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Abstract

The coupling of electronic medical records (EMR) with genetic data has created the potential for implementing reverse
genetic approaches in humans, whereby the function of a gene is inferred from the shared pattern of morbidity among
homozygotes of a genetic variant. We explored the feasibility of this approach to identify phenotypes associated with low
frequency variants using Vanderbilt’s EMR-based BioVU resource. We analyzed 1,658 low frequency non-synonymous SNPs
(nsSNPs) with a minor allele frequency (MAF),10% collected on 8,546 subjects. For each nsSNP, we identified diagnoses
shared by at least 2 minor allele homozygotes and with an association p,0.05. The diagnoses were reviewed by a clinician
to ascertain whether they may share a common mechanistic basis. While a number of biologically compelling clinical
patterns of association were observed, the frequency of these associations was identical to that observed using genotype-
permuted data sets, indicating that the associations were likely due to chance. To refine our analysis associations, we then
restricted the analysis to 711 nsSNPs in genes with phenotypes in the On-line Mendelian Inheritance in Man (OMIM) or
knock-out mouse phenotype databases. An initial comparison of the EMR diagnoses to the known in vivo functions of the
gene identified 25 candidate nsSNPs, 19 of which had significant genotype-phenotype associations when tested using
matched controls. Twleve of the 19 nsSNPs associations were confirmed by a detailed record review. Four of 12 nsSNP-
phenotype associations were successfully replicated in an independent data set: thrombosis (F5,rs6031), seizures/
convulsions (GPR98,rs13157270), macular degeneration (CNGB3,rs3735972), and GI bleeding (HGFAC,rs16844401). These
analyses demonstrate the feasibility and challenges of using reverse genetics approaches to identify novel gene-phenotype
associations in human subjects using low frequency variants. As increasing amounts of rare variant data are generated from
modern genotyping and sequence platforms, model organism data may be an important tool to enable discovery.
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Introduction

Electronic medical record (EMR) systems store an increasing

amount of clinical, laboratory and biometric data generated by

health care systems. These data offer opportunities to explore risk

factors for diseases, the inter-relationships among disease entities,

and determinants of treatment response in large populations of

individuals [1]. EMR data integrated with DNA repositories can

also be utilized to identify genetic contributions to human disease

risk and treatment response [2–7]. The spectrum of disease entities

collected in EMRs has also enabled large-scale bioinformatics

approaches such as Phenome-Wide Association Study (PheWAS),

which searches in a disease-agnostic fashion for associations

between common polymorphisms and hundreds of clinical

diseases, identified using billing codes [8,9]. The success of

PheWAS approaches for common variants suggests that similar

EMR-based approaches may identify associations with low

frequency or rare variants [4,10,11].

Experimental model systems such as mouse models have been

successful in assigning functionality to genes through the use of

reverse genetics approaches, which identify phenotypes associated

with a known genetic lesion [12,13]. Structured data derived from

mouse studies are increasingly available through large coordinated

efforts such as the Knock-out Mouse Project (KOMP) [14] and the

Mouse Phenome Database [15]. These data sources provide a rich

resource for generating biologically-relevant clinical hypotheses

based on observations of model organisms that can now be tested

in a real life setting using large EMRs coupled with DNA

repositories, such as the Vanderbilt BioVU resource [16].

Rare and low frequency single nucleotide polymorphisms

(SNPs) are appealing candidates to explain much of the variation

in human traits that cannot be accounted for by common

polymorphisms [17]. However, associating rare variants to disease

represents a considerable methodological challenge and remains

an area of active research [18,19]. From an epidemiological

standpoint, low frequency variants are of particular interest
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because they can be associated with large effect sizes, enabling

genetic approaches to discovery [20–22].

The coupling of EMR data with rare variant genetic data has

created the potential for implementing reverse genetics approaches

in humans, whereby the function of a gene is inferred from the

shared pattern of morbidity among homozygotes of a genetic

variant [23]. We explored the feasibility of this idea using 1,658

low frequency non-synonymous SNP (nsSNP) variants and clinical

phenotypes derived from Vanderbilt’s EMR-based BioVU re-

source [16]. We found that, taken alone, phenotype association

data did not yield associations statistically different from chance.

To identify biologically-relevant genetic associations, we analyzed

711 nsSNPs in genes with in vivo functional genetic data reported

in the OMIM (On-line Mendelian Inheritance in Man) or the

knock-out mouse phenotype databases, both of which catalog a

partial spectrum of disease associated with loss-of-function

mutations. This approach yielded 12 candidate genotype-pheno-

type associations, four of which we replicated in an independent

data set. This approach suggests a potential for important biologic

association discovery as platforms genotyping hundreds of

thousands of rare nsSNPs are deployed across EMRs.

Materials and Methods

Ethics Statement
All data for these analyses was extracted from the Vanderbilt

DNA Databank, BioVU, which accrues DNA samples extracted

from leftover blood remaining from routine clinical testing. This

resource has been approved as non-human subjects research by

Vanderbilt’s local Institutional Review Board and the federal

Office of Human Research Protections (OHRP), and has been

described in detail previously [16,24]. Briefly, BioVU is linked to a

de-identified Electronic Medical Record (EMR) system in which

all personal identifiers have been removed, and subjects may elect

to be removed from BioVU at any time. This study was also

reviewed by the Vanderbilt Institutional Review Board and

determined to be non-human subjects research.

Study population
A total of 8,546 subjects who had previously been genotyped at

Vanderbilt University Medical Center (VUMC) were used in the

analysis. The subjects belonged to three cohorts identified from

BioVU, a de-identified collection of DNA samples extracted from

discarded blood and linked to de-identified EMRs [16]. Two

cohorts were assembled as part of the Vanderbilt Genome

Electronic medical Records (VGER) project within the electronic

Medical Records and genomics (eMERGE) network [2]. The first

VGER cohort (VGER-660) was comprised predominantly of

EMR-defined white European ancestry subjects (N = 3,174), and

the second (VGER-1M) was comprised predominantly of EMR-

defined black African American subjects (n = 1,558). These

cohorts were selected for genotyping using phenotype selection

algorithms that identified individuals with normal cardiac

conduction or type 2 diabetes (and their controls) [5,25]. Subjects

in the third cohort were selected from BioVU by an ongoing study

(Vanderbilt Electronic Systems for Pharmacogenomic Assessment;

VESPA) examining the genomics of drug response [26] (n = 3,940;

Table S1). The largest VESPA studies are examining antibiotic

responsiveness (n = 2,476 subjects) and transplant patients (n = 921

subjects). Race assignment was determined using STRUCTURE

[27]: European ancestry (EA) was defined as subjects with a .90%

probability of being in the CEU cluster, and African ancestry (AA)

was defined as subjects with a .90% of being in the YRI cluster,

using HapMap populations as references.

SNP selection
Genotype data were acquired on one of three genotyping

platforms: the Illumina Human660W-Quadv1_A genotyping

platform (VGER-660), the Illumina Human1M-Duo (VGER-

1M), or the Illumina Omni1_QUAD (VESPA). Each dataset was

separately cleaned using the quality control pipeline developed by

the eMERGE Genomics Working Group [28]. This entailed

identifying gender mismatches, identifying SNPs failing concor-

dance with HapMap, batch effects, and identification of duplicate

and related individuals. After quality control analyses, the data sets

were merged. The merged data set contained genotype informa-

tion on 1,545,817 SNPs present on one or more of the genotyping

platforms.

An overview of the SNP selection process is shown in Figure 1.

Non-synonymous SNPs (nsSNPs) that had a MAF less than 10% in

both EA and AA populations and had more than 10 minor allele

homozygotes were selected for analysis. nsSNPs with less than 10

minor allele homozygotes were excluded to reduce statistical biases

associated with very small sample sizes. A total of 1,658 nsSNPs

met these initial inclusion criteria. The mean MAF was

5.3%6.3.1% (SD) and 4.7%63.2 (SD) for EAs and AAs,

respectively. The median number of subjects with genotype data

available for a given nsSNP was 4,75062,097 (SD). Of the 1,658

nsSNPs initially identified, 440 were located in genes with disease

associations in the OMIM database, 555 were in the KO mouse

data set. In total, 711 nsSNPs were located in 591 genes found in

Figure 1. Overview of the nsSNP selection process. There was no
difference in number of diagnoses significantly associated with the
1,658 nsSNPs when compared to genotype-permuted data. Hence, a
nsSNP selection strategy that compared to diagnoses to those reported
in either OMIM or the KO Mouse data was used. A multi-step selection
and review process identified 12 candidate nsSNPs.
doi:10.1371/journal.pone.0100322.g001
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either the OMIM or the KO mouse data set and 284 nsSNPs were

in both.

Clinical data extraction
Clinical diagnoses, symptoms and problems for each subject

were extracted from the Vanderbilt University Medical Center

(VUMC) Synthetic Derivative, a de-identified image of the

Vanderbilt EMR [16]. Diagnoses were derived from ICD-9 and

physician-maintained problem lists. Problem lists were manually

reviewed to correct misspellings and expand abbreviations and

diagnoses were then mapped to their corresponding ICD-9 code

using text matching. There were 13 instances where a new clinical

code was created (e.g. AV nodal re-entry tachycardia) in order to

capture the diagnosis with specificity (these codes can be found in

Table S2). Cancer diagnoses were not included in these analyses as

the molecular phenotypes described in the Mouse Phenotype

database could not be easily mapped to a specific cancer type.

After extraction and mapping of problem list entries, there were

8,275 unique clinical codes. In this study, we did not use the

predefined list of PheWAS phenotypes but created a new one, as

doing so allowed the most appropriate mapping of diagnoses

experienced in the individuals [8]. De novo creation of aggregations

based on those phenotypes in patients with rare nsSNPs

theoretically enhanced our sensitivity to create potential unfore-

seen aggregations with rare nsSNPs that may not be found in the a

priori PheWAS codes. These were aggregated into 1,609 groups of

related codes (see Table S2 for ICD-9 groupings).

Identifying Candidate Associations
In order to identify genotype-phenotype associations, we

generated a list of all diagnoses present in two or more of the

homozygotes for the minor allele for each nsSNP. Any problem

that appeared on more than 5% of these lists across all nsSNPs was

excluded, as this was typically caused by rarely used diagnosis

codes for which just 1 or 2 cases present among the minor allele

homozygotes would give a strong association p-value. For each

common diagnosis, a two-sided Fisher’s exact test was used to

compare the proportions of affected minor allele homozygotes to

affected common allele homozygotes. The heterozygotes were not

used in the analysis to simplify the analysis and prevent a loss of

power associated with model misclassification if the wrong

association model was chosen (e.g., additive instead of recessive

or dominant). A composite list of all diagnoses with an a priori

Fisher’s exact p-value less than 0.05 was then generated for each

nsSNP.

To estimate the number of significant nsSNP-phenotype

associations expected by chance, permutation testing was

employed. We generated 100 randomized data sets by taking

the 1,658 nsSNPs and permuting the link between the genotypes

and phenotypes (i.e. the genotype values for a nsSNP were

randomly redistributed across all patients while keeping their

phenotypes intact). We then compared the number nsSNPs having

diagnoses with a Bonferroni-corrected Fisher’s exact p-value,0.05

using the actual genotype data to the numbers of significant

diagnoses associated with each of 100 randomized data sets. We

also compared the average number of diagnoses associated with an

nsSNP with a p,0.05.

Based on the permutation analyses, we found that real and

randomized genetic data could not be distinguished on the basis of

statistical outliers. Hence, we restricted all subsequent analyses to

the 711 nsSNPs in the OMIM or the KO mouse data sets. These

711 nsSNPs first underwent a human review comparing the

phenotypes from the KO mouse and OMIM databases to the

composite diagnosis list from the minor allele homozygotes.

nsSNPs that were associated with diseases arising from a

pathophysiological mechanism and organ system distribution that

was comparable to the known function of the gene were selected

for further review. nsSNPs were also included if the disease

mechanism in the homozygotes appeared to be opposite of that

described, as this could occur if an nsSNP was associated with a

gain-of-function mutation. For 686 of the 711 nsSNPs, the

candidate associations were deemed inconsistent with the KO

mouse and OMIM databases. In all, 25 nsSNPs were selected for

further evaluation.

Association testing using matched controls and EMR
validation

To more rigorously test each of the 25 nsSNPs identified above,

we developed a clinical phenotype definition using composites of

diagnosis codes that best approximated the phenotype descriptions

in the OMIM and KO mouse databases (Table S3). For example,

the PTAFR gene is associated with infection susceptibility including

streptococcal infections [29,30]. Hence, phenotypes comprised of

ICD-9 codes for streptococcal-associated diseases including

respiratory infections, streptococcal infections, sepsis, sinusitis

and meningitis were defined. A significant association with at

least one of these phenotypes was required in order for the nsSNP

to be considered to be associated with the phenotype. In instances

where numerous possible clinical presentations were possible

based the phenotype description of the KO mouse, the phenotype

was defined to incorporate the diagnoses observed during the

initial nsSNP review. For example, CLEC1B was associated with

abnormal blood vessel morphology in mice. The initial case review

identified elevated rates of intracranial hemorrhage among the

minor allele homozygotes for an nsSNP in this gene. Hence, this

phenotype was specifically evaluated.

Univariate exact logistic regression comparing minor allele

homozygotes to common allele homozygotes was used to test

associations. The common allele homozygotes were a random

sample individually matched to the minor allele homozygotes on

age strata (0-4 years, 5-19 years, 20–44 years, 45–60 years and 60+
years) gender, race and data set. Binomial power calculations

assuming P(disease in cases) = 30%, P(disease in controls) = 10%,

number of cases = 25, alpha = 0.05 and beta = 0.80 showed that

800 controls were needed per nsSNP. Depending upon the

availability of matched controls, between 800 and 1,800 matched

controls were selected per nsSNP. All nsSNPs that failed to show a

statistical association (defined as a p-value less than 0.05) with at

least one phenotype were not considered for further review. Of the

25 nsSNPs, 19 had significant associations.

After statistical testing, the electronic records of the minor allele

homozygotes for the 19 nsSNPs were reviewed by a clinician to

confirm that their clinical records supported their diagnoses

inferred from the ICD-9 codes and problem lists. This review was

used to ascertain whether any conditions comprising one of the

phenotype definitions may have been previously ruled out or may

have a known etiology that would preclude an underlying genetic

explanation. For instance, an ICD-9 code for joint pain in a

patient for which a clinical record review indicated that the patient

had an ankle fracture would not be considered a possible

manifestation of gout. If clinical record review indicated that the

ICD-9 codes did not support a diagnosis related to the function of

the nsSNP, the nsSNP was excluded from further analysis,

resulting in exclusion of 7 of the 19 SNPs.

Replication analyses
Of the 12 candidate nsSNPs, 10 were available in an EMR-

derived replication cohort that underwent genotyping using the
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Illumina Infinium Exome BeadChip. The replication set con-

tained 19,599 EAs and 1,993 AAs over the ages of 30 years old

who were genotyped as part of broad-based genotyping initiative

at Vanderbilt. Quality control procedures for the Exome chip data

have been previously described [31]. In brief, quality control was

performed by VANGARD (Vanderbilt Technologies for Ad-

vanced Genomics Analysis and Research Design) and samples

were analyzed in conjunction with over 32,000 other BeadChip

samples. After clustering, samples were then evaluated for

heterozygous consistency rate between duplicated samples and

HAPMAP samples, gender mismatches, Mendelian errors, dupli-

cate identification and exclusion of subjects more closely related

than half-siblings. Data were filtered for a sample and genotype

call rate.99% and deviation for Hardy Weinberg equilibrium

(p.0.001). Phenotype data was based strictly on ICD-9 codes with

cases defined as subjects with 1 or more codes and controls defined

as those subjects with no related codes. Only those phenotypes

with an association p-value,0.05 in the original analyses and with

.50 cases in the replication set were evaluated. EAs and AAs were

analyzed separately using an additive multivariable genetic model

adjusting for age, gender and 3 principal components. A

replication p-value,0.05 was considered statistically significant.

Data analysis and external data sources
All quality control analyses of nsSNP genotyping data were

performed using PLINK v1.07 [32]. Principal components were fit

using EIGENSTRAT [33]. All post quality-control statistical

analyses were performed using SAS v9.3 (SAS Institute, Cary,

NC). Gene-disease associations were downloaded from OMIM

(http://omim.org/). Phenotype information for knock-out (KO)

mouse models was downloaded from the mouse genome

informatics resource (http://www.informatics.jax.org). These data

sources were current as of 6/24/2012.

Results

Permutation analyses
8,546 subjects who had previously undergone SNP genotyping

were used in this study (Table 1). Approximately 70% of the study

population was EAs. The mean age of their most recent clinical

encounter was 52 years and an average of 7 years of clinical data

was available for each subject. Two approaches to identifying

candidate genotype-phenotype associations were used, as outlined

in Figure 1. For the first approach, a preliminary review of

phenotypes that were associated with the minor allele homozy-

gotes for the 1,658 low MAF nsSNPs identified a number of

compelling patterns of disease associations. For instance, the

associations between the nsSNP (rs33947968) in the Myo3A gene

encompassed a clinical disease spectrum that would suggest that

this nsSNP contributes to cardiopulmonary disease (Table S4).

However, similarly compelling phenotypic patterns were seen in

reviews of associations derived from genotype-randomized data,

suggesting that these associations were likely due to chance.

Consistent with this notion, the number of the 1,658 nsSNPs with

clinical associations with a Bonferroni-adjusted p,0.05 was

similar between the real (n = 188 nsSNPs) and 100 genotype-

randomized data sets (median n = 194, inter-quartile range = 184-

204), as was the average number of diagnoses associated with a

nsSNP with an unadjusted p,0.05 (n = 19.2 for real data vs. a

median of 20.0 [IQR 19.8–20.1] for permuted sets). In addition, a

role for Myo3A in cardiopulmonary disease is not consistent with its

known biology, as expression of this gene is restricted to the ear

and known mutations cause deafness [34]. Based on these results,

we concluded that a completely agnostic approach to candidate

nsSNP identification would result in a very high likelihood of

biologically-implausible, false positive associations.

SNP-phenotype associations using KO mouse and OMIM
data

In order to identify biologically-plausible gene-phenotype

associations, we restricted subsequent analyses to 711 of the

1,658 nsSNPs located in genes with functions described in the

OMIM or KO mouse data sets. Of these 711 nsSNPs, the minor

allele homozygotes for 25 had diagnosis codes (with an association

p,0.05) consistent with the known function of the gene containing

the SNP. Six of these nsSNP-phenotype clusters were excluded

because the genotypes were not significantly associated (p.0.05)

with disease in analyses using matched controls. The medical

records for each minor allele homozygote for the remaining 19

nsSNPs were reviewed to confirm that their clinical data supported

their coded data. Seven of the 19 nsSNPs were excluded after this

review because the clinical records suggested a disease etiology

that was not consistent with the known physiology of the gene. For

example, while there was a statistically significant increase in chest

pain among homozygotes for an nsSNP in DNAH5, a gene

associated with respiratory ciliary disorders and bronchiectasis, the

chest pain was generally attributed to external/traumatic causes

rather than intrinsic lung disease. (See Table S5 and Table S6 for

details of the 13 nsSNPs excluded in these steps).

Of the twelve nsSNPs that advanced through all steps of the

selection process, the mean MAF was 6.3% and 5.0% in EAs and

AA, respectively, and the mean number of homozygotes for each

nsSNP was 36 (Table 2). Two nsSNPs (ERCC4 and PLCG2) were

predicted to be damaging by PolyPhen-2 [35] analysis and one

encoded a nonsense mutation (TAAR1). The phenotypes for 1 and

5 of the 12 nsSNPs were described only in the OMIM or KO

mouse databases, respectively, and the other 6 were described in

both databases (Table S3). Results of association testing with

matched controls are shown in Table 3 and the problem lists for

these SNPs are shown in Table S7.

Replication analyses
The significant associations for 10 of the 12 nsSNPs were

evaluated using an additive genetic model in an independent data

set. Replicated associations were observed for 4 of the 10 genes

(Table 4): CNGB3 (macular degeneration in EAs, OR = 1.2 [1.0–

1.4], p = 0.03), F5 (stroke in AAs, OR = 1.4 [1.0–1.9], p = 0.04),

GPR98 (convulsions in AAs, OR = 1.9 [1.1–3.3], p = 0.02) and

HGFAC (GI bleeding in EAs, OR = 1.2 [1.0–1.4], p = 0.02). The

association of GI bleeding with HGFAC [36] in humans has not

been described.

Table 1. Population characteristics.

Total Subjects (n) 8645

No. males (%) 4079 (47.2)

No. females (%) 4566 (52.8)

No. European Ancestry (%) 6002 (69.4)

No. African American (%) 1734 (20.1)

No. other races (%) 909 (10.5)

Mean (std) age of last available diagnosis (years) 52 (18)

Mean (std) duration of EMR follow-up (years) 7 (5)

doi:10.1371/journal.pone.0100322.t001
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Discussion

In the present study, we evaluated the feasibility of identifying

gene-phenotype associations using low MAF nsSNPs in conjunc-

tion with data extracted from the VUMC BioVU resource, an

integrated collection of genotype and EMR data. We found that

an agnostic approach based strictly on statistical outliers identified

a number of nsSNPs with clinically interesting patterns of disease

associations, but permutation analyses suggested that these

associations were likely due to chance. To circumvent this

problem, we used in vivo functional genomic data to identify

clinically-relevant candidate gene-phenotype associations. Our

approach incorporated a clinical/biological review process that

identified biologically plausible candidate phenotypes associated

with 12 nsSNPs. Of the 10 candidates nsSNPs evaluated in

replication analyses, 4 nsSNPs had significant associations: CNGB3

(macular degeneration in EAs), F5 (stroke in AAs), GPR98

(convulsions in AAs) and HGFAC (GI bleeding in EAs).

We restricted our analyses to minor allele homozygotes, as these

subjects would be expected to manifest the deleterious effects of a

nsSNP variant if the mode of genetic action is either additive or

recessive [37]. We tested the hypothesis that a review of clinical

codes shared among individuals homozygous for a nsSNP by an

expert clinician would identify clinical disease patterns that would

suggest a common predisposing genetic lesion. When the clinical

review was conducted without a priori knowledge of the function of

the gene, we observed that there were a number of false positive

leads, which were due to the fact that a number of clinical codes

often co-occur within a patient and, thus, can create a

constellation of associations that would suggest that the homozy-

gous carriers had a functional genetic lesion. For instance, patients

with a cardiac valvular disorder may also have a number of

specific and non-specific related cardiac codes such as ‘‘Cardiac

complications’’, ‘‘Heart failure’’ and ‘‘Cardiac dysrhythmias’’.

Hence, these codes may cluster, giving the impression that it is

associated with a heavy burden of cardiac disease. To mitigate

these false positive associations, the clinical review was conducted

with knowledge about the in vivo function of the gene, as reported

in the OMIM or KO mouse data sources. While one strength of

this approach was the identification of candidate nsSNPs with

strong biological plausibility, using the data described in the KO

mouse and OMIM resources presented challenges as many

cataloged mutations cause complete loss-of-function associated

with extreme, multi-organ phenotypes that are not easily

translated into plausible clinical manifestations. Furthermore, in

KO mice, many of the mutations were associated with embryonic

lethality, or the phenotypic characterization was restricted to early

embryonic anomalies [38]. Many phenotypes were also charac-

terized at the molecular or cellular level, which posed similar

translational challenges. The EMR data was also restricted to

binary disease data, which prevented us from analyzing previous-

ly-reported quantitative phenotypes (e.g. LDL levels) known to be

affected by some of these genes. While we observed some instances

where the homozygotes had a set of coded symptoms that might

be expected based on the function of the gene, a further review of

the clinical records demonstrated that these symptoms were

attributable to causes unrelated to the function of the gene.

Overall, these challenges severely limited the utility of this general

approach. Indeed, only four replicable associations were identified

among 711 nsSNPs evaluated, resulting in only a 0.5% success

rate.

The clinical review was also used in an effort to detect genetic

pleiotropy. In particular, we were interested in identifying nsSNP

variants that perturb broad underlying physiological mechanisms.
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Such variants would be expected to distribute their effects across a

broad clinical spectrum, resulting in multiple weak statistical

associations with a number of mechanistically related phenotypes.

Hence, our lists of diagnoses evaluated included those that

occurred at rates modestly higher than would be expected by

chance (i.e. those with p,0.05) in order to increase our sensitivity

for detecting pleiotropy. An example of a pleiotropic nsSNP that

we identified was in the F5 gene which encodes a clotting factor

known to be associated with thrombosis [39,40] and was

associated with modestly elevated rates of spontaneous abortions,

DVTs and strokes. Interestingly, the nsSNP in F5 that we observed

(rs6031) is not the well-characterized F5 Leiden mutation found

among EA subjects. This nsSNP (rs6031) was predominantly

found in AAs, none of which carried the F5 Leiden mutation.

We selected nsSNPs with MAFs below 10% in both EA and AA

subjects. We hypothesized that nsSNPs maintained at low frequencies

across both ancestries were more likely to be located within regions

under negative evolutionary selection pressure and could be

associated with relatively strong genotype/phenotype associations.

Our data, however, are not consistent with this hypothesis, as the

replicable associations that we observed, such as convulsions and an

nsSNP in GPR98, were typically seen within a single racial group.

Our hypothesis would have suggested that the associations would be

persistent across races. Hence, it is more likely that the SNPs had low

frequencies across races due to factors other than selection pressure.

As an alternative approach to SNP selection, we could have selected

SNPs which were predicted to be damaging using predictive software

[41,42], which may have given a higher proportion of significant and

replicable of SNP associations.

Of the four genes that we identified that had replicable

phenotypic associations, three, including F5 described above, have

been previously reported. Variants in CNGB3 have been associated

with achromatoplasia and juvenile macular degeneration [43–45].

GPR98 has been associated with febrile seizures in humans and

knock-out mice develop audiogenic seizures [46–48]. HGFAC

(hepatocyte growth factor activator) encodes a proteolytic enzyme

that cleaves and activates hepatocyte growth factor [49]. Mice

deficient in this gene demonstrate a decreased capacity to repair

injured intestinal epithelium33. We observed that an nsSNP

variant in this gene was associated with a clinical code for GI

bleeding, suggesting that this variant may be impairing endothelial

repair mechanisms.

A benefit of using EMR-derived data for this type of genetic

analysis is that the study population may either carry a high risk

genetic background or have experienced environmental challenges

that allow a phenotype to be expressed. For instance, the HGFAC

knock-out mouse did not have an observable GI endothelial

phenotype until challenged with a caustic agent [36]. Similarly,

patients may seek healthcare at a tertiary care center such as

VUMC because they had the requisite exposures to unmask the

phenotype. Hence, an EMR-based study population may be

enriched in extreme phenotypes.

While EMR data is a rich resource for hypothesis generation

and testing, there are challenges to its use in this type of analysis.

As compared to targeted epidemiological studies or clinical trials,

phenotypes entered into the EMR are often not concisely defined

and the degree and extent of clinical ascertainment are variably

affected by the reason a patient is seeking clinical care. For

instance, a patient whose only records available are those from a

particular clinical specialty may have limited information pertain-

ing to diseases outside of that specialty. The direction of this bias

would tend to underestimate prevalence rates. This bias is

compounded by the fact that not all of the data captured in an

EMR is amenable to extraction using coded data, and others may

require more advanced methods, such as natural language

processing [50], which often require modifications to solve

particular problems. For instance, a record review of the F5

mutation homozygotes revealed that 5 of the 13 (38%) women had

a history of spontaneous abortions. Only 3 of 13 (23%) were

identified using ICD-9 codes and problem lists. It is also difficult to

gauge the clinical severity of a problem strictly from easily-

extractable coded data. This limitation tends to lead to non-

differential misclassification and attenuates statistical associations.

The data sets that we analyzed were not expressly curated for the

phenotypes that were evaluated. Hence, the differential disease

compositions of the data sets could account for our low replication

rates. For instance, there is human and mouse data supporting a

role for PTAFR gene variants and susceptibility to invasive

streptococcal infections [29,30]. While a nsSNP in this gene was

associated with infections consistent with streptococcus in our initial

data evaluation, these associations were not replicated. This could

be due to a different pattern of infections between the data sets.

Alternatively, the initial analysis was based on a comparison of

homozygotes, and thereby did not assume a specific mode of genetic

inheritance. While this association was not replicated using an

additive model, when we used a recessive genetic model, we found

that the PTAFR variant was associated with acute sinusitis infection

and upper respiratory infections (data not shown), suggesting that it

may be acting through a recessive mode of action.

A final limitation of this study was the relatively small sample

size of the study population, which limited the power to detect

associations, especially when evaluating low frequency variants.

This limitation was likely an important reason as to why a purely

statistical approach to identifying genotype-phenotype associations

did not perform better than chance. Hence, a large sample size

would likely have allowed us to identify a reduced set of genotype-

phenotype associations using only statistical criteria. This has been

the true with pheWAS approach, in general, which has shown

robust phenotype replication and discovery when studies are

adequately powered [9,11].

In summary, we explored an intensive, clinically-oriented

approach to identify biologically-plausible gene-phenotype associ-

ations using an EMR linked to genetic data. As EMR data

resources mature and genotyping data continues to become

increasingly available, approaches such as ours may facilitate the

identification of the specific genetic underpinnings of numerous

clinical conditions. Our analyses also demonstrate the large

potential for identifying compelling, but likely spurious associa-

tions that arise when working with high-dimensional, correlated

phenotypic data sets. Hence, future approaches that integrate

biological data into the discovery process will be critical to identify

valid and clinically meaningful gene-disease associations.
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