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ABSTRACT

Motivation: Understanding the mechanisms that govern
nucleosome positioning over genomes in vivo is essential for
unraveling the role of chromatin organization in transcriptional
regulation. Until now, models for predicting genome-wide
nucleosome occupancy have assumed that the DNA associations
of neighboring nucleosomes on the genome are independent. We
present a new model that relaxes this independence assumption by
modeling interactions between adjacent nucleosomes.
Results: We show that modeling interactions between adjacent
nucleosomes improves genome-wide nucleosome occupancy
predictions in an in vitro system that includes only nucleosomes
and purified DNA, where the resulting model has a preference
for short spacings (linkers) of less than 20 bp in length between
neighboring nucleosomes. Since nucleosome occupancy in vitro
depends only on properties intrinsic to nucleosomes, these results
suggest that the interactions we find are intrinsic to nucleosomes
and do not depend on other factors, such as transcription factors
and chromatin remodelers. We also show that modeling these
intrinsic interactions significantly improves genome-wide predictions
of nucleosome occupancy in vivo.
Contact: eran.segal@weizmann.ac.il
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Eukaryotic DNA is highly compacted within the cell nucleus by
the wrapping of 147-bp-long DNA stretches around histone protein
octamers, forming nucleosomes (Kornberg and Lorch, 1999).
Adjacent nucleosomes are separated by short DNA sequences, called
linkers. The positioning of nucleosomes along genomic DNA is the
first order of chromatin organization. Past analyses of nucleosomal
DNA and linker sequences have revealed specific sequences that
are enriched within the nucleosome or within linkers (Ioshikhes
et al., 1996; Kaplan et al., 2009; Lee et al., 2007; Satchwell et al.,
1986; Segal et al., 2006; Yuan and Liu, 2008). Based on these
nucleosome sequence preferences, several models for predicting
nucleosome occupancy were suggested (Ioshikhes et al., 2006;
Kaplan et al., 2009; Lee et al., 2007; Peckham et al., 2007; Segal
et al., 2006; Yuan and Liu, 2008). Two of these were incorporated
into a thermodynamic model (Kaplan et al., 2009; Segal et al.,
2006) that was shown to predict in vitro and in vivo genome-wide
nucleosome occupancy with high accuracy.

∗To whom correspondence should be addressed.

The thermodynamic model assigns a statistical weight for each
possible configuration of nucleosomes that are placed along a
genomic sequence, such that no two nucleosomes overlap. In
this model, the association of each nucleosome to a 147-bp-
long sub-sequence within a configuration is weighted according
to the nucleosome sequence preferences, and is independent
of associations of other nucleosomes elsewhere on the DNA.
However, given the several factors that are known to affect
chromatin folding and higher order chromatin organization, this
independence assumption does not hold. First, different linker
lengths allow different relative conformations between neighboring
nucleosomes, resulting from steric hindrance constraints and the
helical turns of the DNA (Schalch et al., 2005; Widom 1992).
Second, many experiments and analyses have suggested that linker
length distributions demonstrate a preference for quantized length
patterns, of the form d + r ·n, where n is a running integer, r is
a repeat length, and d is a length offset (d < r) (Cohanim et al.,
2006; Kato et al., 2003; Wang et al., 2008). In most cases, r was
found to be ∼10, in accordance with the DNA helical repeat, while
the value of d varied. Third, the binding of the linker histone H1
to linker DNA greatly affects chromatin folding and condensation.
Long linker lengths enable H1 binding, giving condensed chromatin,
while short ones disable H1 binding, resulting in open chromatin
(Routh et al., 2008). Finally, electrostatic interactions may occur
between two nucleosomes that are spatially close (Chodaparambil
et al., 2007; Dorigo et al., 2004; Luger et al., 1997), and may
contribute to chromatin folding.

Here, we model interactions between adjacent nucleosomes using
a nucleosome cooperativity function (NCF), resulting in a new
thermodynamic model for predicting nucleosome occupancy. We
consider several types of functions as NCF candidates, based on an
analysis of in vivo linker length distributions in yeast, and devise
an algorithm to estimate these functions from data measurements of
nucleosome occupancy. All of the functions we consider are simple
and defined by a small number of parameters (between two and five
parameters). When applied to synthetic data, we show that our model
can accurately reconstruct NCF parameters, even in the presence of
large degrees of noise in the input data.

Our results suggest that reported preferences for quantized
linker lengths result from the previously observed periodic
sequence preferences of the single nucleosome (Satchwell et al.,
1986; Segal et al., 2006). We show that modeling interactions
between adjacent nucleosomes significantly improves nucleosome
occupancy predictions in an in vitro system consisting of purified
histones assembled on naked yeast genomic DNA, demonstrating
that the preferred interactions that we find are intrinsic to
nucleosome-DNA associations. The interactions that we learn
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introduce a preference for short linkers of less than 20 bp in length.
Finally, modeling these intrinsic interactions also significantly
improves predictions of nucleosome occupancy in vivo in both yeast
and in Caenorhabditis elegans, showing that they also play a role
in nucleosome positioning in vivo, and suggesting that they may be
universal to all eukaryotes.

2 METHODS

2.1 New thermodynamic model for predicting
nucleosome occupancy

A thermodynamic model for the genome-wide prediction of nucleosome
occupancy has been published by our lab (Field et al., 2008; Segal et al.,
2006). This model assigns a statistical weight for each possible configuration
of nucleosomes that are placed along a genomic sequence. The association
of each nucleosome to a 147 bp long sub-sequence within a configuration is
weighted by a probabilistic model that represents the nucleosome sequence
preferences, assigning different statistical weights to different 147 bp long
sequences. The association of a nucleosome to DNA at a certain genomic
region is independent of the associations of other nucleosomes elsewhere,
other than the fact that no two nucleosomes can overlap in the same
configuration.

Our new thermodynamic model relaxes the above independence
assumption and models interactions between adjacent nucleosomes by
incorporating a nucleosome cooperativity function (NCF). An NCF, denoted
L(x), is a positive function that assigns different statistical weights to different
linker lengths. These weights are used as multiplicative factors, with 1 being
a neutral weight. In the Results section we refer to the actual types of
functions selected to represent NCFs. The probabilistic model that we use
to describe the nucleosome sequence preferences was learned from in vitro
bound sequences that we previously published (Kaplan et al., 2009). We will
denote this model of single nucleosome sequence preferences by Nuc, where
Nuc(i) is the statistical weight that the Nuc model assigns to a nucleosome
being positioned on the input sequence, S, starting at position i. By Si,j we
denote the sub-sequence of S starting at position i and ending at position j. By
Bg(i,j) we denote the statistical weight given by a background model to an
unoccupied sub-sequence Si,j . Since the Nuc model includes a background
component that is used to normalize statistical weights, we used a simple
uniform 0-order Markov model (i.e. P(A) = P(C) = P(G) = P(T) = 0.25) as the
Bg model. Using the above definitions, we compute the distribution over
nucleosome configurations on an input sequence S of length N . We take the
partition function to be the space of all legal nucleosome configurations on S,
denoted by C. A legal configuration c∈C is defined by a set of nucleosome
start positions on S, c[1], …, c[k], such that no two nucleosomes overlap.
Assuming thermodynamic equilibrium, its statistical weight (its Boltzmann
factor) is:

Wc[S]=Bg(1,c[1]−1)·(
k−1∏
i=1

τ ·(Nuc(c[i]))β ·Bg(c[i]+147, c[i+1]−1)·L(c[i+1]−c[i]−147)

)
·

·τ ·(Nuc(c[k])β ·Bg(c[k]+147,N),

where τ represents an apparent nucleosome concentration, and β is a
temperature parameter. For conciseness of representation, we assume that
if i > j then Bg(i,j) = 1.

The probability of configuration c is given by:

P(c)= Wc[s]∑
c′∈C

Wc′ [s] ,

where c′ traverses over the space C of all legal configurations.

The probability of placing a nucleosome at start position i on S, denoted
P(i), can be computed as follows:

P(i)=
∑

c′′∈Ci

P(c)=

∑
c′′∈Ci

Wc′′ [s]
∑

c′∈Ci

Wc′ [s] ,

where c" traverses over the space Ci of all legal configurations in which a
nucleosome starts at position i. To efficiently compute P(i) for all positions
i on S we employ a dynamic programming procedure (Rabiner, 1989). This
demands that we limit the effect of any NCF to a window of reasonable
length ML , such that its contribution will only be added for linker lengths
shorter than ML . In this work we used ML =100. For any NCF L this is
equivalent to transforming L to a new function L′ such that:

L′(x)=
{

L(x) c≤ML

1 x>ML .

The first part of our dynamic program is a forward step, in which we compute
two sets of random variables: {FNuc

i } and {FBg
i } (1� i�N). FNuc

i represents
the sum of the statistical weight of all legal configurations over the prefix
S1,…,Si of S, that end with a nucleosome (the last nucleosome end position is
i). FBg

i is similarly defined, where position i is not covered by a nucleosome.
The forward step computation is as follows:

FBg
i =

⎧⎪⎨
⎪⎩

0 i<0

1 i=0

Bg(i,i) ·(FBg
i−1 +FNuc

i−1 ) i≥1

FNuc
i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 i≤146

(FBg
i−148−ML

+FNuc
i−148−ML

) ·τ ·
·(Nuc(i−146))β ·Bg(i−147−ML,i−147)

+ i≥147

τ ·(Nuc(i−146))β ·
·

i−147∑
j−i−147−ML

FNuc
j ·L(i− j−147) ·Bg(J +1,i−147)

This concise representation is assisted by extending the definition of FNuc
i

and FBg
i also over negative positions.

The second part of the dynamic program is a backward step, in which we
compute two more sets of random variables: {RNuc

i } and {RBg
i } (1� i�N).

RNuc
i represents the sum of the statistical weight of all legal configurations

over the suffix Si,…,SN of S, in the event where a nucleosome ends at
position i−1 (exactly before the suffix Si,…,SN ). RBg

i is similarly defined,
where position i−1 is not covered by a nucleosome. The backward step
computation is as follows:

RBg
i =

⎧⎪⎨
⎪⎩

0 i≥N +2

1 i=N +1

RBg
i+1 ·Bg(i,i)+RNuc

i+147 ·τ ·(Nuc(i))β i≤N

RNuc
i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 i≥N +2

1 i=N +1

RBg
i+1+ML

·Bg(i,i+ML)

+
RNuc

i+148+ML
·Bg(i,i+ML) ·τ ·(Nuc(i+1+ML))β i≤N

+
i+147+ML∑

j+i+147

(
RNuc

j ·Bg(i,j−148)·
τ ·(Nuc(j−147))β ·L(J − i−147)

)

This concise representation is assisted by extending the definition of RNuc
i

and RBg
i also over positions i>N+1, and by defining: Bg(i,i−1)=1.
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Having computed the above, we can now compute P(i) for any position i
in S:

P(i)=

∑
c′′∈Ci

Wc′′ [s]
∑

c′∈Ci

Wc′ [s] = FNuc
i+146 ·RNuc

i+147

FBg
N +FNuc

N

The probability of position i in S being covered by a nucleosome, also referred
to as the average nucleosome occupancy over position i, is predicted by our
model to be:

P̄(i)=
i∑

j=i−146

P(j)

2.2 Learning the parameters of a nucleosome
cooperativity function

Having chosen a type of function as our NCF, we want to learn an
optimal choice of its parameter values. Our model produces a vector P=
(P(1),...,P(N) of predicted average nucleosome occupancy, per position of
an input sequence S. Therefore, for the purpose of learning NCF parameters,
we require as input a vector O= (O(1),...,O(N) of the measured cell
population average nucleosome occupancy per position of S. O and P after
normalization (by subtracting the mean and dividing by the SD) to mean 0
and SD 1 are denoted Ô and P̂, respectively. We define our objective function
to be the L2-distance between Ô and P̂:

L2(Ô,P̂)=
N∑

i=1

(
Ô(i)−P̂(i)

)2

and our learning algorithm searches for NCF parameters assignments for
which the model generates a prediction P that minimizes L2(Ô,P̂). We chose
the (Nelder-Mead) simplex method for the function optimization task at hand,
since it requires only the computation of the objective function at each point
in the space of NCF parameter values. We refrained from using methods,
such as conjugate gradient, that require computing the partial derivatives of
the objective function according to the NCF parameters (see Supplementary
Methods), as such computations are quite costly, and as they limit the choices
of NCFs to differentiable ones.

3 RESULTS
Previous approaches for predicting nucleosome occupancy
(Ioshikhes et al., 2006; Kaplan et al., 2009; Lee et al., 2007;
Peckham et al., 2007; Segal et al., 2006; Yuan and Liu, 2008)
relied on modeling the nucleosome sequence preferences, and used
them to generate nucleosome occupancy predictions assuming that
the association of one nucleosome to the DNA is independent of
the associations of other nucleosomes. We relax this independence
assumption by modeling interactions between adjacent nucleosomes
through a nucleosome cooperativity function (NCF). In the previous
section we presented how an NCF is incorporated into our model,
and how we can learn its parameters. In this section we use our
model to learn NCFs from synthetic data, as well as in vitro and
in vivo measurements of nucleosome occupancy.

3.1 Selecting the types of nucleosome cooperativity
functions

A good candidate for an NCF would be the organism’s linker
lengths distribution. This distribution can be easily derived from
single cell data of mono-nucleosome sequences that are uniquely
mapped to the organism’s genome, as linker lengths are simply the
distances between any two mapped nucleosomes. However, existing
experimental methods cannot measure genome-wide nucleosomes

Fig. 1. Linker lengths distributions derived from mono-nucleosome
genome-wide positioning data, extracted from in vivo yeast cell populations.
The data includes five different replicates, all for wild-type yeasts grown
in rich medium. For each replicate, the distribution of linker lengths in the
range 0–100 is shown (divided by its mean value), along with an exponential
curve that was fit to its decaying part (starting at the main peak).

from single cells. Rather, existing nucleosome data comes from
cell populations. We therefore resort to an approximation of the
linker lengths distribution, derived from cell population data of
mapped nucleosome sequence reads, similar to that used in (Valouev
et al., 2008). Instead of counting appearances of true linker lengths,
we count appearances of putative linker lengths. For any pair of
nucleosomes that are d bps apart, such that d < 100, we count a
single occurrence of a (putative) linker of length d. We smooth the
resulting linker lengths distribution with a moving average window
of 5 bps. Using this procedure, whenever we encounter a pair of
nucleosomes that were adjacent within a single cell then we count
a true linker length appearance. In all other cases, we falsely add
appearance counts, adding noise to the distribution.

We used in vivo mono-nucleosome data, extracted from wild-
type S. cerevisiae that were grown in rich medium and uniquely
mapped to the S. cerevisiae genome (Kaplan et al., 2009). The
linker lengths distributions that we computed from cell population
data of five different experiment replicates are shown in Figure 1.
These five distributions are highly similar, and share several main
features. First, they all exhibit an apparent disfavoring of linker
lengths shorter than ∼15 bps. Second, a single prominent peak
exists at 11–16 bp, and seems to decay exponentially at longer
linker lengths (see exponential fits in Fig. 1). Third, with this
dominant decaying pattern, a periodic pattern of subtle peaks that
are approximately 10 bps apart is combined. This pattern concurs
with past analyses that revealed a preferentially quantized linker
lengths pattern in yeast (Cohanim et al., 2006; Wang et al.,
2008). The above linker lengths distributions derived from yeast
cell populations are approximations of the unknown true linker
lengths distribution in yeast. We assume that the above three
features that appear in the approximate distributions reflect features
of the true one. This suggests that biologically relevant NCFs
will also include them. We therefore selected simple functions
that represent at least one of the above three features, and are
defined by a small number (between 2 and 5) of parameters.
These functions are: an exponentially decaying function (Exp, two
parameters), a right-shifted exponentially decaying function (S-Exp,

i350



[10:06 15/5/2009 Bioinformatics-btp216.tex] Page: i351 i348–i355

Modeling interactions between adjacent nucleosomes

Fig. 2. Nucleosome cooperativity functions and their linker length distributions. The figure is organized in a table-like fashion, with columns per NCF and
rows per graph type. In the first row (in blue) are the NCFs, along with their formulas (after parameters were assigned). In the second row (in red) are the
sampled linker lengths distributions derived from sampled nucleosome configurations that represent data at single cell resolution. In the third row (in green)
are the sampled linker lengths distributions derived from sampled mono-nucleosome data that represents data at cell population resolution.

three parameters), a right-shifted exponentially decaying sinusoid
(S-ES, five parameters) and a step function (Step, two parameters,
may represent both an Off Step or an On Step). The function formulas
are presented in the Supplementary Data section. All functions
have a parameter assignment for which they are equivalent to
the constant 1 function (No Coop) that represents no nucleosome
cooperating interactions. Examples of the selected functions for
specific parameter assignments are shown in Figure 2.

3.2 Using the model to explore linker length
preferences in yeast

Having selected the types of NCFs to examine, we sought to
compare the in vivo linker length distributions to linker length
distributions that are sampled using our model with each of
the chosen NCF types. For this purpose, we selected particular
parameter assignments for each NCF type (see Supplementary
Data). The resulting NCFs are plotted in Figure 2. For each NCF,
we sampled 5000 nucleosome configurations over a 500 000 bp long
sub-sequence of yeast chromosome 4 using our model with that
NCF (denoted ModelNCF), with the temperature and nucleosome
concentration parameters set to 1. Each sampled configuration
represents sampled nucleosome positioning data in single cell
resolution. Thus, by counting linker lengths appearances in the
5000 sampled configurations we derived the sampled linker lengths
distribution, plotted in Figure 2. Next, we collected all mono-
nucleosome reads out of the sampled configurations, generating the
sampled mono-nucleosome positioning data of the cell population.
Following the same procedure described in Section 3.1 we further
produced the sampled linker lengths distribution derived from cell
population data, also plotted in Figure 2. Examining properties of
the sampled linker lengths distributions, we find a high similarity
between the shape of the NCF functions themselves (Fig. 2, blue

graphs) and their respective sampled single cell linker lengths
distributions (Fig. 2, red graphs). Similarities are also evident
between the shape of the NCFs and their respective sampled
cell population linker lengths distributions (Fig. 2, green graphs).
This supports our approach in Section 3.1 of selecting NCF
types reflecting features that appear in the yeast in vivo cell
population linker lengths distributions. Second, all sampled linker
lengths distributions (Fig. 2, red graphs) show an exponential
decay as linker lengths get longer, even for NCFs that do not
represent such a decay, in particular the No Coop NCF. Thus,
any sampled linker lengths distribution can be decomposed to an
exponentially decaying component that is NCF-independent, and
other components that depend on the particular NCF type. Third, all
sampled cell population linker lengths distributions (Fig. 2, green
graphs), except in the S-ES case, demonstrate a periodic pattern
of subtle peaks. In the S-ES case, a periodic pattern of high peaks
appears, concurring with the 10n (n = 1, 2, …) peak pattern of the
S-ES NCF. The periodic pattern of subtle peaks apparent in all other
cases starts around linker length 5, with a period slightly longer
than 10 bp.

The periodic pattern of subtle peaks observed in the sampled cell
population linker lengths distributions is similar in all NCF cases
except S-ES, and does not depend on the NCF type. Therefore, other
elements that the model accounts for produced this periodic pattern.
Genomic sequences are known to encode periodic signals (Cohanim
et al., 2005, 2006; Widom, 1996) that follow a ∼10-bp periodic
pattern. One possibility is that the periodic pattern of subtle peaks is
mainly a result of these periodic signals. Alternatively, these peaks
may result from the nucleosome sequence preferences, since aligned
nucleosome sequences exhibit a ∼10bp periodic dinucleotide pattern
(Ioshikhes et al., 1996; Satchwell et al., 1986; Segal et al., 2006),
and since the model we use (the Nuc model, see Section 2.1) includes
these periodic dinucleotide preferences.
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Fig. 3. A comparison of sampled linker lengths distributions derived from
cell population data that was sampled by one of two models: a model that
recognizes nucleosome periodic sequence preferences (using the Nuc model,
in green) and a model that does not (using the NucU model, in orange).
The comparison was performed for four different NCFs. For each NCF, the
distribution was similar in both cases, but the preference for quantized linker
lengths was abolished when periodic nucleosome sequence preferences were
removed. This demonstrates that preferentially quantized linker lengths
distributions are mainly the result of the periodic sequence preferences of
the nucleosome itself.

If the latter possibility is true, then using a non-uniform and
non-periodic model of nucleosome sequence preferences would
not produce a periodic pattern of subtle peaks. To examine this,
we created an alternative model of the nucleosome sequence
preferences, denoted NucU , which replaces the Nuc model (see
Section 2.1), with a model in which the periodic dinucleotide
preferences are removed (see Supplementary Methods). We repeated
the above process of generating sampled linker lengths distributions
from cell population data for several of the above NCFs using
the NucU model, and compared them with the ones generated
using the Nuc model. The results of this comparison appear
in Figure 3, where for each NCF we present both sampled
cell population linker lengths distributions, with the original
Nuc model (in green), and with the NucU model (in orange).
Notably, whereas the general theme of the distribution is similar
for both cases, the periodic pattern of subtle peaks is abolished
as a result of the removal of the periodic component of the
nucleosome sequence preferences model. This demonstrates that
the periodic subtle peaks pattern is mainly a result of the
periodicity of the nucleosome sequence preferences. This suggests
that the previously reported preferentially quantized linker lengths
distribution (Cohanim et al., 2006; Wang et al., 2008) results mainly
from the periodic sequence preferences of the nucleosome itself,
rather than from periodicity of certain signals encoded in genomic
sequences.

3.3 Learning nucleosome cooperativity functions from
synthetic data

Before trying to learn NCFs from real nucleosome positioning data,
we sought to test our ability to learn NCFs from the controlled
setting of synthetic data. For each of the six NCFs presented

in Figure 2 we used the sampled mono-nucleosome reads cell
population data described in Section 3.2 as six synthetic data
sets. Due to experimental limitations of the nucleosome mapping
experiments, in the real yeast data that we use, each nucleosome
read is mapped to the genome with an estimated inaccuracy of up to
20 bp shifts from its true location. To reflect that in the synthetic
setting, we randomly shifted the location of each sampled read
by a number of Pnoise bp, sampled from a Normal distribution of
mean 0 and SD Stdnoise (we varied Stdnoise between 0, 10, 20,
50 and 100). After adding noise to the sets, we counted for each
position on the sequence the number of sampled reads that cover it.
The vector of counts per position was normalized to have mean 0
and SD 1, resulting in the normalized nucleosome occupancy data
required for learning NCF parameters (the Ô vector, see Section
2.2). For each of the 30 synthetic sets (five noise levels for each
of the six NCFs that we use), we partitioned the data into training
data and test data, in a 5-fold cross validation (CV) manner. For
each of the five CV groups, we tried to learn parameters for the
Exp, S-Exp, S-ES, Step and No Coop NCFs that minimize the L2-
distance between the normalized training data and the normalized
model predictions (see Section 2.2).Along with the NCF parameters,
we learned the model’s temperature and nucleosome concentration
parameters. For the No Coop NCF we learned only the last two.
In all cases, a small number of parameters were learned (between
2 and 7). In the Supplementary Methods we address the issue of
choosing an initial parameters assignment. Let P̂L be the normalized
nucleosome average occupancy predicted by the model with a
learned NCF L over the sequence positions that correspond to the
normalized test data Ô. We use the R2 statistic as a test of the
learned NCF L:

R2(L)=1− L2(Ô,P̂L)

|Ô|2 =
∑
i

(Ô(i))−P̂L(i))
2

|Ô|2 .

This measure quantifies the fraction of the variance in the test data
that the model learned from the training data explains. The same
score can be applied on the training data itself to produce a training
score.

The results over the different synthetic sets appear in Figure 4.
In all cases, when no noise is introduced, we are able to reconstruct
the original model (when learning parameters of an NCF of the
same type that was used to sample the data) with high accuracy.
One exception is in the S-Exp* synthetic case, where we do
not reconstruct the exact “shift” of the function. At high noise
levels (Stdnoise 50 and 100), using the original model yields worse
results than other models with learned NCFs, showing that the
task of learning the ‘true’ NCF parameters is hard. However, at
noise levels that correspond to the estimated noise in the real
yeast data that we use (when Stdnoise is up to 20, see above)
we are still able to learn models that fit the data well. In the
S-Exp* and S-ES* synthetic cases, as more noise is introduced,
learning the parameters that determine the ‘shift’ (of S-Exp and
S-ES) and the ‘preferred quantized lengths’ (of S-ES) becomes
harder, and the Exp and Step functions yield better results. This
shows that if an Exp or a Step function scores slightly better
than an S-Exp or an S-ES function on real noisy data, we cannot
rule out the possibility that the ‘true’ function is one of the latter
two. Taken together, we conclude that we are able to learn NCFs
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Fig. 4. A summary of results of learning NCFs from synthetic datasets. Synthetic sets were sampled over a 500 000-bp-long sub-sequence of yeast chromosome
4, using the model with each of the NCFs: Exp*, S-Exp*, S-ES*, Off Step*, On Step* and No Coop* (shown in Fig. 2). To each sampled set different levels
of noise (different SDs for Gaussian perturbations of sampled nucleosome locations, denoted Stdnoise) were introduced. On each resulting synthetic set,
parameters of five types of NCFs were learned (Exp, S-Exp, S-ES, Step and No Coop), together with the model’s temperature and nucleosome concentration
parameters, in a 5-fold cross validation manner. The results are organized in a table-like fashion, with rows per synthetic data type and columns per noise
level introduced into the synthetic set. Each cell shows results attained for each of the learned NCFs, along with results attained for the original NCF (with
original temperature and nucleosome concentration) used for sampling the synthetic data. Results per learned NCF are color coded according to a color legend
appearing in the left part of the respective row. For each learned NCF shown are: in the bar plot, the cross validation mean (bar) and SD (blue error bar) of the
test R2 statistic (quantifying the fraction of the variance in the test data that is explained by the model with the learned NCF), as well as the cross validation
mean and SD of the train R2 statistic (light green error bar). In the graphs plot, shown are the cross validation mean and SD (per linker length) of the linker
lengths distribution (over linker lengths 0–50) sampled using the model with the learned NCF.

in a synthetic setting, even when a realistic level of noise is
introduced.

3.4 Learning nucleosome cooperativity functions from
yeast in vitro and in vivo data

We now turn to learning NCFs from real data. First, we learned
NCFs from yeast nucleosome mapping data taken from two in vitro

experiment replicates that we previously measured (Kaplan et al.,
2009). Since in vitro there are only purified histones and naked DNA,
NCFs learned from this data can represent only interactions that are
intrinsic to the association of nucleosomes and DNA, and that do not
depend on other factors such as transcription factors and chromatin
remodeleres that are present in living cells. From the in vitro data, we
produced in vitro normalized nucleosome occupancy over the yeast
genome (see Supplementary Methods). We randomly chose a 1M bp
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Fig. 5. (A) Parameters of five NCF types (together with the model’s
temperature and nucleosome concentration parameters) were learned from
yeast in vitro data of nucleosome mapping over a 1M-bp-long sub-sequence
of chromosome 4, in a 5-fold cross validation manner. Results for each NCF
type are color coded according to a color legend that appears at the center
of the figure. For each learned NCF shown are: in the top bar plot, the
cross validation mean (bar) and SD (blue error bar) of the test R2 statistic
(quantifying the fraction of the variance in the test data that is explained by the
model with the learned NCF), as well as the cross validation mean and SD of
the train R2 statistic (light green error bar). In the bottom bar plot, shown is the
cross validation mean (bar) and SD (blue error bar) of the correlation between
the test data and the model predicted average occupancy. In the graphs plot,
shown is the cross validation mean and SD (per linker length) of the linker
lengths distribution (over linker lengths 0–50) sampled using the model with
the learned NCF. (B) Same as in (A), for chromosome 7. (C) Same as in (A),
for chromosome 12. (D–F) Same as in (A–C), respectively, for yeast in vivo
data. (G) Same as A, for in vivo data of C.elegans chromosome I. (H) Same
as (G), for chromosome II. (I) Same as (G), for chromosome III.

long sub-sequence of yeast chromosome 4 and used the normalized
nucleosome occupancy data over it in a 5-fold CV manner, similar
to the synthetic cases in Section 3.3, learning parameters of the
Exp, S-Exp, S-ES, Step and No Coop NCFs. We repeated this
procedure twice more over randomly chosen 1M bp long sub-
sequences of yeast chromosomes 7 and 12. The results are presented

in Figure 5A–C, and are similar for all three chromosomes. We find
that the learned ModelExp and ModelStep models explain ∼74%
of the variance in the test data, significantly better (Wilcoxon
signed-rank test P-values 6 × 10−5 and 3 × 10−4, respectively)
than the learned ModelNoCoop model that explains ∼69.5% of the
variance in the test data. This result demonstrates that modeling
intrinsic interactions between adjacent nucleosomes improves the
accuracy of yeast in vitro nucleosome occupancy predictions.
The learned intrinsic interactions display a preference for short
linkers, evident in the linker lengths distributions sampled by the
ModelExp and ModelStep models. The ModelS−Exp and ModelS−ES
models that were learned were highly similar, and explained ∼66.5%
of the variance in the test data, significantly worse (each with a
Wilcoxon signed-rank test P-value 6 × 10−5) than the ModelNoCoop
model. The reason for this may be that the learned S-Exp and S-ES
NCFs show a very strong disfavoring of linkers longer than 10 bp
that may be too extreme.

Next, we examined whether interactions between adjacent
nucleosomes play a similar role in vivo. We repeated the above
procedure for learning NCFs over the same three sub-sequences of
chromosomes 4, 7 and 12, this time using the yeast in vivo data that
was analyzed in Section 3.1. From this data we produced in vivo
normalized nucleosome occupancy over the yeast genome (see
Supplementary Methods). The results are presented in Figure 5D–F,
and are again similar for all three chromosomes. The learned
ModelExp, ModelStep, ModelS−ES and ModelS−Exp models explain
∼37.5%, ∼37%, ∼34.5% and ∼34% of the variance in the test
data, respectively, all significantly better (Wilcoxon signed-rank test
P-values 6 × 10−5, 6 × 10−5, 10−3 and 10−3, respectively) than the
learned ModelNoCoop model that explained ∼30.5% of the variance
in the test data. Importantly, the linker lengths distributions sampled
using all these models are highly similar to those sampled using the
models that were learned from the in vitro data, with the exception
that in the in vivo case the learned S-Exp and S-ES NCFs show
a weaker disfavoring of linkers longer than 10 bp. Thus, we find
that modeling intrinsic interactions between adjacent nucleosomes
also improves the accuracy of yeast in vivo nucleosome occupancy
predictions.

3.5 Learning nucleosome cooperativity functions from
c.elegans in vivo data

To examine whether the intrinsic interactions between adjacent
nucleosomes that we find in yeast play similar roles in higher
eukaryotes, we applied our approach for learning parameters of
the Exp and No Coop NCFs from in vivo nucleosome positioning
data of C.elegans. We randomly chose 1M bp long sub-sequences
of C.elegans chromosomes I, II and III, and used published
in vivo nucleosome occupancy data over these sub-sequences
(Valouev et al., 2008). The results are presented in Figure 5G–I.
The results are qualitatively similar over the three chromosomes. The
ModelExp model explained ∼13% more of the variance in the test
data than the ModelNoCoop model, and this improvement was

significant (Wilcoxon signed-rank test P-value 6×10−5). Moreover,
the resulting linker length distributions sampled by the two models
are highly similar to those sampled for yeast, with the one sampled
using the learned Exp NCF demonstrating the same preference
for short linkers. This shows that, as in yeast, modeling intrinsic
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interactions between adjacent nucleosomes improves the accuracy
of nucleosome occupancy predictions of C.elegans in vivo.

4 DISCUSSION
We presented a new thermodynamic model for genome-wide
prediction of nucleosome occupancy, extending a model previously
published by our lab (Field et al., 2008; Segal et al., 2006). The
model assigns a statistical weight for each possible configuration
of nucleosomes that are placed along a genomic sequence, such
that no two nucleosomes overlap. The previous model assumed
that the association of a nucleosome to the DNA at one place is
independent of the associations of other nucleosomes elsewhere.
Our new model relaxes this independence assumption by modeling
interactions between adjacent nucleosomes through a nucleosome
cooperativity function (NCF).

Based on an analysis that involves our model we suggest that the
previously reported preference for quantized linker lengths in yeast
(Cohanim et al., 2006; Wang et al., 2008) results mainly from the
periodic sequence preferences of the nucleosome itself.

Our results show that by modeling interactions between adjacent
nucleosomes, such that short linkers (less than 20 bp long) are
preferred, we improve the accuracy of predictions of yeast in
vitro nucleosome occupancy. The in vitro system contains only
nucleosomes and naked yeast genomic DNA. Thus, the modeled
interactions are intrinsic to the association of nucleosomes and DNA
and are independent of other factors such as transcription factors and
chromatin remodelers that affect chromatin organization in living
cells.

Notably, modeling these same interactions also improves the
accuracy of nucleosome occupancy predictions of yeast in vivo.
Moreover, these intrinsic interactions also improve the accuracy of
nucleosome occupancy predictions of C.elegans in vivo, suggesting
that these interactions may be universal across eukaryotes.

It will be interesting to understand the mechanistic basis
for the preferred nucleosome interactions that we find. One
possibility is that such interactions results from direct interaction
between spatially close nucleosomes, which are known to occur
(Chodaparambil et al., 2007; Dorigo et al., 2004; Luger et al.,
1997). The fact that the modeled interactions are accompanied by
a preference for short linkers may hint at that direction. Direct
interaction between two adjacent nucleosomes (that may involve
their histone tails) may also assist with the chromatin fiber folding,
energetically justifying a shift of nucleosomes away from positions
that would have been otherwise favored according to the single
nucleosome sequence preferences.
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