models of allergic 
disease.

Multiple biologics and small molecule therapeutic candidates 
targeting eosinophilic inflammation have been or are currently 
being evaluated in preclinical or clinical settings. A number of 
biologics blocking soluble inflammatory mediators and their 
receptors associated with eosinophilic inflammation, including 
IgE, IL-4, IL-4Rα, IL-5, IL-5R, IL-13, TSLP, IL-25, and IL-33, are 
being investigated. Anti-Siglec-8 antibodies have been proposed 
to inhibit eosinophil activation and induce eosinophil apoptosis 
(27). The advantages and potential limitations of different targeted 
therapies for eosinophilic disorders have been recently reviewed 
elsewhere (28).

ASTHMA

Asthma is one of the most common chronic disorders in the 
world. Despite a vast body of research and the large clinical 
burden associated with asthma, its complexity and heterogeneity 
make it difficult to establish a standardized definition of what 
constitutes “disease.” Asthma is typically characterized by airway 
inflammation and a history of respiratory symptoms (including 
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FIgURE 2 | The role of interleukin (IL)-13 in driving eosinophilia in asthma. In asthma, bronchial epithelial cell injury leads to production of type 2 alarmins such as 
IL-25, IL-33, and thymic stromal lymphopoietin (TSLP). These alarmins can promote the differentiation of Th2 cells and activation of ILC2s leading to production of 
IL-4, IL-5, and IL-13. IL-5 is the major cytokine responsible for eosinophilopoiesis and eosinophil survival in the periphery. IL-13 (and, to a lesser extent, IL-4) induces 
the secretion of chemokines, such as CCL11, CCL13, and CCL26 from epithelial cells. Chemokines bind to CCR3 on eosinophils trafficking them to the site of injury 
where they extravasate into the lung tissue. In the lung eosinophils degranulate causing tissue damage via the secretion of eosinophil granule proteins and 
cytokines, chemokines, and growth factors (CCGfs).
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wheeze, shortness of breath, chest tightness, and cough) together 
with a variable airflow limitation (29).

Investigation into the complexity of asthma has led to the 
identification of multiple different clinical and molecular phe-
notypes (30). The most commonly described clinical phenotypes 
include those defined by severity, rates of exacerbations, response 
to treatment, age of onset, and obesity. The current molecular 
phenotypes include type 2/eosinophilic, neutrophilic, and pauci-
granulocytic inflammation (30, 31). These clinical and molecular 
phenotypes are not mutually exclusive, may change over time in 
individual patients, and may interact, contributing to differences 
in responsiveness to asthma therapies.

Role of Eosinophils in Asthma 
Pathophysiology
Arguably, molecular phenotyping of asthma patients has been 
most valuable in developing novel targeted therapies, particularly 
in understanding the biology of type 2/eosinophilic asthma. 
Eosinophils have been observed in increased numbers in periph-
eral blood, bronchoalveolar lavage (BAL) fluid, and bronchial 
tissue in asthma patients. It has also been reported that elevated 
eosinophil counts are significantly correlated with disease severity, 
indicating that these cells may play an important role in asthma 
pathogenesis (32). Measurement of eosinophils in induced sputum 
has been shown to be a biomarker of airway inflammation and a 

useful tool for adjusting the intensity of corticosteroid treatment to 
achieve optimal asthma control (33–35). However, measurement 
of sputum eosinophils is not widely used in the clinical setting, 
as it is time-consuming, requires specialized technical expertise, 
and the collection process may cause some discomfort to patients. 
Elevated blood eosinophil counts are correlated with lung func-
tion and asthma symptom scores, and therefore, can be useful in 
both the diagnosis and the management of patients with asthma 
(32, 36–43). A statistically significant correlation between blood 
eosinophils and sputum eosinophils in asthma patients has been 
reported (44). Another study later showed that blood eosinophil 
counts could accurately predict airway eosinophilia in asthma 
patients with persistent uncontrolled disease despite treatment 
(45). Therefore, blood eosinophils may be a good surrogate bio-
marker to identify patients with airway eosinophilia. However, 
Wenzel et al. described two subtypes of asthma, eosinophilic and 
non-eosinophilic, with different pathological, physiological, and 
clinical characteristics, although it should be noted that these 
characteristics exist along a continuum rather than being com-
pletely independent. In their study, the presence of eosinophils 
in bronchial biopsies was associated with significantly increased 
tissue lymphocytes, mast cells, and macrophages, basement 
membrane thickening, and patient intubations compared to the 
non-eosinophilic asthmatics (46). Due to disease heterogeneity 
in poorly controlled asthma patients, there was a need to develop 
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biomarkers that could enable the identification of a particular 
subset of patients. This has been valuable in recent clinical trials, 
for example, blood eosinophil counts correlated with response 
to anti-IL-13 therapies in Phase 2 clinical trials, wherein patients 
with higher levels of blood eosinophils had a greater benefit than 
patients with lower counts (47–50). In addition to blood eosino-
phil counts there are other biomarkers of type 2 diseases, such 
as serum periostin and fractional exhaled nitric oxide (FeNO), 
which are being investigated in asthma. Measurement of these 
biomarkers in a population of asthmatics revealed that they are 
continuously distributed and correlated with each other (44). 
This continuous distribution of biomarkers and airway pathol-
ogy is a critical nuance to appreciate when interpreting clinical 
data, as cutoffs defining “biomarker-high” vs. “biomarker-low” 
populations are arbitrary and typically fall near the median of 
continuously distributed values rather than defining clear dis-
tinctions between subgroups (51).

IL-13 and Eosinophils in Asthma
Interleukin-13 has been implicated in promoting eosinophil 
survival, activation, and recruitment. In vitro cultures of eosino-
phils with recombinant IL-13 showed prolonged survival in a 
dose-dependent manner, which was attributed to inhibition of 
apoptosis. This was mediated by an autocrine mechanism through 
stimulation or release of IL-3 and GM-CSF by eosinophils.  
A major function of IL-13 (and IL-4) in the asthmatic airway is to 
induce chemotaxis of eosinophils to the site of injury. A number 
of in  vitro studies have investigated the role of IL-13-induced 
chemotaxis and activation of eosinophils. Significant dose-
dependent chemotactic activity was observed in an experiment 
in which eosinophils were cultured in the upper compartment 
of chemotactic chambers with recombinant IL-13 in the lower 
compartment (52). In vitro culture of eosinophils stimulated with 
IL-13 resulted in a concentration-dependent upregulation of the 
activation marker CD69. Furthermore, the addition of an anti-
IL-13 antibody to these cultures led to inhibition of this activation 
(53). IL-13 induces VCAM-1 expression in endothelial cells, 
leading to increased adhesiveness of eosinophils to endothelium 
via VCAM-1/integrin α4 interactions. This might be a potential 
mechanism by which IL-13 promotes arrest and extravasation 
of eosinophils to the asthmatic airway (54). In clinical studies, 
increased IL-13 mRNA expression in sputum specimens and 
bronchial mucosa was significantly positively correlated with the 
percentage of eosinophils in the airway lumen (55, 56). In a study 
of human bronchial epithelial cells from asthma patients, an 
IL-13-inducible gene signature (POSTN, CLCA1, and SERPINB2) 
was identified that served as a surrogate marker of type 2 airway 
inflammation. This signature was observed in about half of 
asthmatics and was associated with distinct features of asthma 
including airway eosinophilia (56). In addition, eosinophils 
in the bronchial submucosa were found to express IL-13 (57). 
IL-13 is produced and consumed locally at sites of inflammation, 
therefore, peripheral levels are very low, and developing reliable 
assays to measure circulating IL-13 has been an on-going chal-
lenge. Recently, we developed an assay to detect human serum 
IL-13 with femtograms per milliliter sensitivity and excellent 
specificity (58). Using this assay, we found significantly higher 

levels of serum IL-13 in severe asthma patients relative to healthy 
volunteers and these levels strongly correlated with the type 2 
gene signature in bronchial epithelium. Interestingly, in moderate 
to severe asthma patients, serum IL-13 was strongly positively 
correlated with blood eosinophil counts. It has also been demon-
strated that human eosinophils derived from both periphery and 
tissue are capable of synthesizing, and upon stimulation releasing 
over 35 cytokines, chemokines, and growth factors. IL-13 is an 
abundant cytokine in eosinophils and upon release may directly 
orchestrate inflammatory responses with other immunomodula-
tors (59). It is therefore possible that the elevated serum IL-13 
levels may be in part a consequence of release from both airway 
and blood eosinophils (58).

IL-13 and Eosinophil Activation in Asthma
Type 2 cytokines, including IL-13, regulate the secretion of vari-
ous chemokines that can bind to eosinophils via the CCR3 recep-
tor leading to eosinophil activation and migration to the lung via 
chemotaxis. Eosinophils recruited to the asthmatic airway are 
highly activated and localize with inflammatory mediators and 
other immune cells that accumulate at the site of injury. While 
eosinophils can secrete cytokines and other mediators without 
degranulating, the ultimate result of eosinophil activation is 
degranulation. Human eosinophil granules contain four cationic 
proteins, major basic protein (MBP) primarily present in the 
crystalline core, eosinophil peroxidase (EPO/EPX), eosinophil 
cationic protein (ECP), and eosinophil-derived neurotoxin 
(EDN) enriched in the granule matrix. The secretion of eosino-
phil granule proteins has been shown to facilitate the killing of 
parasites; in vitro ECP and MBP were found to be toxic to the 
larvae of parasites such as Schistosoma mansoni and Trichinella 
spiralis (60). However, they also have cytotoxic effects on tissues 
and their levels have been suggested to be associated with asthma 
severity, bronchial epithelial cell damage, and remodeling (61).

The most commonly observed forms of eosinophil degranula-
tion in the inflammatory airway are piecemeal degranulation 
and cytolytic degranulation. Piecemeal degranulation is a form 
of exocytosis, in which specific granule contents are transported 
to the cell surface in small cytoplasmic secretory vesicles, while 
cells remain viable (62). Cytolytic degranulation on the other 
hand involves eosinophil chromatolysis and cell membrane rup-
ture leading to the release of intact secretory granules. Cell-free 
eosinophil granules can store and further release their contents 
(61). One study has described eosinophil granules in airway 
macrophages that had presumably phagocytosed apoptotic 
eosinophils. Increasing numbers of macrophages containing ECP 
and EPO were observed with increasing severity of asthma (63). 
Besides the most common piecemeal and cytolytic degranulation, 
another form of eosinophil degranulation is to generate extracel-
lular traps (ETosis) containing granule proteins in response to 
exposure to bacteria, C5a, or CCL11 (64, 65). The process of 
eosinophil degranulation in the peripheral blood is less clearly 
defined, and there have been conflicting reports as to whether 
peripheral blood eosinophil degranulation contributes to disease. 
It has been shown that blood eosinophils in allergic diseases such 
as asthma and AD display no morphological signs of either piece-
meal or cytolytic degranulation while eosinophils from matched 
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FIgURE 3 | Baseline measurements of blood eosinophil counts are positively correlated with eosinophil cationic protein (ECP) and eosinophil-derived neurotoxin 
(EDN) levels. At baseline, there was a strong positive intercorrelation between blood eosinophils and (A) serum ECP and (B) serum EDN. (C) ECP and EDN levels 
were also strongly positively correlated. Spearman’s correlation coefficient was employed for statistical analysis. For all correlations p < 0.0001; rho (ρ) values are 
shown on each plot.

TABLE 1 | Summary of key patient characteristics at baseline.

Placebo  
(n = 64)

Lebrikizumab 
(n = 191)

Age, mean (SD), years 48.9 (13.7) 48.4 (12.8)
Female, n (%) 41 (64.1) 112 (58.6)
Baseline ICS dose ≥1,000 μg/day, n (%) 14 (21.9) 65 (34.0)
Pre-bronchodilator FEV1 (% of predicted), 
mean (SD)

61.3 (10.7) 62.5 (10.2)

Time in placebo-controlled period, median 
(range), weeks

28.6 (19.0–48.1) 32.1 (19.3–49.0)

Blood eosinophils, mean (SD), 10^9/L 0.32 (0.29) 0.30 (0.27)
ECP, mean (SD), ng/mL 27 (29) 25 (24)
EDN, mean (SD), ng/mL 57.2 (35.4) 55.7 (30.6)

There were no significant differences in these characteristics between placebo and 
lebrikizumab treatment arms.
ICS, inhaled corticosteroids; FEV1, forced expiratory volume in 1 second; ECP, 
eosinophil cationic protein; EDN, eosinophil-derived neurotoxin.
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diseased tissue biopsies exhibited degranulation through both 
piecemeal and cytolytic processes. These observations sug-
gest that eosinophils exist in a resting status in the circulation 
and are activated at the site of tissue pathology (66). However,  
a small study with mild allergic asthmatics and healthy volun-
teers demonstrated that blood eosinophils in allergic patients 
underwent piecemeal degranulation during pollen season (67). 
A study in children comparing blood eosinophils from healthy 
controls, symptom-free asthmatics, and asthmatics with acute 
exacerbations showed that the proportion of activated blood 
eosinophils with significant morphologic changes were highest 
in the children with acute asthma exacerbations compared to 
symptom-free asthmatics and healthy controls (68). Circulating 
levels of eosinophil granule proteins have also been demonstrated 
to correlate with some aspects of disease activity. Therefore, in 
addition to simply measuring blood eosinophil counts, assessing 
eosinophil activation status may have clinical utility. Indeed, it has 
been reported that serum ECP and EPX levels predicted asthma 
risk more accurately than standard blood eosinophil counts in 
patients with allergic rhinitis (69).

Of note, treatments targeting the IL-13 pathway have consist-
ently reported increases in blood eosinophil counts. However, the 

activation status of the eosinophils has not been characterized. To 
address this we analyzed serum levels of two eosinophil granule 
proteins, ECP and EDN, using pooled data from two independ-
ent Phase 2 studies investigating the efficacy of lebrikizumab  
(an anti-IL-13 monoclonal antibody) in patients with uncon-
trolled asthma despite maintenance therapy with inhaled corti-
costeroids (ICS) and a second controller. All patients provided 
written informed consent for their samples to be used for research 
purposes. Patients received either placebo or lebrikizumab (37.5, 
125, or 250 mg) (47). Blood eosinophils, FeNO, and serum peri-
ostin were measured during this study, and pharmacodynamic 
(PD) effects were observed on each of these biomarkers. Blood 
eosinophil counts increased in response to treatment, and there 
was a slight trend toward a dose response. FeNO and serum 
periostin levels decreased after treatment but this was not dose 
dependent. Given the similar PD effects across treatment arms 
they were combined to analyze the eosinophil activation status 
after lebrikizumab treatment. Serum levels of ECP and EDN were 
measured at baseline and after 16 and 24  weeks of placebo or 
lebrikizumab treatment from a subset of patients who had com-
parable baseline characteristics to the overall study population 
(Table 1). These previously unpublished data demonstrated that 
at baseline there was a strong positive intercorrelation between 
blood eosinophils and serum ECP and EDN, suggesting that 
serum ECP and EDN may be secreted from blood eosinophils 
(Figure  3). Patients treated with lebrikizumab had increased 
blood eosinophil numbers after 16 and 24  weeks of treatment. 
However, serum ECP and EDN levels remained unchanged sug-
gesting that while lebrikizumab treatment led to increased blood 
eosinophil levels it did not result in blood eosinophil activation 
(Figure 4). Of note, serum ECP and EDN levels in the placebo 
group significantly declined at 16 and 24  weeks. This decrease 
was unexpected given the unchanged blood eosinophil numbers 
over time in the placebo arm and therefore needs to be further 
explored.

While these data are potentially interesting and begin to shed 
light on the relationship between IL-13 and eosinophils in asthma 
there are some caveats. This was a post hoc analysis carried out in 
a subset of patients from two independent Phase 2 studies and 
therefore will require further validation to better understand the 
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FIgURE 4 | Lebrikizumab treatment increases peripheral blood eosinophil counts but circulating levels of eosinophil cationic protein (ECP) and eosinophil-derived 
neurotoxin (EDN) remain unchanged. (A) Absolute levels and changes from baseline show increased blood eosinophils in patients treated with lebrikizumab at 16 
and 24 weeks [mean change of 0.12 × 109/L (95% CI 0.08–0.16) and 0.10 × 109/L (95% CI 0.06–0.15) respectively, p < 0.001] but no significant change in the 
placebo arm was observed. (B) Absolute levels and changes from baseline show no change in serum ECP in patients treated with lebrikizumab but a decrease in 
patients in the placebo arm at 16 and 24 weeks [mean change of −11.59 ng/mL (95% CI −18.80 to −4.38), p = 0.018 and −8.31 ng/mL (95% CI −16.71 to 0.08), 
p = 0.052 respectively]. (C) Absolute levels and changes from baseline show no change in serum EDN in patients treated with lebrikizumab but a decrease in 
patients in the placebo arm at 16 and 24 weeks [mean change of −12.25 ng/mL (95% CI −19.33 to −5.17), p = 0.0008 and −11.94 ng/mL (95% CI −20.25 to 
−3.64), p = 0.0051, respectively]. Graphs show mean ± SE and paired Student’s t-test were carried out (CHG, change).
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role of IL-13 in the number and activation status of eosinophils 
in asthma. Further investigation is also required to definitively 
address what are the consequences, if any, of increased blood 
eosinophils in asthma patients in response to anti-IL-13 therapies.

Targeting IL-13 in Asthma
Moderate to severe asthma patients with poorly controlled 
disease represent a substantial unmet medical need. Compelling 
evidence for the role of IL-4 and IL-13 in driving type  
2/eosinophilic asthma has led to the development of several thera-
peutic candidates to target these pathways (Figure 1; Table 2). 
Lebrikizumab is a humanized monoclonal antibody that binds to 
soluble IL-13 with high affinity and blocks signaling through the 
IL-4Rα/IL-13Rα1 heterodimer. Phase 2 clinical trials assessing leb-
rikizumab in moderate to severe uncontrolled asthma showed that 
treatment significantly improved lung function (49) and reduced 
the rate of exacerbations (47), compared to placebo. However, in 
two Phase 3 studies conducted in parallel there were inconsistent 
results; LAVOLTA I reported a significant reduction in exacerba-
tions in lebrikizumab-treated patients compared to placebo but 
this did not replicate in LAVOLTA II. However, lung function 
as determined by forced expiratory volume in 1 second (FEV1) 
improvement was observed in both studies (70). Tralokinumab,  

a human IL-13-neutralizing monoclonal antibody blocking bind-
ing of IL-13 to both IL-13Rα1 and IL-13Rα2, has been assessed 
in clinical trials of moderate to severe uncontrolled asthma 
patients. A Phase 2 study investigating different dosing regimens 
of tralokinumab reported a trend for improved lung function 
after 16  weeks of treatment, but no change in asthma control 
questionnaire (ACQ)-6 score (71). A subsequent Phase 2b trial 
investigating two and four weekly dose regimens found that there 
was no significant reduction in asthma exacerbation rates but 
patients dosed every 2  weeks showed an improvement in lung 
function (48). Phase 3 studies to evaluate the efficacy and safety 
of tralokinumab in adults and adolescents with inadequately 
controlled asthma are currently underway (NCT02161757, 
NCT02449473, and NCT02281357). Dupilumab, a humanized 
monoclonal antibody to IL-4Rα that inhibits both IL-4 and 
IL-13 signaling, is being assessed in patients with uncontrolled 
asthma. An initial study evaluating the efficacy of dupilumab was 
carried out in persistent, moderate-to-severe asthma patients 
with elevated eosinophil levels (blood eosinophil count of at least 
300 cells/mL or sputum eosinophil levels of at least 3%). In this 
study, patients on background ICS and long-acting beta-agonist 
(LABA) therapy were randomized to receive dupilumab or pla-
cebo and background treatment was withdrawn. In this context, 
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TABLE 2 | IL-13-targeted therapies in eosinophilic diseases.

Drug (company) Mechanism of blocking 
IL-13

Disease—target 
patients

Clinical trial outcome

Lebrikizumab (Roche) Binds soluble IL-13 blocking 
IL-13Rα1 signaling

Asthma—moderate to 
severe

AD—moderate to severe

•	 Phase III—inconsistent results across 2 studies. Study 1—reduced 
exacerbations and improved FEV1. Study 2—no statistical significant effect on 
exacerbations but improved FEV1 (60)

•	Ongoing Phase II trial

Tralokinumab 
(Medimmune/
AstraZeneca)

Binds soluble IL-13 blocking 
both IL-13Rα1 and IL-13Rα2 
signaling

Asthma—moderate to 
severe
AD—moderate to severe

•	 Phase IIb—no effect on exacerbations but improved FEV1 (48)
Ongoing Phase III trials

•	 Phase IIb—improvement in EASI, SCORAD and DLQI

Dupilumab (Regeneron/
Sanofi)

Binds IL-4Rα blocking both 
IL-4 and IL-13 signaling

Asthma—uncontrolled

AD—moderate to severe
EoE—active, moderate to 
severe
CRSwNP—refractory to 
intranasal corticosteroids

•	 Phase IIb—reduced exacerbations and improved FEV1 (62)
Ongoing Phase III trial

•	 Phase III—improved EASI, IGA and symptoms of depression and anxiety (95)
•	Ongoing phase II trial

•	 Phase II—reduced endoscopic nasal polyp burden (125)
Ongoing Phase III trial

QAX576 (Novartis) Monoclonal antibody binding 
to IL-13 

EoE •	 Primary end point not met but decreased esophageal eosinophil counts

RPC4046 (Celgene) Blocking both IL-13Rα1 and 
IL-13Rα2

EoE •	Ongoing Phase II trial

IL, interleukin; FEV1, forced expiratory volume in 1 second; AD, atopic dermatitis; EASI, Eczema Area Severity Index; SCORAD, Scoring Atopic Dermatitis; DLQI, Dermatology Life 
Quality Index; EoE, eosinophilic esophagitis; CRSwNP, chronic rhinosinusitis with nasal polyps; IGA, Investigator’s Global Assessment.
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dupilumab treatment led to a reduction of asthma exacerbations 
and improved lung function compared to placebo (50). A piv-
otal Phase 2b 24-week study in persistent, moderate-to-severe 
asthmatics on background ICS in which patients were enrolled 
irrespective of baseline eosinophil levels reported lung function 
improvement and a relative annualized exacerbation rate reduc-
tion in both eosinophil high and low patients. However, the lung 
function improvement and absolute exacerbation rate reduction 
were greater in the eosinophil high group (72). Phase 3 studies to 
evaluate the efficacy and safety of dupilumab in patients with per-
sistent asthma (NCT02414854 and NCT02528214) are ongoing.

While clinical trials of lebrikizumab, tralokinumab, and 
dupilumab targeting IL-13 had an acceptable overall safety 
profile, increases in blood eosinophil numbers were reported for 
each intervention (48, 70, 72). It is hypothesized that elevated 
blood eosinophil levels may be a result of reduced trafficking 
of eosinophils from the circulation to the airway and/or other 
tissues, where they can exert their pathogenic effects, due to 
decreased expression of IL-13-induced chemokines. Indeed, 
unpublished data from our preclinical studies testing the efficacy 
of anti-IL-13 in a mouse model of asthma found this to be the case. 
C57/B6 mice were challenged with the house dust mite extract, 
Dermatophagoides farinae, and treated prophylactically with 
either anti-IL-13 or an isotype control antibody. Administration 
of anti-IL-13 resulted in decreased BAL eosinophilia compared 
to control, however, there was concomitant upregulation of blood 
eosinophils in the anti-IL-13-treated mice but not in the controls. 
Eosinophil dynamics upon treatment with anti-IL-13 and anti-
IL-5 have also been studied using a mathematical model. The 
model incorporated levels of eotaxin and periostin as chemoat-
tractants for eosinophils to the lung. It predicted that treatment 
with anti-IL-13 would result in a decrease in lung eosinophils and 
an increase of blood eosinophils while anti-IL-5 treatment would 
result in a decrease in both blood and airway eosinophils (73). 

Of note, treatment with the anti-IL-5 therapy, mepolizumab, 
consistently leads to decreased blood eosinophil levels. However, 
differential reductions in airway eosinophils have been observed 
depending on which compartment of the lung is being sampled. 
Sputum eosinophil levels decreased significantly in response 
to mepolizumab treatment but tissue eosinophil numbers did 
not (74, 75). Further investigation of eosinophil dynamics in 
humans is required to confirm these animal data and modeled 
predictions, and several studies are ongoing. To evaluate the 
effect of blocking IL-13 on human airway eosinophil dynamics, 
studies with lebrikizumab (NCT02099656) and tralokinumab 
(NCT02449473) are being conducted in inadequately controlled 
asthmatics. In addition, the effect on inflammatory cells in the air-
way after blocking IL-4 and IL-13 signaling by dupilumab is being 
examined in patients with persistent asthma (NCT02573233). 
The results of these studies should shed significant light on the 
relationships between IL-13 and airway eosinophilia and other 
pathologies in asthma patients in vivo.

ATOPIC DERMATITIS

Atopic dermatitis is the most common recurring inflammatory 
skin disease in children, with an average world prevalence of 7.9% 
in 6–7-year olds (76). Disease manifestations include dry skin, 
eczematous lesions, intense pruritus, and high serum IgE levels. In 
AD, compromised epidermal barrier function leads to enhanced 
allergen penetration and systemic IgE sensitization. Patients with 
AD exhibit blood eosinophilia (77), eosinophil infiltrates in skin 
lesions (78), and deposition of eosinophilic granule proteins (79).

IL-13 and Eosinophils in AD
Signatures of responsiveness to Th2, Th22, Th17, and Th1 
cytokines are associated with AD skin at various stages of the 
disease. In particular, the Th2 cytokines IL-4 and IL-13 have 
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been shown to play central roles in AD by modulating the epi-
dermal barrier, including suppression of keratinocyte epidermal 
differentiation complex (EDC) genes (80) and inhibition of 
antimicrobial peptide production (81, 82). IL-13 mRNA has 
been shown to positively correlate with AD disease severity 
in acute and chronic lesional skin (83–85). Patients with AD 
have higher levels of serum IL-13 compared to healthy controls  
(58, 86). Children with more severe AD exhibited a higher per-
centage of IL-13-expressing CD4+ T  cells in peripheral blood 
(87). In vitro treatment of normal human epidermal keratino-
cytes with IL-13 led to increased expression of a key chemokine 
for eosinophil recruitment, CCL26 (88). In mice, transgenic 
overexpression of IL-13 in the skin induced key features of AD, 
including pruritus, elevated IgE, and eosinophilic infiltration. 
There were also elevated levels of eosinophil chemoattractants 
such as CCL11 in the skin, driving recruitment of eosinophils 
from the blood to the tissue. This established a clear role for IL-13 
in AD (89). IL-4 and IL-13 share overlapping biological functions 
and pathophysiological roles in AD in part due to the shared 
use of the IL-4Rα/IL-13Rα1 receptor complex and subsequent 
signaling through STAT6. Mice constitutively expressing active 
STAT6 (Stat6VT) were found to develop spontaneous AD-like 
disease with decreased EDC gene expression and increased IL-4, 
IL-13, and eosinophils in the lesional skin. IL-4 deficiency in 
these mice (IL-4−/− Stat6VT) attenuated development of allergic 
skin disease and eosinophilic inflammation, while therapeutic 
blockade with anti-IL-13 in the Stat6VT mice led to the rescue 
of EDC gene expression (90). Similarly, blockade of IL-13 by 
topical delivery of IL-13 antisense oligonucleotides reduced 
AD-related cytokines, IgE, and inflammatory cells in the skin 
in an epicutaneous OVA sensitization model (91). As described 
earlier, IL-13 also binds to IL-13Rα2, a decoy receptor that 
lacks an intracellular signaling motif and which may serve as 
a negative feedback regulator of IL-13 signaling. Keratinocytes 
from lesional skin of AD patients showed elevated expression of 
IL-13Rα2 (92). IL-13 also induced the expression of IL-13Rα2 
in human keratinocytes in a STAT6-dependent manner (93). 
Consistent with its role as a decoy receptor, mice deficient for 
IL-13Rα2 showed increased transepidermal water loss, skin 
inflammation, peripheral eosinophilia, and IgE in a model of 
AD compared to control mice (94).

Targeting IL-13 in AD
Given the strong biologic rationale various companies have 
moved forward with therapeutic candidates targeting type 2 
cytokines in AD (Table  2). Dupilumab was investigated in 
patients with moderate to severe AD inadequately controlled by 
topical treatment. In two Phase 3 trials, dupilumab improved the 
signs and symptoms of AD, anxiety and depression, and quality 
of life compared to placebo (95). These results further validate 
the hypothesis that the type 2 cytokines IL-4 and IL-13 are key 
drivers of AD. Of note and similar to therapies targeting the 
IL-13 pathway in asthma, these trials reported elevated blood 
eosinophil levels in patients treated with dupilumab compared 
to placebo. Biologics specifically targeting IL-13 have completed 
Phase 2 studies for the treatment of AD. In an ongoing study, 
lebrikizumab was evaluated in patients with persistent, moderate 

to severe AD inadequately controlled by topical corticosteroids 
(TCS) (NCT02340234). Efficacy of tralokinumab was assessed in 
patients with moderate to severe AD on a background of TCS 
(NCT02347176) and showed statistically significant improve-
ments in symptoms of AD. These results support a key role of 
IL-13 signaling in AD pathophysiology. However, due to the dif-
ferences and limitations in trial designs, the relative contributions 
of IL-4 vs. IL-13 and a role of IL-13Rα2 in human AD could not 
be fully elucidated and will require further investigation.

EOSINOPHILIC ESOPHAgITIS

Eosinophilic esophagitis is a chronic inflammatory disease of the 
esophagus. It is one of the most common conditions diagnosed 
during the assessment of feeding problems in children and 
dysphagia and food impaction in adults (96). EoE occurs world-
wide with increasing prevalence, currently at 0.4% in Western 
countries (97). The diagnosis of the EoE has been challenging. 
Two key components are required: (i) clinical symptoms includ-
ing feeding problems, vomiting, and abdominal pain in children, 
and dysphagia and food impaction in adolescents and adults and 
(ii) histological evaluation of 15 or more eosinophils per high-
powered field in esophageal mucosal biopsy following treatment 
with proton pump inhibitors (98).

IL-13 and Eosinophils in EoE
Defective barrier function, evidenced by thickening of the 
mucosal basal layer, dilated interepithelial spaces and altered epi-
thelial barrier function have been observed in esophageal tissues 
from patients with EoE (99). The resulting increased epithelial 
permeability is believed in turn to enhance antigen presentation 
and eosinophil recruitment. Both environmental and genetic pre-
dispositions modulate immune responses that play an important 
role in the pathogenesis of EoE. Type 2 responses induced pri-
marily by food antigens have been thought to be a major driver of 
the disease. In particular, IL-13 is overexpressed in biopsies from 
patients with EoE (100). IL-13 has been shown to affect epithelial 
barrier function by downregulating EDC genes such as filaggrin 
(FLG) (101). In vitro studies found that IL-13 upregulates IL-5, 
CCL26, and other related cytokines that contribute to eosino-
philia (101, 102). Furthermore, a genome-wide association study 
(GWAS) revealed a potent IL-13 inducer, TSLP, and IL-13 down-
stream response genes, CCL26 and calpain 14 (CAPN14) were 
associated with EoE (102–105). EoE transcriptome signatures 
identified by microarray and RNA-seq analyses for dysregulated 
genes in the esophagi of patients with EoE revealed a significant 
involvement of IL-13 and exhibited a striking degree of overlap 
with the gene expression pattern observed in endobronchial 
biopsies of “Th2-high” asthma patients (106–108). The long 
non-coding RNA BANCR is induced by IL-13 and its expression 
correlates with levels of eosinophils and transcripts known to 
be involved in EoE pathogenesis. Another transcriptional target 
of IL-13, neurotropic tyrosine kinase receptor type 1 (NTRK1), 
was upregulated in EoE esophageal tissues. This upregulation is 
believed to cause enhanced responsiveness of epithelial cells to 
NGF, a ligand of NTRK1, and the subsequent induction of the 
eosinophil chemokine, CCL26 (109).
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Targeting IL-13 in EoE
Several biologics targeting IL-13 have been tested in clinical 
trials for the treatment of EoE (Table 2). QAX576, an anti-IL-13 
monoclonal antibody, was tested in a small cohort of patients 
with proton pump inhibitor-resistant EoE for its efficacy in 
reducing peak eosinophil counts in the esophageal tissue after 
8 weeks of treatment. The primary end point was not met; nev-
ertheless, QAX576 reduced esophageal eosinophil counts by 60% 
compared to an increase of 23% with placebo and there was a 
slight trend toward improved symptoms. Transcriptomics were 
also carried out on biopsy specimens collected on day 85 of the 
study and showed that EoE-related genes were downregulated, 
including the eosinophil chemoattractant CCL26, which sug-
gests that IL-13 is a significant driver of the differential gene 
expression observed in EoE. QAX576 had no effect on blood 
eosinophil counts (110). RPC4046, an anti-IL-13 monoclonal 
antibody that blocks both IL-13Rα1 and IL-13Rα2, is currently 
being studied in a dose ranging Phase 2 study in EoE with mean 
eosinophil count as a primary outcome (NCT02098473). The 
efficacy of dupilumab is also being investigated in a Phase 2 
trial in patients with active, moderate to severe EoE. However, 
the primary outcome for this trial is change in the Straumann 
Dysphagia Instrument (SDI) patient-reported outcome (PRO) 
score and changes in eosinophil counts will be evaluated as one 
of the secondary end points (NCT02379052).

CRS WITH NASAL POLYPS

Chronic rhinosinusitis is an inflammatory pathological condi-
tion of the nose and paranasal sinuses. Patients with CRS are 
characterized by nasal obstruction, drainage, compromised 
olfaction, and prolonged facial pain or pressure (111). CRS is 
classified into two subtypes: CRS without nasal polyps (CRSsNP) 
and CRS with nasal polyps (CRSwNP) (112). In the United States 
and Europe, the majority of CRSwNP patients have significant 
eosinophilic infiltration in their polyp tissue (113).

IL-13 and Eosinophils in CRSwNP
Eosinophilic CRSwNP (ECRSwNP) has been increasing in 
prevalence worldwide, estimated to be 2.1%–2.7% in adults 
(114–116). It represents a recalcitrant form of the disease resistant 
to medical or surgical intervention (113). ECRSwNP is character-
ized by type 2 inflammation with elevated levels of IL-5, IL-13, 
and eosinophils in the polyp tissue (117). Th2 cells, ILC2s, mast 
cells, and eosinophils are hypothesized to be the major sources 
of type 2 cytokines in ECRSwNP. Similar to asthma, AD, and 
EoE, it is believed that IL-4 and IL-13 play important roles in the 
pathophysiology of ECRSwNP. IL-13 has been shown to affect 
the integrity of the sinonasal epithelial barrier by inhibiting the 
expression of tight junction proteins (118) and antimicrobial 
peptide production (119). The expression of eosinophil chem-
oattractants, such as CCL11, CCL24, and CCL26, are elevated in 
ECRSwNP (120–122). In vitro, IL-4 or IL-13 in combination with 
TNF induced elevated expression of CCL11 in fibroblasts and 
airway epithelial cells derived from these patients, suggesting a 
positive feedback loop between eosinophil recruitment and type 
2 inflammation (123). Transcriptomic analysis of RNA-seq data 

comparing nasal polyps from eosinophilic and non-ECRSwNP 
and nasal mucosa from control subjects revealed distinct expres-
sion profiles between these subgroups. Notably, IL-13 and CCL26 
are specifically overexpressed in ECRSwNP, along with other 
chemokines that mediate eosinophilic inflammation (124).

Targeting IL-13 in Nasal Polyps
There are currently no biologic therapies approved for the treat-
ment of nasal polyps. Dupilumab has been evaluated in a Phase 
2 clinical trial for its efficacy in patients with chronic sinusitis 
and nasal polyposis refractory to intranasal corticosteroids 
and showed encouraging results (125). Patients who received 
dupilumab together with mometasone furoate nasal spray 
experienced reduced endoscopic nasal polyp burden compared 
to patients that received mometasone plus placebo (Table  2). 
Longitudinal analysis of plasma CCL26 showed a decrease after 
dupilumab treatment, while there was a trend toward decreased 
serum CCL17 levels. A transient increase in blood eosinophils 
was observed in response to treatment in some patients. Phase 
3 clinical studies are currently underway (NCT02912468, 
NCT02898454).

CONCLUSION

Asthma and other eosinophilic disorders such as AD, EoE, and 
CRSwNP are highly prevalent and numbers of people affected 
are continuing to increase. There are subsets of patients with 
each of these conditions that do not respond adequately to 
standard of care, experience significant morbidity, consume 
substantial healthcare expenditures, and thus represent an 
unmet clinical need.

Molecular phenotyping has been instrumental in understand-
ing the underlying biology of these diseases. As such, we are 
now beginning to understand the roles of various cytokines and 
immune effector cells, in particular type 2 cytokines and eosino-
phils. IL-5 was identified as the key driver of eosinophilopoiesis, 
leading to the development of multiple therapies targeting IL-5 
and eosinophils. The efficacy of these drugs indicates the vital role 
of eosinophils in diseases such as asthma. In addition, substantial 
evidence exists from in vitro cell culture models, in vivo animal 
models and observational human studies for the role of IL-13 
(and IL-4) in driving eosinophilia and type 2 inflammation, which 
led to interventional studies targeting these pathways in human 
disease. Biologics targeting the IL-13 pathway have demonstrated 
efficacy, particularly in subsets of patients with evidence of 
eosinophilic disease. Ongoing clinical trials will help to further 
dissect the contributions of IL-13 to tissue eosinophilia. Notably, 
blood eosinophil counts themselves are used as a biomarker in 
many of these clinical studies. Eosinophil “high” patients have 
experienced greater clinical benefit from anti-type 2 therapies 
compared to eosinophil “low” patients. This further necessitates 
the need to fully understand the role of eosinophils in type 2 
driven diseases, as well as define the mechanisms contributing to 
disease pathology in patients with low levels of type 2 inflamma-
tion and eosinophils.

The advent of better mouse models and ongoing clinical trials 
targeting multiple pathways, including IL-13, will help garner a 
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better understanding of eosinophil biology and improve thera-
peutic strategies for treating eosinophilic disorders in the future.
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