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Non-small cell lung cancer (NSCLC) is the most common type of lung cancer and a
common cause of cancer-related death. Better understanding of the molecular
mechanisms, pathogenesis, and treatment of NSCLC can help improve patient
outcomes. Significant progress has been made in the treatment of NSCLC, and
immunotherapy can prolong patient survival. However, the overall cure and survival
rates are low, especially in patients with advanced metastases. Interleukin-35 (IL-35),
an immunosuppressive factor, is associated with the onset and prognosis of various
cancers. Studies have shown that IL-35 expression is elevated in NSCLC, and it is closely
related to the progression and prognosis of NSCLC. However, there are few studies on
the mechanism of IL-35 in NSCLC. This study discusses the role of IL-35 and its
downstream signaling pathways in the pathogenesis of NSCLC and provides new
insights into its therapeutic potential.
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INTRODUCTION

Lung cancer (LC) is one of the deadliest cancers worldwide. In 2018, a global report suggested high
incidence and mortality associated with LC, and important impact of LC on global health problems
(1). It is classified into small-cell LC (SCLC, approximately 15% cases) and non-small-cell LC
(NSCLC, approximately 85% cases) (2). Its etiology is multifactorial, and pathogenesis is
incompletely understood. Available literature reveals that dysregulated inflammatory responses
Abbreviations: ADC, adenocarcinoma; AKI, acute kidney injury; ALK, anaplastic lymphoma kinase; ARDS, acute respiratory
distress syndrome; CIA, collagen-induced arthritis; CIP, checkpoint inhibitor pneumonitis; COX-2, cyclooxygenase-2; DNP,
diabetic neuropathic pain; EBI3, Epstein-Barr virus (EBV)-induced gene 3; EGFR, Epidermal growth factor receptor; EMT,
epithelial-mesenchymal transition; FLS, fibroblast-like synoviocyte; Foxp3, forkhead box protein 3; gp130, glycoprotein 130;
GATA 3, GATA binding protein 3; HNECs, human nasal epithelial cells; HUVECs, human umbilical vein endothelial cells;
ICAM-1, intercellular adhesion molecule-1; ICI, immune checkpoint inhibition; IFN-g, Interferon-gamma; ILC2, II innate
lymphoid cells; IL-10, interleukin 10; IL-12, interleukin-12; IL-12Rb2, interleukin 12 receptor b2 subunit; IL-35, interleukin-
35; iNOS, Inducible nitric oxide synthase; JAK, Janus-related kinase; JNK, Jun N-terminal kinase; KDM3A, histone lysine
demethylase 3A; LPS, Lipopolysaccharide; MAPK, mitogen-activated protein kinases; MDSCs, myeloid-derived inhibitory
cells; MET, mesenchymal-epithelial transition factor; NK, natural killer T cells; NSCLC, non-small cell lung cancer; PBMCs,
peripheral blood mononuclear cells; PD-1, programmed cell death protein; PD-L1, pIL-35, plasmid-IL-35; programmed cell
death protein ligand 1; rIL-35, recombinant IL-35; rhIL-35, recombinant human IL-35; SCC, squamous cell carcinoma; SLE,
systemic lupus erythematosus; STAT, signal transducer and activator of transcription; Tregs, regulatory T cells; TSLP, thymic
stromal lymphopoietin; Th1, T helper type 1; Th2, T helper type 2; Th17, T helper type 17; TGF-b, tumor necrosis factor beta;
TKI, tyrosine kinase inhibitor; TNF-a, tumor Necrosis Factor alpha; TTF, thyroid transcription factor; VCAM-1, vascular
cellular adhesion molecule-1.
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increase the risk of chronic diseases and cancers, including LC
(3). Anti-inflammatory cytokines play an active role in reducing
tumor growth, metastasis, apoptosis, and angiogenesis (4). Thus,
studies evaluating LC pathogenesis and molecular mechanisms
can provide a basis for identifying new biomarkers and
developing targeted therapies.

LC and anticancer treatment result in airway obstruction and
opportunistic infections, thereby increasing the morbidity and
mortality (5, 6). Additionally, presence of febrile neutropenia in
LC patients receiving myelosuppressive chemotherapy has the
risk of bacterial infections. Thus, early diagnosis and treatment of
these infections is crucial to improve the prognosis (7).

Interleukin 35 (IL-35) is a newly discovered member of the
interleukin family and has been reported to have anti-
inflammatory and immunoregulatory properties (8–10).
Structurally, it is a heterodimer comprising of two subunits,
EBI3 and IL-12p35 (11–14). Additionally, IL-35 receptor
includes two subunits, IL-12Rb2 and glycoprotein 130 (gp130).
IL-35 mediates signaling through signal transducer and activator
of transcription (STAT) 4, STAT1, and STAT4/STAT1 in the
presence of subunits IL-12 Rb2, gp130, and IL-12Rb2/gp130,
respectively (15).

IL-35 is overexpressed in prostate cancer (16), LC (17), gastric
cancer (18), and hepatocellular carcinoma (19), and its
overexpression is directly implicated in tumor progression and
poor prognosis of LC (20), pancreatic cancer (21), hepatocellular
carcinoma (22), breast cancer (23), renal cell carcinoma (24),
laryngeal squamous cell carcinoma (25), osteosarcoma (26), and
colorectal cancer (27). IL-35 levels are positively correlated with
Frontiers in Oncology | www.frontiersin.org 2
tumor stage (tumor size, metastasis to adjacent lymph nodes, and
distant metastases) in pancreatic ductal adenocarcinoma (28),
breast cancer (29, 30), acute myeloid leukemia (31), prostate
cancer (32, 33), and colorectal cancer (27). Additionally, it
promotes tumor growth as well as immune escape, and can be
used as a prognostic indicator (10, 27, 28).

IL-35 limits anti-tumor immunity in the tumor
microenvironment by regulating T cell responses (16, 34, 35). In
breast cancer, it promotes tumor progression by inducing the
conversion of conventional T cells to inducible Tregs (iTr35) (30).
Additionally, it can recruit Treg cells in colorectal cancer (27),
induce the accumulation of CD11b+ Gr1+ myeloid cells in the
tumor microenvironment (36), stimulate angiogenesis, and reduce
the infiltration of activated CD8+ T cells into the tumor (10).
STUDY ON THE MECHANISM OF ACTION
OF IL-35 IN VARIOUS DISEASES

In the tumor microenvironment, the relationship between
inflammation and the immune system is very complex. The role
of IL-35 in vivo (Table 1) and in vitro cellular level (Table 2) with
autoimmune diseases, allergic diseases, and tumors has been
extensively studied. It is an anti-inflammatory factor that
inhibits Th2-type cytokine production in allergic rhinitis and
asthma and reduces eosinophilic airway inflammation (37, 50).
In systemic lupus erythematosus (SLE) (42), inflammatory bowel
disease (45), collagen-induced arthritis (CIA), psoriasis (48),
autoimmune uveitis (39), and other autoimmune diseases, IL-35
TABLE 1 | The role of IL-35 in disease mouse models.

Disease Regent Molecular target Function Reference

Allergic rhinitis IL-35 ↓IL-25, IL-33, TSLP, Eotaxin-1, Eotaxin-2, Eotaxin-3 Suppress Th2, ILC2, and eosinophilic
inflammation

(37)

Sarcoidosis IL-35mAb ↓Breg, ↑Treg Promote loose granulomata (38)
Autoimmune
uveitis

i35-Exosomes ↑Treg Anti-inflammatory (39)

DNP rIL-35 ↓JNK, ↑JAK2, ↑STAT6 Promote microglial M2 polarization, anti-
inflammatory, anti-apoptotic

(40, 41)

SLE IL-35 ↑JAK2, ↑STAT1, ↑STAT4, ↓STAT3, ↓MAPK Anti- inflammatory (42)
CIA IL-35 ↓iNOS, ↓ COX-2, ↓CCR7, ↑ CD206 Induce FLS apoptosis, promote M2

polarization, anti- inflammatory
(43)

ARDS Anti-IL-35 EBI3/anti-
IL-12 p35

↓CD4+/Treg ratio Promote lung damage (44)

Colitis IL-35 ↑IL-10, ↓IL-6, ↓IL-17, TNF-a, ↓macrophages, ↓T cell infiltration, ↑Treg Anti-inflammatory (45)
Sepsis pIL-35 ↑STAT1, ↑ STAT4, ↓ICAM-1, ↓ VCAM-1, ↓ IL-6, ↓ IL-8, ↑IL-10 Anti-inflammatory, antiapoptotic (46)
Acute kidney
injury

pIL-35 ↓NF-kB, ↓TNF-a, ↓IL-1b, ↓IL-6 Anti-inflammatory (47)

Psoriasis pIL-35 ↓pro-inflammatory factors, ↑IL-10, regulate M1/M2 macrophages,
decrease the number of macrophages

Anti-inflammatory (48)

Prostate
cancer

rIL-35 ↑Treg, ↓CD4+ and CD8+ T, promotes proliferation of MDSCs and
promotes angiogenesis

Promote tumor progression (16)

Heart
transplant
model

IL-35-MSCs ↓Th17, ↑CD4+ Foxp3+ T, ↓Th1/Th2 Regulate immune tolerance (49)

Asthma IL-35 ↓Th2, ↓eosinophil counts, ↓formation of inflammatory DC Anti-inflammatory (50)
May 2022 | Volume 12 | Art
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is involved in the development of disease by regulating the
expression of inflammatory factors and immune response. In
sepsis, it exerts anti-apoptotic and inflammatory effects (46). In
sarcoidosis, it is associated with the inflammation of loose nodular
granulomas, as well as increased Breg and decreased Treg in
peripheral blood (38). In acute kidney injury, it exerts anti-
inflammatory effects by decreasing the secretion of pro-
inflammatory factors (47). Contrarily, in acute respiratory
distress syndrome (ARDS), IL-35 appears to be protective, and
lung injury is a result of its neutralization (44).

In liver cancer, IL-35 induces epithelial-mesenchymal
transition (EMT) and mesenchymal-epithelial transition factor
(MET) in macrophages with different polarization states, and
promotes tumor progression (52). In pancreatic cancer, it
promotes cell proliferation and inhibits apoptosis (21). In
prostate cancer, it increases Treg expression, promotes
proliferation of myeloid-derived inhibitory cells (MDSCs),
angiogenesis, and tumor progression and inhibits CD4+ and
CD8+ T lymphocyte levels (16).
IL-35 AND NSCLC

IL-35 expression is increased in the serum and tumor tissue of
NSCLC patients (17) and in bronchoalveolar lavage fluid (BALF)
and serum of NSCLC patients undergoing immunotherapy (54),
demonstrating that this cytokine can serve as a therapeutic target
for NSCLC. The study by Zhang et al. showed that plasma IL-35
levels in NSCLC patients were significantly higher than those in
healthy controls (55). Additionally, the overexpression of IL-35
was significantly correlated with prognostic factors such as T
stage, lymph node metastasis, micro-vessel density, and tumor
differentiation, and total survival time increased in patients with
low expression of IL-35 (55). A recent study by Li et al. showed
that plasma IL-35 in the stage IV NSCLC patients was higher
than that of the healthy group, and its expression levels were
Frontiers in Oncology | www.frontiersin.org 3
higher in the cachexia group than that of the non-cachexia
group. Another study demonstrated that IL-35 was
significantly associated with skeletal muscle atrophy (56). This
was further confirmed in a mouse model that elevated IL-35
levels can induce skeletal muscle atrophy and cachexia (56).
Overall, IL-35 is a key regulator of the development and
prognosis of NSCLC. Additionally, a study involving surgically
managed NSCLC patients demonstrated that compared with
healthy controls, serum IL-35 levels were increased in patients
with lung adenocarcinoma (ADC) and decreased in patients with
lung squamous cell carcinoma (SCC). ADC patients had
increased IL-35-expressing cells in tumor areas compared to
corresponding tumor-free control areas. In SCC patients, there
was also a trend of increased IL-35 in the tumor region, but this
did not reach statistically significant level (17). The CD4 mRNA
in the tumor region of ADC and SCC patients is reported to be
lower than that of the control group and peritumoral region,
respectively (17). It is suggested that IL-35 exerts an
immunosuppressive effect by inhibiting CD4+ T cell-mediated
immune responses, and ADC is more immunosuppressive than
SCC (17). Furthermore, toll-like receptor 4 promotes the
expression of histone lysine demethylase 3A (KDM3A) in lung
ADC cell line, KDM3A interacts with forkhead box protein 3
(Foxp3) and promotes the secretion of immunosuppressive
factors such as IL-35, which promotes immune escape of lung
ADC (57). While IL-35 may not affect the survival and death of
lung cancer cells (17), it may be involved in the pathological
process of the NSCLC by regulating the microenvironment and
immune response. Contrarily, an in vitro study demonstrated
that IL-35 overexpression inhibits cancer growth by promoting
apoptosis and inducing cell cycle arrest (58). The discrepancy in
the results between tumor types may be because IL-35 expression
depends on tumor type, stage, and microenvironment. Further
studies are required to elucidate the underlying mechanism of
IL-35 in NSCLC. This study discusses the molecular role of IL-35
in NSCLC.
TABLE 2 | Functional study of IL-35 at cellular level in vitro.

Stimulus Cell line Regent Molecular targets Effect Reference

Dermatophagoides pteronyssinus,
Aspergillus fumigatus

HNECs IL-35 ↓ IL-25, IL-33, TSLP, eotaxin-1,
eotaxin-2, eotaxin-3

Regulation of Th2, ILC2, and eosinophilic
inflammation

(37)

HDM PBMCs rIL-35 ↑ MEK, ↑ JNK, ↓ IL-17, ↓IL-23 Inhibit Th17 response (51)
LPS,IFN-g,IL-4 Hepatocellular

carcinoma, THP-1
rhIL-35 ↑ N-cadherin, ↑ E-cadherin, ↑STAT3 Promote EMT and MET (52)

– Mesangial cells IL-35 ↑ JAK2, ↑ STAT1, ↑ STAT4, ↓ STAT3,
↓ MAPK, ↓TNF-a, ↓ IL-6, ↓ IL-17A

Anti-inflammatory (42)

TNF-a PBMCs, FLS IL-35 ↓ iNOS, ↓ COX-2, ↓ CCR7, ↑ CD206 Induction FLS apoptosis, promote M2
polarization, anti- inflammatory

(43)

LPS HUVECs rhIL-35 ↑ STAT1, ↑ STAT4, ↓ ICAM-1,
↓ VCAM-1, ↓ IL-6, ↓ IL-8, ↑ IL-10

Anti-inflammatory and antiapoptotic (46)

TNF-a Human bronchial
epithelial cells

IL-35 ↓ MUC5AC, ↓ ICAM-1, ↓ IL-6, ↓IL-8,
↓ MCP-1, ↓ p38MAPK

Anti-inflammatory, inhibit pyroptosis and cell
damage

(53)

– Pancreas cancer cell IL-35 Promote proliferation and inhibit
apoptosis

Promote tumor development (21)
May 2022 | Volume 12 | Art
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Recombinant human IL-35; TSLP, Thymic stromal lymphopoietin; TNF-a, Tumor Necrosis Factor alpha; VCAM-1, Vascular cellular adhesion molecule-1. ↑Increased; ↓Decreased.
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IL-35 AND TREGS IN NSCLC

CD4+ T cells participate in anti-tumor immunity and prevent
immune escape by regulating the immune response. According to
the pattern of cytokine secretion, these cells are classified into
Tregs and T helper types 1 (Th1), 2 (Th2), and 17 (Th17) (59–63).
IL-35 is secreted by Treg cells and inhibits T cell proliferation and
function (8, 11, 35). Tregs promote tumor growth by suppressing
host immune responses and promoting immune escape via the
expression of transforming growth factor b, IL-10, and IL-35 (64–
67). The increase in Tregs promotes tumor recurrence and reduces
survival, thereby worsening prognosis (22, 68, 69). In NSCLC
patients with checkpoint inhibitor pneumonitis (CIP), IL-35
expression increases the number of Treg and Th1 cells and the
Th1/Th2 ratio (54). The number of Treg cells is increased in
NSCLC (70, 71) and is closely linked with clinical stage and
prognosis (72). IL-35 improves the ability of Tregs to induce
immunosuppression and help prevent diseases (8, 73, 74). It
participates in the pathogenesis of colorectal cancer by
increasing Tregs and recruiting these cells to the tumor site (27).
Currently, the complex mechanism of immune escape mediated
by Treg cells is incompletely understood. Thus, further
understanding of the role of IL-35 and Tregs in NSCLC may
provide new insights into NSCLC treatment.
IL-35, TH17, AND TH17/TREG IMBALANCE
IN NSCLC

Some immunological studies in NSCLC have focused on Th1 and
Th2 cells, and related factors (75–78). Th2 cytokines are increased,
while Th1 cytokines are decreased in the peripheral blood of
NSCLC patients compared with healthy controls (75), and the
Th1/Th2 ratio is negatively correlated with LC prognosis (79).

Th17 regulates the expression and secretion of IL-17 and other
cytokines and participates in tumor pathogenesis (80, 81).
Additionally, both Th17 and IL-17 play a fundamental role in
LC immunity (82–84), and have an anti-tumor or pro-tumor effect
depending on the type of cancer (85, 86). The reasons for this
paradox are unclear and require further investigation. IL-17
promotes the growth of NSCLC by inducing tumor cell
proliferation (87), blood vessel formation (88, 89),
lymphangiogenesis (90), and tumor invasiveness. Serum IL-17
levels are increased in NSCLC patients and are an independent
prognostic factor (91). Th17 cells exert anti-tumor effects
indirectly by recruiting CD8+ T cells and other immune cells (92).

Imbalances between Treg and Th17 cells occur in NSCLC.
The number of these cells, and Foxp3 and RORgt expression are
reported to be higher in the peripheral blood of NSCLC patients
than in healthy controls. The number of Th17 cells is inversely
correlated with the number of Tregs (93). The TregFoxp3+/Th17
ratio is valuable for diagnosing NSCLC and increases with
increase in tumor stage (84).

IL-35 promotes tumor immune escape by increasing the
number of IL-35producing iTr35 cells (30, 34, 73, 94). It also
plays an immunosuppressive effect by promoting Treg cell
proliferation and inhibiting Th17 cell differentiation (11, 95).
Frontiers in Oncology | www.frontiersin.org 4
These findings suggest that IL-35 is closely linked to Treg and
Th17 cells in NSCLC; however, the mechanisms underlying this
correlation remain unclear.
IL-35 AND PD-L1/PD-1 IN NSCLC

Therapeutic monoclonal antibodies targeting programmed cell
death protein 1 (PD-1) or programmed cell death protein ligand
1 (PD-L1) can effectively treat NSCLC (96–98). PD-1 is
expressed in B cells, T cells, and natural killer T cells (NK)
(99). The role of PD-1/PD-L1 in CD8+ T cell failure has been
elucidated (100–103). Anti-PD-1 therapy induces the expansion
of specific subsets of exhausted CD8+ T cells that infiltrate the
tumor (104), and inhibits CD8+ T cell-mediated tumor growth
(105). The interaction between PD-1 and PD-L1 reduces the
susceptibility of tumor cells to T cell cytotoxicity (106–108).
The number of IL-35+ Foxp3+ T cells is positively associated with
the number of thyroid transcription factor 1+ PD-L1+ cells in
NSCLC (17). Treg-derived IL-35 induces the expression of PD-1
and other inhibitory molecules, and impairs T cell function in the
tumor environment, thereby leading to tumor growth (35). Thus,
blocking the PD-1/PD-L1 interaction can enhance the anti-
tumor response by reducing the inhibitory activity of Tregs
(109). Additionally, the IL-35 inhibitors can reduce the
expression of PD-1 and other inhibitory cytokines and restore
the anti-tumor immune activity of T cells. IL-35 participates in
immunosuppression, and its expression is increased in PD-L1+

cells in NSCLC patients (17). Th1/Th2 cell and Th17/Treg cell
ratios are unbalanced in NSCLC patients with CIP undergoing
anti-PD-1/PD-L1 immunotherapy, leading to the increased
secretion of IL-17A and IL-35 in BALF and serum (54). Thus,
IL-35 inhibitors and PD-1/PD-L1 combination therapy may
have a synergistic effect on NSCLC (17). Additionally, IL-35
can be used to assess the severity and improvement of CIP in
NSCLC patients during immunotherapy (54). The roles of IL-35
in NSCLC are illustrated in Figure 1.
IL-35, EGFR, AND ALK

EMT is a complex process of phenotypic transition from
epithelial cells to mesenchymal cells, while MET is the reverse
transformation of the above phenotype (110). EMT plays a
critical role in the occurrence, development, and treatment of
resistant NSCLC (111, 112). Inflammatory cytokines promote
the occurrence of EMT and advanced tumor progression. IL-35
has been shown to promote EMT and MET in different
polarization states. In liver cancer, M1 macrophages secrete IL-
35 to promote EMT through STAT3, and IL-35 leads to MET
through M2 macrophage polarization, creating conditions for
liver cancer progression (52). Interestingly, IL-35 secreted by
tumor-associated macrophages can reverse EMT-promoted
metastatic tumor colonization (113).

IL-35 inhibits PD-L1 expression in serum-starved ADC
tumor cells (17). It has been shown to promote or reverse
EMT in specific contexts, and EMT induces elevated PD-L1
May 2022 | Volume 12 | Article 874823
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expression in LC A549 cells (114). PD-1/PD-L1 blockade
immunotherapy may be more effective in lung ADC patients
with EMT phenotype (115). Interestingly, studies have shown
that reversing EMT to a more epithelial phenotype contributes to
increased responsiveness to immune checkpoint inhibitor
therapy (116). Uncovering the complex mechanism of action
of IL-35 on EMT and PD-L1 in NSCLC may help guide the
treatment of LC.

Targeted drug therapy is a promising area for NSCLC, but drug
resistance presents challenges for targeted therapy. EMT is
associated with multiple targeted drug resistance mechanisms.
Epidermal growth factor receptor (EGFR) tyrosine kinase
inhibitor (TKI) is mainly aimed at the target of EGFR mutation
gene in LC, but drug resistance is more common. EMT is a
common mechanism of resistance to EGFR-TKI targeted therapy
in LC (117). Reversal of EMT helps restore sensitivity to EGFR-
TKI therapy in NSCLC patients (118). For anaplastic lymphoma
kinase (ALK) rearranged NSCLC, ALK inhibitors are effective
drugs. EMT is one of the mechanisms of drug resistance in ALK-
TKI treatment of NSCLC patients (119). Additionally, hypoxia
induced EMT resistance to ALK inhibitors with echinoderm
microtubule-associated protein-like 4-ALK rearrangement (120).
IL-35 can promote or reverse EMT in specific tumor
microenvironments. Based on the complexity of the mechanism
of NSCLC, IL-35 may regulate the molecular mechanism of
NSCLC and the effect of targeted therapy drugs through various
mechanisms, which is worth further exploration.
Frontiers in Oncology | www.frontiersin.org 5
ASSOCIATION OF IL-35 WITH BASELINE
INFLAMMATION DURING IMMUNE
CHECKPOINT INHIBITION (ICI) THERAPY
Immunotherapy including ICI against PD-1/PD-L1 is a
promising treatment for LC. Available literature suggests that
baseline systemic inflammatory markers and cytokines prior to
treatment can predict ICI treatment effect and patient prognosis
(121). Higher baseline inflammation is associated with poor
prognosis (122, 123). Pre-treatment high inflammatory state
and high levels of IL-6, and IL-8 cytokines are poor prognostic
indicators of PD-1 inhibitor therapy, and high levels of IFN-g are
markers of good ICI treatment effect and prognosis (121).
Additionally, high baseline levels of C-reactive protein,
erythrocyte sedimentation rate, and procalcitonin during ICI
treatment of NSCLC indicate poor prognosis (124). A series of
adverse events, including CIP, can occur with ICI treatment.
Pretreatment with COPD, high expression of PD-L1, and high
baseline IL-8 levels are reported to be the risk factors for CIP
(125). A study by Wang et al. demonstrated that serum IL-17A
and IL-35 levels are significantly raised at the time of CIP
diagnosis compared with those prior to treatment, and
significantly decreased after clinical recovery. IL-17A and IL-35
were also increased during CIP in BALF. IL-35 was associated
with changes in T lymphocyte subsets during the development of
CIP. Thus, it is suggested that IL-35 may play a key role in the
regulation of T-cell immune responses in CIP (54). However, at
FIGURE 1 | Potential role of IL-35 in non-small cell lung cancer. 1. Foxp3 targets the EBI3 subunit of IL-35 and induces tumor growth and metastasis by activating
the Wnt/b-catenin signaling pathway. 2. IL-35 induces the conversion of conventional T cells to iTr35 through the STAT1/STAT3 pathway. 3. EBI3 promotes tumor
growth through the gp130-STAT3 signaling. 4. Tumor-associated macrophages secrete IL-35 and promote metastatic colonization by regulating epithelial-
mesenchymal transition through the JAK2-STAT6-GATA3 signaling pathway. 5. IL-35 is secreted by Treg cells, and IL-35 produced by cancer cells recruits Treg
cells and induces tumor growth. 6. Imbalances between Treg and Th17 cells. IL-35 plays an immunosuppressive effect by promoting Treg proliferation and inhibiting
Th17 cell differentiation. 7. IL-35 produced by Treg cells induces the expression of PD-1 and other inhibitory cytokines, impairing T cell function in the tumor
environment and promoting tumor growth.
May 2022 | Volume 12 | Article 874823
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present, there are limited studies evaluating the effect of baseline
systemic inflammatory markers combined with cytokine IL-35
on the treatment response and prognosis in NSCLC patients
receiving ICI therapy. Further prospective studies are required to
assess the molecular mechanism and clarify the role of IL-35 in
ICI therapy. Relationship of IL-35 with baseline inflammation
and immune modulation will help identify immunotherapy
response effects and impact on patient outcomes.

The function of IL-35 is enigmatic, and its mechanistic studies
in NSCLC are currently in the initial stage and have not yet
reached the clinical trial stage. IL-35 has the potential to promote
tumor development in NSCLC, and it has a central role in EMT,
tumor resistance, and PD-1/PD-L1. At present, little is known
about the kinetics of IL-35 during NSCLC chemotherapy or ICI
treatment. Turnis et al. blocked anti-IL-35 and anti-PD1 in a
tumor model, but showed no increase in tumor clearance,
suggesting that they may in part be acting on the same pathway
(35). Liao et al. established an extended model to explore the mode
of action of anti-IL-35 therapy in a cancer model, and
demonstrated that continuous injection was more effective than
intermittent injection (10). Anti-IL-35 combined with ICI therapy
provides a good prospect for the treatment of NSCLC.
IL-35 SIGNALING IN NSCLC

IL-35 and Wnt/b-Catenin Signaling in
NSCLC
The Wnt/b-catenin signaling pathway is conserved and closely
related to embryonic development, homeostasis, and cancer
(126), including NSCLC (127–129). The activity of this
pathway depends on the cellular localization of b-catenin
(127). Wnt-1 expression is positively correlated with the
expression of c-Myc, cyclin D1, VEGF-A, MMP-7, and Ki-67
index, and with a poor prognosis of NSCLC (130, 131).

The expression of Foxp3 is upregulated in NSCLC and
induces tumor growth and metastasis by stimulating the Wnt/
b-catenin signaling pathway (132). Foxp3 induces EMT, tumor
metastasis and growth, and reduces overall and recurrence-free
survival, thereby worsening the prognosis (132). IL-35, produced
by Foxp3-expressing Tregs, and the EBI3 subunit of IL-35, is a
downstream target of Foxp3 (8). The serum levels of EBI3 are
increased in LC patients, resulting in poor prognosis (20). Thus,
IL-35 and Wnt/b-catenin may be useful diagnostic biomarkers
for NSCLC. We hypothesize that IL-35 and the Wnt/b-catenin
signaling pathway are closely related to the occurrence and
development of NSCLC. However, additional studies are
necessary to elucidate the underlying mechanisms.

IL-35 and STAT Signaling in NSCLC
The IL-35 subunit EBI3 regulates the differentiation of T and B
cells through the gp130-STAT3 pathway (133). STAT3 is
activated in LC (134). It plays a dual role by inhibiting tumor
cell growth and promoting metastasis in LC patients (135). Its
increased expression promotes tumor progression, invasion, and
Frontiers in Oncology | www.frontiersin.org 6
metastasis (136), leading to poor prognosis (134, 137, 138). In
coronary artery disease, IL-35 improves the function of B cells by
suppressing the expression of IFN-g and TNF by T cells, and the
STAT3 signaling pathway may be involved in the suppression of
T cell-mediated inflammation (139). IL-35 inhibits the
differentiation and maturation of dendritic cells derived from
monocytes via the STAT1/STAT3 and MAPK/NF-KB signaling
pathways (140). In colorectal cancer, the expression of EBI3,
gp130, and pSTAT3 is upregulated, and EBI3 promotes tumor
growth through the gp130-STAT3 signaling pathway (141). In
breast cancer, IL-35 induces the conversion of conventional T
cells to iTr35 via the STAT1/STAT3 pathway (30). In
rheumatoid arthritis, IL-35 inhibits angiogenesis through the
Janus-related kinase (JAK)-STAT1 signaling pathway (142).
However, whether IL-35 promotes angiogenesis in LC and
other cancers is unknown. IL-35 is expressed in the
trophoblasts of pregnant women and maintains maternal-fetal
tolerance, probably via STAT1 and STAT3 (143). IL-35 protects
against cardiac ischemia-reperfusion injury by reducing
cardiomyocyte damage through the gp130-STAT3 signaling
axis (144). These findings suggest that IL-35 and other factors
in the STAT signaling pathway may serve as therapeutic targets
for LC.

Relationship Between IL-35 and JAK2-
STAT6-GATA3 in NSCLC
EMT stimulates the metastasis of a variety of cancers (145, 146),
such as colorectal cancer (147), bladder cancer (148), squamous
cell carcinoma of the head and neck (149), and NSCLC (150,
151). Additionally, tumor-associated macrophages secrete IL-35
and promote metastatic colonization by regulating EMT through
the activation of JAK2-STAT6-GATA3 signaling (113).
However, the role of IL-35 and EMT in NSCLC is
incompletely understood and warrants further research.
CONCLUSION

IL-35 is an immunosuppressive factor strongly implicated in the
development, treatment, and prognosis of cancers, including
NSCLC. Based on the complexity of the mechanism of
NSCLC, IL-35 may regulate the microenvironment and
participate in immune escape and immunosuppression
through various mechanisms, and more research is needed in
the future. Thus, elucidating the role of IL-35 and its downstream
signaling pathways in NSCLC may help guide individualized
treatment and improve patient outcomes.
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