
CORRESPONDENCE Open Access

Where next for the reproducibility agenda
in computational biology?
Joanna Lewis1,2*†, Charles E. Breeze3†, Jane Charlesworth4, Oliver J. Maclaren5,6 and Jonathan Cooper7

Abstract

Background: The concept of reproducibility is a foundation of the scientific method. With the arrival of fast and
powerful computers over the last few decades, there has been an explosion of results based on complex computational
analyses and simulations. The reproducibility of these results has been addressed mainly in terms of exact replicability or
numerical equivalence, ignoring the wider issue of the reproducibility of conclusions through equivalent, extended or
alternative methods.

Results: We use case studies from our own research experience to illustrate how concepts of reproducibility might be
applied in computational biology. Several fields have developed ‘minimum information’ checklists to support the full
reporting of computational simulations, analyses and results, and standardised data formats and model description
languages can facilitate the use of multiple systems to address the same research question. We note the importance of
defining the key features of a result to be reproduced, and the expected agreement between original and subsequent
results. Dynamic, updatable tools for publishing methods and results are becoming increasingly common, but sometimes
come at the cost of clear communication. In general, the reproducibility of computational research is improving but
would benefit from additional resources and incentives.

Conclusions: We conclude with a series of linked recommendations for improving reproducibility in computational
biology through communication, policy, education and research practice. More reproducible research will lead to higher
quality conclusions, deeper understanding and more valuable knowledge.

Keywords: Reproducibility, Replicability, Extensibility, Communication, Policy, Education

Background
Reproducibility is a fundamental concept in the philoso-
phy and practice of science. For hundreds of years, care
has been taken over the reliability of experimental
methods and results. As computation becomes inte-
grated with the experimental and statistical sciences,
questions arise about how the classical standards of re-
producibility might also apply to computational science
[1]. What do we mean by terms such as “reproducible”
and “replicable” in this context? Can they be meaning-
fully applied to complex computational tools, as well as

the day-to-day tasks of data analysis? How do we gain
confidence in a computational result, showing it is not a
fluke or a quirk of a particular setup, and how do we
rule out competing explanations? Many of these ques-
tions are as yet unanswered, and it has even been sug-
gested that computational science does not currently
qualify as a branch of the scientific method because it
cannot yet be said to generate reproducible, verifiable
knowledge [2].
The most basic form of reproducibility is replicability:

as Titus Brown neatly expresses it, do “other people get
exactly the same results when doing exactly the same
thing?” [3] This concept transfers naturally from the ex-
perimental sciences, in which even the most basic train-
ing emphasises the need for recording details that will
allow others (or the original researcher) to repeat experi-
ments at a later date. The discussion of reproducibility
in computational research has so far focussed almost ex-
clusively on this aspect.

* Correspondence: joanna.lewis@imperial.ac.uk
†Equal contributors
1Centre for Maths and Physics in the Life Sciences and Experimental Biology,
University College London, Physics Building, Gower Place, London WC1E 6BT,
UK
2NIHR Health Protection Research Unit in Modelling Methodology,
Department of Infectious Disease Epidemiology, Imperial College London, St
Mary’s Campus, Norfolk Place, London W2 1PG, UK
Full list of author information is available at the end of the article

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Lewis et al. BMC Systems Biology (2016) 10:52
DOI 10.1186/s12918-016-0288-x

http://crossmark.crossref.org/dialog/?doi=10.1186/s12918-016-0288-x&domain=pdf
mailto:joanna.lewis@imperial.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

However, replicability should be only the very mini-
mum standard. The next stage is true reproducibility [4]:
does “something similar happen in other people’s
hands?” [3] This is a more difficult demand to meet, not
least because it is less well defined. The question of what
we mean by “something similar” is very seldom dis-
cussed, let alone reported in research papers. But true
reproducibility makes a stronger and more important
statement than replicability alone: not only the method,
but the phenomenon itself can be reproduced. This is, in
fact, closer to what is meant by reproducibility in the ex-
perimental sciences, and usually a more relevant point
to make. Another aspect of this reproducibility is the
ruling out of competing explanations for a result. Experi-
mental scientists might confirm the validity of a conclu-
sion by designing a different experiment which tests the
same hypothesis by a different route [5]. In the same
way, computational researchers can improve confidence
in a result by trying to reach the same conclusion in a
different way.
Finally, the underlying aim of reproducing a result is

very often to build on the work, rather than just to
confirm it. In designing software for reproducible re-
sults, then, it also makes sense for researchers to take
into account the extensibility of their computational
method [6].
To gain insights into these three aspects: replicability,

reproducibility and extensibility, we consider three case
studies drawn from our experience across computational
biology: one in software tools for bioinformatics and two
in data analysis, simulation and inference studies. By
examining the three aspects in each case study, we aim
to identify common features of the evolving “reproduci-
bility agenda” that are typically covered neither in purely
experimental discussions, nor by studies strictly
concerned with software best practice. Although other
properties of good software – availability, usability,
functionality, etc. – are clearly important, we focus on
these three aspects which we propose as a composite
definition of reproducibility. Well-designed software can
facilitate the three aspects of reproducibility through its
good design properties [7, 8]. We conclude by making
some recommendations for the community –
researchers, peer reviewers, scientific publishers and
funders – to allow computational researchers to go
beyond replicability to true reproducibility, improving
the quality, confidence and value of our work.

Results
Software tools for bioinformatics
Bioinformatics is one important area in which complex
computational analyses are applied to biological data.
We first discuss how our three aspects of reproducibility

apply generally in this field, before considering a specific
case study.

Replicability in bioinformatics
A number of problems can stand in the way of replicat-
ing bioinformatics analyses from publications. First,
obtaining raw data is often difficult. In theory, public da-
tabases should aid replicability and data sharing, but in
practice missing metadata often renders this impossible
because of the lack of standards for documenting com-
putational analyses [9]. Bioinformatics pipelines for typ-
ical sequence-based analysis may include many tools and
preprocessing steps which are often unpublished or
poorly documented – for example simply stating that
data was “analysed using in-house Perl scripts” [10].
Encouragingly, “minimum information” checklists are
being developed, and brought together under the um-
brella of the Minimum Information for Biological and
Biomedical Investigations (MIBBI) project [11], to help
researchers ensure they provide all relevant context for
their data. The wide variety of data formats used in bio-
informatics software can also make replicability hard to
achieve, and standards for data exchange and analysis
such as the PSI-MI specification for proteomics [12, 13]
and the BioPAX language for pathway data [14, 15] have
been developed to improve this.
Some bioinformatics tools – for example, the Bowtie

aligner [16, 17] – have elements of stochasticity to their
method, or may implement statistical tests differently
“under the hood” in ways that are not immediately ap-
parent, especially if they are part of a pipeline encoded
in a software package. Making clear what tools, options
and parameter combinations were used at each step of
an analysis aids replication by controlling for these soft-
ware variables, and minimum information checklists
may also be helpful here.
Titus Brown offers comprehensive guidelines to writ-

ing a replicable bioinformatics paper [3], including
publishing the version-controlled code and data neces-
sary to re-run an analysis and generate figures. The
Workflow4Ever project [18] offers another approach to
the same aim, and best-practice criteria have also been
proposed for computational scientists more broadly [19].
It is worth noting, however, that Brown is an experi-
enced bioinformatician with a self-reported 25 years of
coding experience. His suggestions are good aspirational
targets, but good software practice requires an initial
investment of learning time. A more manageable aspir-
ation, simply copying figures/results and the code used
to generate them into a single document, could be an
excellent start towards replicable research. As a project
progresses and a researcher’s coding practice improves,
improved documentation and “added value” can be built
up steadily and naturally.

Lewis et al. BMC Systems Biology (2016) 10:52 Page 2 of 10

Ensuring replicability can have very real benefits for
the progress of science. As an example, a surprising,
high-profile result in gene regulation [20, 21] was re-
cently challenged by reanalysis of gene expression data
[22]. This would not have been possible without excel-
lent reporting, including complete data and full descrip-
tion of the original analysis.

Reproducibility in bioinformatics
Repeating analyses with sufficient data to get an under-
standing of any variability or bias inherent in an analysis
system is important for true reproducibility. For ex-
ample, sampling biases may influence genetic association
studies, so significant associations must be validated in
populations that are different from the one originally
sampled before they can be deemed to have been repro-
duced [23]. In these studies it is also worth noting that
reproducibility is more useful than replication because
replication of results is both difficult and not necessarily
an indication that a result is to be believed [24]. More
generally, benchmarking different tools on simulated
data, where you know the answer you expect to get,
would be one way to demonstrate that a tool performs
reproducibly alongside existing methods. This is not cur-
rently common practice in bioinformatics, although it is
well established in other areas including machine learn-
ing [25, 26]. Benchmark datasets, like wet lab experi-
ments, should include both positive and negative
controls.
For reproducibility comparisons between results to be

meaningful, it must be made clear that the same ques-
tion is being asked in both analyses. The Software
Ontology [27] provides a tool for managing this kind of
information by describing software’s inputs, outputs and
processing tasks. Standards for data exchange and ana-
lysis as described above also facilitate the application of
methods to different datasets.

Extensibility in bioinformatics
A number of bioinformatics tools have been developed
collaboratively as one group extended the work of an-
other: for example, the Bioconductor [28] and Galaxy
[29–31] projects, and software based on the Bowtie tool
[16, 17]. The Beast2 tool for phylogenetic analysis specif-
ically emphasises modularity in its implementation, in
order to be extensible by users [32].
Education, networking and support for professional

development are important aspects of ensuring the reuse
and extension of software. In bioinformatics, as sequen-
cing costs drop, and as sequencing is adopted in clinical
settings, more labs are running sequencing experiments.
But senior cell biology investigators often lack bioinfor-
matics expertise, meaning that clear communication is
crucial to allow wet-lab and computational biologists to

communicate and collaborate. This is also essential
when we consider that computational biology is often a
cyclical process, with new analyses suggesting additional
wet-lab experimentation and validation, and further ex-
periments lending themselves to new analyses [33].
Good communication and explanation take precious
time and resources, and central investment in training
could improve mutual understanding in a time- and
cost-efficient way. To this end, the Global Organisation
for Bioinformatics Learning, Education & Training
(GOBLET) provides a portal for sharing training mate-
rials and opportunities [34, 35].

Case Study 1: eFORGE, a software tool for bioinformatics
As an example of a bioinformatics tool, we consider
eFORGE [36] (manuscript submitted), software written
in Perl for extracting functional significance from data
produced in Epigenome-Wide Association Studies
(EWAS).

eFORGE: replicability The first step in eFORGE replic-
ability is installation on the replicator’s system. It is rec-
ommended that software authors test installation on all
the main systems their colleagues will use. Practical in-
stallation advice is essential to replicable research, and
also encourages the dissemination and use of tools.
Problems related to locating third-party dependencies
can often arise during installation, mainly due to differ-
ences in directory structure, and ideally installation
should be robust to differences in directory structure,
but failing this a clear, possibly visual, explanation of the
required structure is important. When complex direc-
tory structures are absolutely necessary, tools such as
Docker [37–39] and Virtual Machines allow for simpler
software installation [40].
Having facilitated the successful installation of a tool,

we face the question of assessing replicability: whether
the software reproduces the same result, given the same
input. For example, replicate runs of eFORGE on the
same data give different results because the program
includes an element of randomness, so even here we do
not expect exact replication of results (except where
random number generators have been seeded identically
for each run). Benchmarks for replicability should be
given, and must take this into account. For example, a
script could be provided that runs benchmarks with
known seeds – checking exact replication – or repeatedly
with random seeds – checking the results have statistical
properties expected.

eFORGE: reproducibility The elements of randomness
inherent in eFORGE mean that even with identical in-
put, we begin to test true reproducibility rather than
exact replicability. At a broader level, eFORGE’s output

Lewis et al. BMC Systems Biology (2016) 10:52 Page 3 of 10

is currently being investigated given a number of differ-
ing but comparable EWAS datasets. A criterion for true
reproducibility could then be that the use of different
datasets leads to similar conclusions. Software devel-
opers might choose to provide centralised records of
these investigations by different researchers, giving more
validity both to the software and to the underlying sci-
ence. Centralised records could also provide a means for
curating independent software checks, comparisons of
results obtained using different software, and conclu-
sions reached through different analyses.

eFORGE: extensibility Extendable software is available,
understandable and well annotated. In order to improve
understandability, the eFORGE developers provide a
webpage in addition to a traditional paper. There they
explain both scientific and technical aspects of the soft-
ware, as well as including eFORGE as a platform-
independent web tool [36]. For local installations, the
eFORGE code is publicly available in an online reposi-
tory [41], and the database it requires can be down-
loaded from the eFORGE webpage [36].
The code annotation consists of a comprehensive “Perl

Pod” – the official manual included at the beginning of
the code. eFORGE also has many lines of intra-code anno-
tation that complement, but do not replace, the original
manual. This intra-code annotation aids understanding of
the whole code and each function separately and, import-
antly, also encourages extension.
These features of the eFORGE software are provided

in an attempt to enable the generation of similar tools
for other scenarios, reducing the time and cost of apply-
ing the analysis to other datasets and promoting the re-
use and exchange of the software.

Reproducibility in data analysis, simulation and inference
studies
Another major activity in computational biology is simulat-
ing the behaviour of natural systems from mechanistically-
based mathematical and computational models. One
reason for conducting such simulations is to examine their
behaviour under different sets of parameter values, and
perhaps to infer parameter values by comparing results to
experimental data.

Replicability in data analysis, simulation and inference
In simple deterministic studies, replicability is often rela-
tively straightforward to achieve. For example, if a model
consists of a system of ordinary differential equations
(ODEs) the equations, parameter values and initial
conditions should in theory be enough to reproduce the
solution. In practice, however, replication is considerably
easier and faster if the authors also supply details of the
process of simulation (for example, the ODE solvers

used, their versions and parameters). The simplest and
most complete way to do this is to supply the code used
to generate the results in the paper, and hearteningly we
find this is increasingly often the case (e.g. [42].) The
aim here is not primarily to provide readers with the op-
portunity to reproduce results exactly, although this
might be a useful additional benefit. Rather, it helps en-
sure that all the information necessary to produce the
results is available.
Additional tools for ensuring replicability are publication

‘checklists’ for complete reporting of computational studies,
including the Minimum Information Required In Annota-
tion of Models (MIRIAM) [43] and Minimum Information
About a Simulation Experiment (MIASE) [44] guidelines.
The Computational Modelling in Biology Network
(COMBINE) [45] aims to co-ordinate standards and for-
mats for model descriptions, including modelling markup
languages such as the Systems Biology Markup Language
(SBML) [46] and the Simulation Experiment Description
Markup Language (SED-ML) [47]. Very large and/or com-
plicated models may also be unwieldy and opaque when
coded directly, and an important resource are general-
purpose ODE solvers which can translate and solve models
specified using a markup language, allowing modellers and
readers to concentrate on the model rather than its imple-
mentation. For example, the odeSD tool [48] provides a
model conversion framework for SBML models and inte-
grators implemented in the Matlab and C languages.
Like the bioinformatic analyses described above, simu-

lations of biological systems and parameter inference al-
gorithms often involve a stochastic element [49–51] and
this clearly presents a challenge for exact replicability.
Some differences between the original and the repro-
duced results are expected and it is helpful to have an
idea of what the key results are, how to measure agree-
ment between the original and reproduced work, and
how close that agreement is expected to be. This can be
arranged by repeating the simulation or sampling
process multiple times and reporting the variation in the
outcomes: see, for example, Figure 8 of [52]. If the out-
come of interest is a qualitative pattern of behaviour, it
may be appropriate to record the proportion of runs on
which a particular pattern emerged – but of course, this
depends on a clear computational statement of what de-
fines the pattern.

Reproducibility in data analysis, simulation and inference
We considered under the heading of replicability the
quantification of software-related uncertainty. The other
aspect of uncertainty when parameters are to be inferred
is that which is inherent in the data. The theory of infer-
ence and error analysis already provides an established
framework for understanding this distinction between
probability as representing empirical variation versus

Lewis et al. BMC Systems Biology (2016) 10:52 Page 4 of 10

uncertain knowledge [53]. Estimates should always be
reported with an associated uncertainty. If an investiga-
tor reproduces the result using a new dataset, agreement
between the two estimates can be assessed using their
respective uncertainties.
Parameter inference studies often lend themselves to

attempts to reproduce the same conclusion by a differ-
ent method. For example, inference by maximum likeli-
hood could be repeated in a Bayesian framework to
investigate the effect of incorporating prior informa-
tion. By trying to reach the same conclusions in a dif-
ferent way the investigator gains more confidence in
the result – and also a deeper understanding of the sys-
tem and its behaviour.

Extensibility in data analysis, simulation and inference
A clear statement of the key results to be reproduced is
recommended for extensibility as well as reproducibility.
Any extended model should agree with the original in
the limit where the two are equivalent. Stating what is
meant by equivalence is a good discipline for under-
standing the properties of the model, and also a way of
making a model more accessible to others for extension.
Because other researchers may want to reproduce

some elements of a piece of work while changing others,
it can be helpful as in the bioinformatics example above
to write code in a modular way – although the most
useful way to achieve modularity is another area of dis-
cussion [54]. This is good practice in any case and of
course, it does not only make extension easier for others
– it will be easier for the original author as well. The
history and evolution of a project is also important in-
formation for facilitating reuse of code. Version control
systems like git [55, 56] provide a ready-made frame-
work for handling this information and making it avail-
able for the developer, the user and others who might
contribute to the project, especially when combined with
online facilities such as GitHub. Once again, following
standard good practice also improves reproducibility and
extensibility.

Case Study 2: Linking data analysis, mechanistic models
and inference using Jupyter notebooks
Our first example of a tool facilitating reproducibility in
data analysis, simulation and inference studies is the
Jupyter notebook (formerly IPython notebooks [57]).
The notebook is “a web application that allows you to
create and share documents that contain live code, equa-
tions, visualizations and explanatory text” [58]. Note-
books have emerged as an increasingly popular tool for
aiding reproducible research, and are just one example
of a family of integrated analysis and presentation tools
which also includes Mathematica notebooks [59] and
the R tools knitr [60] and Sweave [61]. The Jupyter

project supports over 40 programming languages, but
we concentrate on its use as an interface for IPython
[62], which has been developed with scientific analysis in
mind.

Jupyter notebooks: replicability Jupyter notebooks
provide, in essence, a convenient, shareable, executable
lab book. A number of examples in various languages
can be found online [63]. As a general caricature of their
use, raw data can be received in a simple format and
must initially be cleaned, processed and possibly subject
to some exploratory analysis. A first step to enabling
simple replicability of this processing is to record each
step. In Jupyter notebooks, commands are recorded
completely and may be grouped into convenient, some-
what autonomous blocks so that key steps can be
checked, tested and re-run separately or replicated inde-
pendently. Any important or illuminating checks may be
left in the notebook and exactly duplicated by others by
executing the appropriate cell. Rich-text documentation is
also available using markdown, HTML and/or LaTeX for-
matting commands, which greatly aids communication.

Jupyter notebooks: reproducibility Computational re-
searchers generally aim to go beyond empirical data ana-
lysis to develop mechanistic mathematical models.
Checking and critically reviewing these computational
equivalents of an experimental protocol is an important
aspect of reproducibility because it allows others to
propose changes and alternatives and inspect the differ-
ences in results. The Python language is a good candi-
date for implementing mechanistic models, having a
large and growing number of packages for scientific
computing and thus offering a common environment for
data processing and model implementation. However, it
also has some drawbacks. For example, the notebook
format does not prevent poor coding practice: it is per-
fectly possible to prepare a poorly commented, badly
organised Jupyter notebook. Some tools and packages
may perform badly because of Python’s interpreted na-
ture. This may then require the use of ‘lower level’ pro-
gramming languages, either separately or called within
Python, so that some of the valuable transparency of the
setup is lost.

Jupyter notebooks: extensibility Jupyter notebooks
offer a dynamically updating, error-correcting tool for the
publication of scientific work, facilitating extensibility in a
similar way to online manuscript archives such as the
arXiv [64] and pushes for “post-publication peer review”
and article comment sections [65]. However, single note-
books can become unwieldy for large analyses. To allow
reuse and extension of analysis components, notebooks
can be separated into book-like or hyperlinked formats,

Lewis et al. BMC Systems Biology (2016) 10:52 Page 5 of 10

allowing a higher-level division into chapters while still
maintaining lower-level manipulability and testability at
the cell or single line of code level. Importantly, the
Jupyter project supports several languages, and this cross-
language support is being actively developed.
It is important to note that stacking incremental im-

provements on existing code may be useful only in the
short term. In the long term, an inflexible adherence to
this way of working may prevent progress and limit soft-
ware performance, and a completely different approach
may be called for. In order to aid true extensibility, it is
important to clearly explain the algorithms implemented
in the software. Ultimately, it is the concept that is es-
sential for future implementations, even more than the
code, and both must be made easily available.
We find that, as typically used, Jupyter notebooks are

a useful step towards replicable and reproducible re-
search. They have even been used to help create “execut-
able” papers [66, 67]. On the other hand, the integration
of the development, exploratory and presentation phases
of analysis can be difficult for reasonable-sized problems.
Ironically, the limitations of analysis scripts return – a
single, executable form capturing all phases of the ana-
lysis may be provided, but this may not be as compre-
hensible as a presentation of one of the phases by itself.
Furthermore, reusability and further development by
other users can be compromised by the goals of unified
presentation of results. Finding the proper balance be-
tween these competing demands will be of increasing
importance. A set of minimum information standards or
documented best practices for formatting and sharing
scientific notebooks, in addition to the continuously im-
proving functionality, would be a useful step in this
direction.

Case study 3: the Chaste ‘paper tutorial’ approach
Our final example relates to the Chaste (Cancer, Heart
and Soft Tissue Environment) package for simulations
of biological systems. It is designed as a set of C++
libraries to facilitate building models and running simu-
lations for a range of application areas [68, 69].

Chaste: replicability Due to Chaste’s intended use as a
library of functionality upon which users can build,
considerable effort has been devoted to checking that
the software will run with consistent behaviour on a
range of systems. It is open-source software, and has
been installed by many users on a range of systems,
from personal laptops to high performance clusters, fol-
lowing a range of installation guides. This is still often a
difficult process, and so we are investigating the use of
Docker to make it easier for new users to get started.
This is unlikely to be a feasible route for use on a high-
performance computing resource, however, where third-

party dependencies specific to the hardware are needed
for best performance.
Chaste also comes with an extensive test suite to verify

that the behaviour of individual components and whole
simulations is unchanged across different systems, and
across versions of the software itself and its third-party
dependencies. These tests are regularly run automatic-
ally on a range of setups. It might therefore seem that
replicable behaviour is highly likely. However because
we are working with floating point arithmetic, results
are only ever tested up to a developer-defined tolerance,
so even this is not exact replication. Rather, the toler-
ances provide a specification of how much variation is
expected in particular results. The reliability of these
tests also depends on the care with which the developer
has chosen tolerances – often these are set by ‘feel’ since
a formal expected error cannot be derived. As in previ-
ous examples then, we have a spectrum from replication
to reproduction.

Chaste: reproducibility Automated tests such as those
described above are most commonly adopted to check
the behaviour of low-level code components. In Chaste,
however, the same framework is also exploited for run-
ning the simulation experiments leading to published re-
sults. It is thus (in principle) simple for researchers to
augment their simulations by comparing the results to
those achieved during the initial run. This can provide
useful documentation for subsequent users in terms of
what the key results are, and what is viewed as being
sufficiently similar. A “literate programming” [70] system
that we have termed “paper tutorials” is also provided,
where comments can be added to the source code which
trigger the creation of a rendered version on the Chaste
website. Two papers in particular [71, 72] make use of
both these features, and there are several more [73]
which exhibit varying degrees of documentation and
comparison to reference results. As ever, while having
the technical framework to do this is better than starting
from scratch, a technical solution does not guarantee
that it will be used to full effect to improve the science
done. The hardest part is for the researchers to define
what the key features of their results are, and then im-
plement checks for these in the software.

Chaste: extensibility Chaste combines many of the fea-
tures noted in the other case studies. Provision of the
rendered simulation experiments with full source code
and installation instructions greatly facilitates users in
adapting what has been done to new scenarios. Indeed,
this is often the approach that the developers take them-
selves! Extensive tutorial material, briefer “how-tos” and
in-line documentation help to guide new user/devel-
opers in determining where and how to make changes

Lewis et al. BMC Systems Biology (2016) 10:52 Page 6 of 10

in order to achieve the desired results. Despite this,
some changes remain easier than others, and given the
size and complexity of the software it is challenging to
extend beyond problems similar to those already ad-
dressed, especially for a new user. There are costs to
producing well documented and usable software, and
the balance between focussing on the next publication
using new methods, and implementing those methods in
a way accessible to others, is often not easy to judge.

Discussion
In our attempt to go beyond general discussions of rep-
licability and reproducibility by considering case studies
from our own research experience, we immediately faced
the problem – across different contexts – of defining the
specific features of a result that we aim to reproduce.
Exact numerical equivalence is rarely of interest. Instead,
there is in general some anticipated tolerance on quan-
tities of interest. We saw that frameworks for quantify-
ing and describing uncertainty already exist in statistical
interpretations of probability, but these are underused
and often only employed to present uncertainty related
to the limitations of data, when they could also be ap-
plied to uncertainty associated with stochastic elements
of analysis, simulation or inference methods.
We noted a general trend towards dynamic, updatable

environments including Jupyter, knitr and Sweave, which
move beyond static publications [58, 60, 61]. These new
formats provide executable, interactive lab books and
are more reflective of the process and increasingly col-
laborative nature of modern science. The trend can be
facilitated by platform-independent tools such as virtual
machines and web-based applications, although these
tools can equally foster a ‘black-box’ approach which
does not encourage, or even allow, the user to probe the
details of how the software works. It is becoming clear
that traditional research papers and peer review pro-
cesses are an incomplete medium for communicating
the context needed to fully replicate or reproduce a
scientific result, and post-publication peer review is
allowing the community to question and comment on
published work. However, a tension arises between
complete description and clear communication. When
so much detail and information is available, how can
authors guide the reader towards the key message of the
study? And how should we integrate best practices for
code development and the presentation of results?
Complete documentation only permits reproducibility:
clear communication is also required to motivate and
simplify it, and the challenge lies in balancing the two.
In a similar vein, extensibility presents a problem of
balancing demands of clarity against flexibility and reuse.
The analysis script for a figure in a publication, for
example, should focus more on clarity of presentation

than modularity for future extension. Core numerical/
simulation libraries, on the other hand, need to focus
primarily on ease of reuse, incorporation into larger sys-
tems, easy replacement of modules, and the like.
Our observations also raise the question of how good

reproducibility practice can be made feasible and attract-
ive. In a world where researchers are judged mainly by
numbers of publications, citations and funding income,
how should we facilitate and incentivise good practice in
a cost-effective way that is achievable for busy re-
searchers? One idea might be a reproducibility “seal of
approval” which individual researchers, groups or de-
partments could be awarded and which would improve
chances of attracting funding, in a similar way to the
Athena SWAN awards [74, 75] for commitment to
equality and diversity which are becoming required by
some UK funders. Minimum Information reporting
guidelines would provide a helpful starting point for
defining the criteria for such an endorsement. Scientific
journals could stipulate adherence to minimum informa-
tion checklists as a requirement for publication. An
official standard endorsed by the community and by fund-
ing bodies might help to reassure researchers who are wor-
ried about sharing code and data. Support structures such
as Software Carpentry [76, 77] also exist in part to address
these concerns and introduce best practices to as many
researchers as possible, and a commitment to this kind of
education might form another part of the standard.
Encouragingly, the trends we have identified – increasing

standardisation of data formats and reporting guidelines;
clearer definition of the key features of a result to be
reproduced, and more use of dynamic publishing tools –
suggest that good practice is not only becoming increas-
ingly common and valued in the computational biology
community but that it is in fact becoming intrinsically
linked with how research is published and communicated.
Aspects of standard good practice in software development
[7, 8] (version control, modular design) also make research
more reproducible. However, although appropriate tools for
replicable research are increasingly available, researchers
seldom provide advice to their readers about how to
quantify confidence in their results. Improving on this
state of affairs will require convincing researchers of
the benefits of allowing true reproducibility – in
addition to replicability – of their results.

Conclusions
We conclude by offering two summaries of our findings.
First, Table 1 brings together the checklists, minimum
information guidelines, exchange protocols and software
tools described in the manuscript. As well as providing a
useful reference for researchers seeking appropriate tools
and standards, we hope that it will highlight gaps which
could be filled by checklists to be developed by experts

Lewis et al. BMC Systems Biology (2016) 10:52 Page 7 of 10

in the relevant specialities. Second, Table 2 presents a
set of recommendations for improving software practice
in computational biology, gathered from our experiences
described above. The recommendations are for imple-
mentation by developers, researchers and the commu-
nity as a whole – and we emphasise that most
researchers fall into all three of these categories. Figure 1
illustrates how these recommendations could form a
virtuous circle, whereby an effort on behalf of the whole
community and improved education promote good prac-
tice and good communication, leading back in turn to

an understanding of the importance of reproducibility
and a stronger agenda within computational biology.

Methods
This work was carried out during the Software Sustain-
ability Institute (SSI)/2020 Science Paper Hackathon,
10–12 September 2014. The authors had identified case
studies from their own research experience, to which
they felt the topic of reproducibility was relevant. During
intensive discussions over the course of three days they
compared and discussed the case studies with the aim of
drawing out common themes from across computational
biology and developing a framework for understanding
reproducibility in the computational/systems biology
context. An early version of the paper was drafted
during this stage. Following review and comments from
another participant in the hackathon (working on a
different project), the ideas and the manuscript were
refined and clarified over the following months.

Abbreviations
BioPAX, Biological Pathway Exchange; Chaste, Cancer, Heart and soft tissue
environment; COMBINE, Computational Modelling in Biology Network;
eFORGE, Functional Element Overlap analysis of the Results of Epigenome-
wide association study Experiments; EWAS, epigenome-wide association
studies; GOBLET, Global Organisation for Bioinformatics Learning, Education
& Training; HTML, HyperText Markup Language; MIASE, Minimum Information
About a Simulation Experiment; MIBBI, Minimum Information for Biological
and Biomedical Investigations; MIRIAM, Minimum Information Required in
Annotation of Models; ODE, ordinary differential equation; odeSD, second-
derivative ordinary differential equation integrator; PSI-MI, Proteomics Standards
Initiative Molecular Interactions; SBML, Systems Biology Markup Language;
SED-ML, Simulation Experiment Description Markup Language; SWAN, Scientific
Women’s Academic Network; UK, United Kingdom

Acknowledgements
The authors are grateful to Dr Derek Groen for the invitation to the SSI/2020
Science Paper Hackathon, and to Dr Ben Calderhead for useful discussion
and comments.

Fig. 1 A “virtuous cycle” of good reproducibility practice

Table 2 Recommendations for improving reproducibility
practice

Software developers can:

• Use well thought-out and appropriate principles of modularity in de-
signing software.

• Provide practical, comprehensive advice on installation. Check it by
installing software on commonly-used systems, or simplify it using a
platform such as Docker.

• Provide code annotation and manuals in multiple, accessible forms
with different levels of detail.

Computational researchers can:

• Make use of dynamic and/or updatable formats for publishing
research, where appropriate.

• Ensure they provide all details of how an analysis was carried out,
including providing all the code and data necessary to reproduce a
result. Context-specific minimum information guidelines can provide
useful checklists.

• State explicitly what are the key features of a piece of published work,
how to measure agreement when the work is reproduced, and how
close the agreement is expected to be.

The computational biology community can:

• Introduce a “seal of approval” for good reproducibility practice
including adherence to reporting checklists, which could be awarded
to labs, individual researchers or particular pieces of software or
research.

• Require adherence to appropriate minimum information checklists for
publication in peer-reviewed journals and through other channels.

• Promote and campaign for education in good computational practice
for scientists of all backgrounds, from undergraduate to professorial
level.

• Provide structures and opportunities for networking, support and
professional development of computational researchers.

Table 1 A summary of tools and standards for reproducible
computational biology

Area/activity Tools and standards

Umbrella projects for guidelines
and standards

MIBBI [11], COMBINE [45]

Training GOBLET [34, 35], Software
Carpentry [8, 76, 77], Data
Carpentry [78]

Data exchange and analysis PSI-MI [12, 13], BioPAX [14, 15]

Model exchange and annotation MIRIAM [43], COMBINE
standards [45] e.g. SBML [46]

Simulation experiments MIASE [44], SED-ML [47]

Notebooks Jupyter [57, 58], Mathematica
[59], knitr [60], Sweave [61].

Lewis et al. BMC Systems Biology (2016) 10:52 Page 8 of 10

Funding
This work was carried out during the Software Sustainability Institute (SSI)/
2020 Science Paper Hackathon, 10–12 September 2014, which was funded
through an SSI fellowship awarded to Dr Derek Groen and by the ‘2020
Science’ programme (see below). JL and JCo gratefully acknowledge
research support from the 2020 Science programme funded through the
Engineering and Physical Sciences Research Council (EPSRC) Cross-Disciplinary
Interface Programme (grant number EP/I017909/1) and supported by Microsoft
Research. JL was also funded by the National Institute for Health Research
Health Protection Research Unit (NIHR HPRU) in Modelling Methodology at
Imperial College London in partnership with Public Health England (PHE); grant
number HPRU-2012-10080. CEB was funded by EU-FP7 project EpiTrain (316758)
and the Cancer Institute
Research Trust. JCh acknowledges the support of the SSI. OJM received funding
from the Biotechnology and Biological Sciences Research Council through grant
BB/K017578/1. None of the funding bodies played any role in the design of the
study or in writing the manuscript. The views expressed are those of the authors
and not necessarily those of the NHS, the NIHR, the Department of Health or
Public Health England.

Availability of data and materials
Not applicable.

Authors’ contributions
JCo originally proposed the study. All authors contributed to discussions and
to the writing and revision of the manuscript. All authors read and approved
the final version of the manuscript.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Author details
1Centre for Maths and Physics in the Life Sciences and Experimental Biology,
University College London, Physics Building, Gower Place, London WC1E 6BT,
UK. 2NIHR Health Protection Research Unit in Modelling Methodology,
Department of Infectious Disease Epidemiology, Imperial College London, St
Mary’s Campus, Norfolk Place, London W2 1PG, UK. 3UCL Cancer Institute,
University College London, 72 Huntley St, London WC1E 6DD, UK.
4Department of Genetics, University of Cambridge, Downing Street,
Cambridge CB2 3EH, UK. 5Department of Mathematics, University of
Auckland, Auckland 1142, New Zealand. 6Department of Engineering
Science, University of Auckland, Auckland 1142, New Zealand. 7Department
of Computer Science, University of Oxford, Wolfson Building, Parks Road,
Oxford OX1 3QD, UK.

Received: 22 March 2016 Accepted: 8 June 2016

References
1. Sandve GK, Nekrutenko A, Taylor J, et al. Ten simple rules for reproducible

computational research. PLoS Comput Biol. 2013;9:e1003285.
2. Donoho DL, Maleki A, Shahram M, et al. Reproducible research in

computational harmonic analysis. Comput Sci Eng. 2009;11:8–18.
3. Brown CT. Our approach to replication in computational science. http://

ivory.idyll.org/blog/replication-i.html http://ivory.idyll.org/blog/replication-i.
html Accessed 21 Oct 2015.

4. Drummond C. Replicability is not reproducibility: nor is it good science.
Proceedings of the twenty-sixth international conference on machine
learning: workshop on evaluation methods for machine learning IV. 2009.

5. Lykken DT. Statistical significance in psychological research. Psychol Bull.
1968;70:151–9.

6. Cooper J, Vik JO, Waltemath D. A call for virtual experiments: accelerating
the scientific process. Prog Biophys Mol Biol. 2015;117:99–106.

7. Osborne JM, Bernabeu MO, Bruna M, et al. Ten simple rules for effective
computational research. PLoS Comput Biol. 2014;10:1–3.

8. Wilson G, Aruliah DA, Brown CT, et al. Best practices for scientific
computing. PLoS Biol. 2014;12:1–7.

9. Ebert P, Müller F, Nordström K, et al. A general concept for consistent
documentation of computational analyses. Database. 2015;2015:bav050.

10. Mangan M. Bioinformatics tools extracted from a typical mammalian
genome project. https://figshare.com/articles/Bioinformatics_tools_
extracted_from_a_typical_mammalian_genome_project/1194879.
Accessed 21 Mar 2016.

11. Taylor CF, Field D, Sansone S-A, et al. Promoting coherent minimum
reporting guidelines for biological and biomedical investigations: the MIBBI
project. Nat Biotechnol. 2008;26:889–96.

12. http://www.psidev.info/node/60. Accessed 2 Mar 2016
13. Hermjakob H, Montecchi-Palazzi L, Bader G, et al. The HUPO PSI’s molecular

interaction format – a community standard for the representation of
protein interaction data. Nat Biotechnol. 2004;22:177–83.

14. http://www.biopax.org/. Accessed 2 Mar 2016
15. Demir E, Cary MP, Paley S, et al. The BioPAX community standard for

pathway data sharing. Nat Biotechnol. 2010;28:935–42.
16. http://bowtie-bio.sourceforge.net/index.shtml. Accessed 23 Feb 2016
17. Langmead B, Trapnell C, Pop M, et al. Ultrafast and memory-efficient alignment

of short DNA sequences to the human genome. Genome Biol. 2009;10:R25.
18. Belhajjame K, Corcho O, Garijo D, et al. Workflow-Centric Research Objects:

A First Class Citizen in the Scholarly Discourse. Proceedings of the
ESWC2012 Workshop on the Future of Scholarly Communication in the
Semantic Web (SePublica2012), Heraklion, Greece. 2012.

19. Stodden V, Miguez S. Best practices for computational science: software
infrastructure and environments for reproducible and extensible research.
J Open Res Softw. 2014;2:e21.

20. Yue F, Cheng Y, Breschi A, et al. A comparative encyclopedia of DNA
elements in the mouse genome. Nature. 2014;20:355–64.

21. Lin S, Lin Y, Nery JR, et al. Comparison of the transcriptional landscapes
between human and mouse tissues. PNAS. 2014;111:17224–9.

22. Gilad Y, Mizrahi-Man O. A reanalysis of mouse ENCODE comparative gene
expression data [version 1; referees: 3 approved, 1 approved with
reservations]. F1000Res. 2015;4:121.

23. König IR. Validation in genetic association studies. Brief Bioinform.
2011;12:253–8.

24. Liu Y-J, Papasian CJ, Liu J-F, et al. Is replication the gold standard for
validating genome-wide association findings? PLoS One. 2009;3:1–7.

25. http://archive.ics.uci.edu/ml/index.html. Accessed 25 Feb 2016
26. Lichman M. UCI machine learning repository. Irvine: University of California,

School of Information and Computer Science; 2013. Accessed 7 March 2016.
27. Malone J, Brown A, Lister AL, et al. The Software Ontology (SWO): a

resource for reproducibility in biomedical data analysis, curation and digital
preservation. J Biomed Semant. 2014;5:1–3.

28. Gentleman RC, Carey VJ, Bates DM, et al. Bioconductor: open software
development for computational biology and bioinformatics. Genome Biol.
2004;5:R80.

29. Goecks J, Nekrutenko A, Taylor J, et al. Galaxy: a comprehensive approach
for supporting accessible, reproducible, and transparent computational
research in the life sciences. Genome Biol. 2010;11:R86.

30. Blankenberg D, Von Kuster G, Coraor N, et al. Galaxy: a Web-based genome
analysis tool for experimentalists. Curr Protoc Mol Biol. 2010;19:1–21.

31. Giardine B, Riemer C, Hardison RC, et al. Galaxy: a platform for interactive
large-scale genome analysis. Genome Res. 2005;15:1451–5.

32. Bouckaert R, Heled J, Kühnert D, et al. BEAST 2: a software platform for
Bayesian evolutionary analysis. PLoS Comput Biol. 2014;10:1–6.

33. Knapp B, Bardenet R, Bernabeu MO, et al. Ten simple rules for a successful
cross-disciplinary collaboration. PLoS Comput Biol. 2015;11:1–7.

34. http://mygoblet.org/training-portal. Accessed 24 Feb 2016
35. Corpas M, Jimenez RC, Bongcam-Rudloff E, et al. The GOBLET training

portal: a global repository of bioinformatics training materials, courses and
trainers. Bioinformatics. 2014;31:140–2.

36. http://eforge.cs.ucl.ac.uk/?about. Accessed 21 Oct 2015
37. Merkel D. Docker: lightweight Linux containers for consistent development

and deployment. Linux J. 2014;239:2.
38. Boettiger C. An introduction to docker for reproducible research. ACM

SIGOPS Oper Syst Rev. 2015;49:71–9.
39. https://www.docker.com/. Accessed 21 Oct 2015
40. Howe B. Virtual appliances, cloud computing, and reproducible research.

Comput Sci Eng. 2012;14:36–41.

Lewis et al. BMC Systems Biology (2016) 10:52 Page 9 of 10

http://ivory.idyll.org/blog/replication-i.html
http://ivory.idyll.org/blog/replication-i.html
http://ivory.idyll.org/blog/replication-i.html
http://ivory.idyll.org/blog/replication-i.html
https://figshare.com/articles/Bioinformatics_tools_extracted_from_a_typical_mammalian_genome_project/1194879
https://figshare.com/articles/Bioinformatics_tools_extracted_from_a_typical_mammalian_genome_project/1194879
http://www.psidev.info/node/60
http://www.biopax.org/
http://bowtie-bio.sourceforge.net/index.shtml
http://archive.ics.uci.edu/ml/index.html
http://mygoblet.org/training-portal
http://eforge.cs.ucl.ac.uk/?about
https://www.docker.com/

41. https://github.com/charlesbreeze/eFORGE. Accessed 21 Oct 2015
42. Girolami M, Calderhead B. Riemann manifold Langevin and Hamiltonian

Monte Carlo methods. JRSS B Stat Methodol. 2011;73:123–214.
43. Le Novere N, Finney A, Hucka M, et al. Minimum information requested

in the annotation of biochemical models (MIRIAM). Nat Biotech.
2005;23:1509–15.

44. Waltemath D, Adams R, Beard DA, et al. Minimum information about a
simulation experiment (MIASE). PLoS Comput Biol. 2011;7:1–4.

45. Hucka M, Nickerson DP, Bader G, et al. Promoting coordinated development
of community-based information standards for modeling in biology:
the COMBINE initiative. Frontiers Bioeng Biotechnol. 2015;3:19.

46. Hucka M, Finney A, Sauro HM, et al. The systems biology markup language
(SBML): a medium for representation and exchange of biochemical network
models. Bioinformatics. 2003;19:524–31.

47. Waltemath D, Adams R, Bergmann FT, et al. Reproducible computational
biology experiments with SED-ML - the simulation experiment description
markup language. BMC Syst Biol. 2011;5:198.

48. Gonnet P, Dimopoulos S, Widmer L, et al. A specialized ODE integrator for
the efficient computation of parameter sensitivities. BMC Syst Biol.
2012;6:1–13.

49. Kretzschmar M, van Duynhoven YTHP, Severijnen AJ. Modeling prevention
strategies for gonorrhea and chlamydia using stochastic network
simulations. Am J Epidemiol. 1996;144:306–17.

50. Golightly A, Wilkinson DJ. Bayesian parameter inference for stochastic
biochemical network models using particle Markov chain Monte Carlo.
J Royal Soc Interface Focus. 2011;1:807–20.

51. Wood SN. Statistical inference for noisy nonlinear ecological dynamic
systems. Nature. 2010;466:1102–4.

52. Althaus CL, Turner KME, Schmid BV, et al. Transmission of chlamydia
trachomatis through sexual partnerships: a comparison between three
individual-based models and empirical data. J R Soc Interface.
2012;9:136–46.

53. Reid N, Cox DR. On some principles of statistical inference. Int Stat Rev.
2015;83:293–308.

54. Neal ML, Cooling MT, Smith LP, et al. A reappraisal of How to build
modular, reusable models of biological systems. PLoS Comput Biol.
2014;10:e1003849.

55. http://git-scm.com/. Accessed 4 Mar 2016
56. Blischak JD, Davenport ER, Wilson G. A quick introduction to version control

with Git and GitHub. PLoS Comput Biol. 2016;12:1–18.
57. Shen H. Interactive notebooks: sharing the code. Nature. 2014;515:151–2.
58. https://jupyter.org/. Accessed 21 Oct 2015
59. Mathematica 7.0. Wolfram Research, Inc. 2008.
60. Xie Y. knitr: a general-purpose package for dynamic report generation in R.

2015.
61. Leisch F. Sweave: dynamic generation of statistical reports using literate

data analysis. Compstat 2002 - Proceedings in Computational Statistics.
2002.

62. Perez F, Granger BE. IPython: a system for interactive scientific computing.
Comput Sci Eng. 2007;9:21–9.

63. https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-
Notebooks. Accessed 21 Oct 2015

64. http://arxiv.org/. Accessed 21 Oct 2015
65. Bastian H. A stronger post-publication culture is needed for better science.

PLoS Med. 2015;11:1–3.
66. Brown CT, Howe A, Zhang Q, et al. A reference-free algorithm for

computational normalization of shotgun sequencing data. http://ged.msu.
edu/papers/2012-diginorm/. Accessed 21 Oct 2015.

67. Brown CT, Howe A, Zhang Q, et al. A Reference-Free Algorithm for
Computational Normalization of Shotgun Sequencing Data. 2012. arXiv:
1203.4802v2 [q-bio.GN]. Accessed 11 July 2016.

68. Mirams GR, Arthurs CJ, Bernabeu MO, et al. Chaste: an open source C++
library for computational physiology and biology. PLoS Comput Biol.
2013;9:e1002970.

69. Pitt-Francis J, Pathmanathan P, Bernabeu MO, et al. Chaste: a test-driven
approach to software development for biological modelling. Comput Phys
Commun. 2009;180:2452–71.

70. Knuth DE. Literate Programming. Computer J. 1984;27:97–111.
71. Cooper J, Mirams GR, Niederer SA. High-throughput functional curation of

cellular electrophysiology models. Prog Biophys Mol Biol. 2011;107:11–20.

72. Cooper J, Osborne J. Connecting models to data in multiscale multicellular
tissue simulations. Procedia Computer Sci. 2013;18:712–21.

73. https://chaste.cs.ox.ac.uk/trac/wiki/PaperTutorials. Accessed 21 Oct 2015
74. http://www.ecu.ac.uk/equality-charters/athena-swan/. Accessed 21 Oct 2015
75. Advancing women’s careers in science, technology, engineering,

mathematics and medicine: evaluating the effectiveness and impact of
the Athena SWAN Charter. Loughborough, UK: Loughborough University; 2013.

76. http://software-carpentry.org. Accessed 25 Feb 2016
77. Wilson G. Software carpentry: getting scientists to write better code by

making them more productive. Comput Sci Eng. 2006;8:66–9.
78. Teal TK, Cranston KA, Lapp H, et al. Data carpentry: workshops to increase

data literacy for researchers. Int J Data Curation. 2015;10:135–43.

• We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

Lewis et al. BMC Systems Biology (2016) 10:52 Page 10 of 10

https://github.com/charlesbreeze/eFORGE
http://git-scm.com/
https://jupyter.org/
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
http://arxiv.org/
http://ged.msu.edu/papers/2012-diginorm/
http://ged.msu.edu/papers/2012-diginorm/
https://chaste.cs.ox.ac.uk/trac/wiki/PaperTutorials
http://www.ecu.ac.uk/equality-charters/athena-swan/
http://software-carpentry.org

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Software tools for bioinformatics
	Replicability in bioinformatics
	Reproducibility in bioinformatics
	Extensibility in bioinformatics
	Case Study 1: eFORGE, a software tool for bioinformatics

	Reproducibility in data analysis, simulation and inference studies
	Replicability in data analysis, simulation and inference
	Reproducibility in data analysis, simulation and inference
	Extensibility in data analysis, simulation and inference
	Case Study 2: Linking data analysis, mechanistic models and inference using Jupyter notebooks
	Case study 3: the Chaste ‘paper tutorial’ approach

	Discussion
	Conclusions
	Methods
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	Author details
	References

