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Reading is a difficult task that, at a minimum, requires recognizing a visual stimulus
and linking it with its corresponding sound and meaning. Neurologically, this involves an
anatomically distributed set of brain regions cooperating to solve the problem. It has been
hypothesized that the supramarginal gyrus (SMG) contributes preferentially to phonological
aspects of word processing and thus plays an important role in visual word recognition.
Here, we used chronometric transcranial magnetic stimulation (TMS) to investigate the
functional specificity and timing of SMG involvement in reading visually presented words.
Participants performed tasks designed to focus on either the phonological, semantic, or
visual aspects of written words while double pulses of TMS (delivered 40 ms apart) were
used to temporarily interfere with neural information processing in the left SMG at five
different time windows. Stimulation at 80/120, 120/160, and 160/200 ms post-stimulus
onset significantly slowed subjects’ reaction times in the phonological task.This inhibitory
effect was specific to the phonological condition, with no effect of TMS in the semantic
or visual tasks, consistent with claims that SMG contributes preferentially to phonologi-
cal aspects of word processing. The fact that the effect began within 80–120 ms of the
onset of the stimulus and continued for approximately 100 ms, indicates that phonological
processing initiates early and is sustained over time. These findings are consistent with
accounts of visual word recognition that posit parallel activation of orthographic, phonolog-
ical, and semantic information that interact over time to settle into a distributed, but stable,
representation of a word.
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INTRODUCTION
From texts to twitter, e-mails to blogs, we live in a society that is
dominated by written communication. The ease with which we
read masks a complex set of processes necessary to link visual
symbols with their sounds and meaning. At a neural level, these
processes engage an anatomically distributed set of brain regions
that, at a minimum, include broad areas of the ventral occipito-
temporal (vOT) cortex, the inferior parietal lobule (IPL), and
inferior frontal cortex (Pugh et al., 2001; Shaywitz et al., 2002;
Price and Mechelli, 2005). Here we focused on a specific sub-field
of the IPL, namely the supramarginal gyrus (SMG), and investi-
gated both its functional contribution to reading and also its time
course using transcranial magnetic stimulation (TMS).

The IPL is an anatomically heterogeneous area consisting of
several distinct cytoarchitectonic fields (Brodmann, 1909; Von
Bonin and Bailey, 1947), each with their own pattern of connectiv-
ity (Rushworth et al., 2006; Caspers et al., 2011). The most anterior
field corresponds to the SMG, an area strongly linked to phono-
logical processing (Petersen et al., 1988; Booth et al., 2004; Seghier
et al., 2004; Zevin and McCandliss, 2005; Prabhakaran et al.,
2006; Raizada and Poldrack, 2007; Buchsbaum and D’Esposito,
2008; Obleser and Kotz, 2009; Sharp et al., 2010; Yoncheva et al.,
2010). Indeed, neuroimaging evidence demonstrates that SMG

responds more strongly during phonological than semantic pro-
cessing (Demonet et al., 1994; Price et al., 1997; Mummery et al.,
1998; Devlin et al., 2003), suggesting a level functional specificity
during word recognition. Thus it was surprising that a recent TMS
experiment (Stoeckel et al., 2009) found stimulation of the left
SMG facilitated both phonological and semantic processing, call-
ing into question the specificity of SMG’s contribution to reading.
It is certainly possible that differences between the fMRI and TMS
methodologies could yield conflicting results (e.g., Hamidi et al.,
2009), thus we were motivated to further investigate the func-
tional specificity of the SMG during word recognition using a
more robust stimulation technique than used in the earlier study.

Our second aim was to investigate the temporal dynamics of
SMG contributions to language processing. Traditionally, event-
related potential (ERP) and magnetoencephalography (MEG) are
most commonly used to measure the time course of processing,
taking advantage of their outstanding temporal resolution. Several
such studies have reported phonological effects occurring 250–
350 ms after the appearance of the visual word (Niznikiewicz and
Squires, 1996; Bentin et al., 1999; Newman and Connolly, 2004;
Grainger et al., 2006; Ashby and Martin, 2008). Sereno and col-
leagues, however, have argued compellingly that the phonological
(and semantic) processing must happen more rapidly, based on
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the rapidity of eye movements during text reading (Sereno et al.,
1998; Sereno and Rayner, 2003). In addition, they have used ERPs
to demonstrate that higher order properties of words are accessed
as early as 100–200 ms after stimulus onset (Sereno et al., 1998).
These findings receive additional support from recent ERP and
MEG studies suggesting that phonological processing may begin
within the first 100 ms of visual word recognition (Ashby et al.,
2009; Wheat et al., 2010). Here, we used chronometric TMS to
take advantage of its combined temporal (tens of ms) and spa-
tial resolution (approximately 10 mm) to investigate the timing of
SMG involvement in reading.

MATERIALS AND METHODS
PARTICIPANTS
Forty right-handed, monolingual native English speakers volun-
teered to participate in this study, and of these 32 (19 women, 13
men; aged 18–41, mean = 25) were included in the main experi-
ment. For the other eight the functional location procedure failed
to identify a region of SMG for testing in the main experiment (see
Experimental Procedures below). All participants were neurolog-
ically normal, with no personal or family history of epilepsy. In
addition, none had any form of dyslexia according to self-reports.
Each person provided informed consent after the experimental
procedures were explained and subjects were paid for their partic-
ipation. The experiment was approved by the University College
London (UCL) Research Ethics Committee.

EXPERIMENTAL PROCEDURES
There were two testing sessions. The first involved a 30-min visit
to the Birkbeck-UCL Neuroimaging Centre (BUCNI) to acquire
a T1-weighted structural magnetic resonance imaging (MRI)
scan [FLASH sequence, repetition time (TR) = 12 ms, echotime
(TE) = 5.6 ms, flip angle = 19, resolution = 1 mm × 1 mm ×
1 mm] used to anatomically identify the left SMG in each par-
ticipant. The second session occurred 2–10 days later and involved
the main TMS testing which lasted approximately 1 h.

Before a participant arrived for TMS testing, three potential
stimulation targets were identified and marked on their MRI scan

using the Brainsight frameless stereotaxy system (Rogue Research,
Montreal, Canada). The first was located just superior to the ter-
mination of the posterior ascending ramus of the Sylvian fissure.
The second was placed at the ventral end of the anterior SMG,
superior to the Sylvian fissure, posterior to the postcentral sulcus,
and anterior to the posterior ascending ramus of the Sylvian fis-
sure. The third was approximately halfway between these sites and
at least 10–15 mm from the other two (see Figure 1A). These three
sites were chosen within the anterior region of the left SMG since
this area has been shown to be sensitive to phonological process-
ing in neuroimaging studies (e.g., Petersen et al., 1988; Price et al.,
1997; Devlin et al., 2003; Seghier et al., 2004; Zevin and McCan-
dliss, 2005; Raizada and Poldrack, 2007). Each site was then tested
to functionally localize the specific target site where stimulation
interfered with phonological processing.

Target site localization
Participants performed a visual rhyme judgment task to focus
attention on the sounds of the words. Each trial began with a
fixation cross centrally presented on the screen for 1000 ms imme-
diately followed by two words that appeared simultaneously above
and below the cross and remained on the screen for 500 ms.
Subjects were asked to judge whether the two words rhymed or
not (e.g., kite-white) during a 2500-ms inter-trial interval (ITI).
Responses were indicated by button press using the left and right
index fingers. The pairing of yes/no responses with fingers was
counter-balanced across participants. Each run included 34 trials
and lasted 1:35 min. Repetitive TMS (10 Hz, 500 ms) was delivered
randomly on half of the trials with the caveat that they occurred
equally often on yes and no trials. Stimulation began 100 ms after
the onset of the word pair. The data from the first two trials per
run were discarded to allow participants to get past anticipating
the first rTMS trial. When TMS consistently slowed median reac-
tion times (RTs) relative to non-TMS trials, that site was used for
testing in the main experiment.

At the beginning of testing, participants performed a practice
run of the rhyme judgment task where no TMS was delivered to
become familiar with the task. Once they felt comfortable, the first

FIGURE 1 | Stimulation sites. (A) Three possible stimulation targets
marked within each participant’s left SMG using a frameless stereotaxy
system. The first one located just superior to the termination of the
posterior ascending ramus of the Sylvian fissure; the second one at the
ventral end of the anterior SMG; and the third one approximately halfway

between the other two sites. (B) The final testing sites for all 32
participants (white filled circles) and the mean group location (black filled
circle) on the averaged brain of all participants normalized to the standard
MNI152 space with an affine registration (Jenkinson and Smith, 2001)
shown on a parasagittal plane.
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testing site was chosen and the participant was introduced to the
sensation of rTMS at that site. TMS was introduced by placing
the coil on the scalp such that the line of maximum magnetic
flux intersected the target site. After familiarization with the sen-
sation, each participant performed two more practice runs with
concurrent rTMS. Localization then began at the first testing site
and each site was tested using one of five matched stimulus sets.
When rTMS facilitated RTs, the next site was tested. When rTMS
produced numerically longer (i.e., slower) responses, the site was
re-tested using a different stimulus set to determine whether the
observed slowdown was consistent. Any site that produced two or
more RT slowdowns during the localizer task was selected for stim-
ulation in the main experiment. Note that any numeric increase in
RTs, including a single millisecond, was considered a “slowdown,”
which is why it was important to show that slowdowns were consis-
tent rather than a result of idiosyncratic factors. In general, the fact
that the “wrong” SMG sites typically led to small speedup effects
(presumably due to intersensory facilitation), made even small
slowdowns convincing as long as they were reproducible. Once a
testing site was identified, the localization procedure stopped in
order to limit unnecessary stimulation received by subjects. The
order of testing the target sites was counter-balanced across partic-
ipants. If after 10 runs, no site resulted in consistent TMS-induced
slowdowns, then the experiment was terminated.

Experimental tasks
In the main experiment, participants performed three different
tasks: (i) a homophone judgment task where they decided whether
two words sounded the same; (ii) a synonym judgment task where
they decided whether two words meant the same thing; and
(iii) a visual judgment control task where they decided whether
two consonant letters strings were identical. The first two tasks
were designed to emphasize phonological or semantic processing,
respectively. The third task was included as a control condition in
which stimulation was not expected to affect performance. This
task shared visual, decision, and response features of the lexical
tasks but no linguistic components. The number of “yes” and “no”
responses was equal in all cases.

There were 105 trials per task. The tasks were presented in
blocks of 21 trials to minimize task-switching costs. Following a
short instruction screen to remind the participant of the task, the
first trial in each block was a dummy item and discarded from the
analyses to exclude the RT cost of switching tasks. The remaining
20 items in the block constituted the data used for further analysis.
A trial commenced with a fixation cross displayed for 500 ms, fol-
lowed by two letter strings presented above and below the fixation
cross for another 500 ms. A blank screen was then presented for
a random interval between 1300 and 2300 ms, giving an average
duration of 2500 ms per trial. Participants indicated their response
with the same button press they used in the functional localizer
task. The experiment was divided into three runs of five blocks
each lasting approximately 5 min. In between runs, subjects took
a self-paced break. The order of tasks was counter-balanced across
participants.

Chronometric TMS
A double pulse of TMS was delivered on every trial, at one of
five different timing conditions. Pulses occurred at either 40 and
80, 80 and 120, 120 and 160, 160 and 200, or 200 and 240 ms

post-stimulus onset. The TMS timings were not randomly dis-
tributed; instead, they were ordered in either an ascending or
descending staircase in sets of four trials (Figure 2). For instance,
the first four trials might have pulses delivered at 40/80 ms, while
the next four were at 80/120, etc., such that all 20 trials in the
block had TMS delivered at one of the five timing conditions.
For the following block (i.e., the next task), the timing went in
the opposite direction (i.e., 4 × 200/240 followed by 4 × 160/200,
etc.). The aim of this procedure was to avoid any late stimula-
tion trials (e.g., 160/200) randomly following early trials (40/80)
because during pilot studies there was some concern that partici-
pants were implicitly waiting for the TMS pulse before responding,
and thus artificially inflating RTs on those trials. With the current
staircase method there was no evidence that participants waited
for the TMS before responding. Indeed, subjects reported that
they were not aware that stimulation onsets differed. In contrast,
when chronometric timings are delivered randomly subjects are
typically aware of the different timings.

Testing began with a practice run performed without TMS in
order to familiarize subjects with the task requirements. It included
all three tasks and provided practice in switching between them.
Subjects were then familiarized with the sensation of double-pulse
TMS at the SMG testing site. Finally, they completed the actual
experiment for the given site using one of five different stimulus
versions. The order of the versions was counter-balanced among
participants. None of stimuli used in practice or in the localization
procedure were repeated in the main task.

FIGURE 2 | (A) Within a run, homophones (H), synonyms (S), and
consonant strings (C) alternated in 50 s blocks. (B) Each block consisted of
20 trials. Pulses occurred at either 40/80, 80/120, 120/160, 160/240, or
200/240 ms post-stimulus onset. TMS timings were ordered in either an
ascending or descending staircase in sets of four trials. H0 and S0 indicate
dummy trials. (C) Each trial began with a fixation cross presented for
500 ms. A stimulus was then presented for 250 m, followed by a blank
screen displayed for random interval between 1300 and 2300 ms.
Stimulation occurred at one of five time windows.

www.frontiersin.org May 2012 | Volume 3 | Article 161 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Language_Sciences/archive


Sliwinska et al. Phonology in the first 100 ms

STIMULI
For the localizer task, word stimuli (n = 160 plus 10 dummy tri-
als) ranged in length from three to eight letters and were divided
into five separate lists, matched for concreteness, familiarity, writ-
ten word frequency, number of letters, and number of syllables
[one-way ANOVA, all F(1, 158) < 1.1, p > 0.31]. Concreteness
and familiarity ratings were taken from the MRC Psycholinguistic
database (Coltheart, 1981), and British English word frequencies
came from the Celex database (Baayen and Pipenbrook, 1995).
In addition, within each list trials were divided into TMS and
no-TMS items that were also matched across these five factors
[all t (30) < 1.8, p > 0.1]. It is worth noting that the orthogra-
phy of the paired words was manipulated such that participants
could not perform rhyme judgment based solely on the word’s
spelling. The words in rhyming and non-rhyming trials had dif-
ferent spellings in half of the cases (e.g., rhyming: wall-call vs.
style-pile; non-rhyming: work-pork vs. egg-pen).

For the main experiment, the word stimuli (200 trials plus 12
dummies trials) ranged in length from 3 to 10 letters and were
matched across the homophone and synonym tasks for concrete-
ness, familiarity, written word frequency, number of letters, and
number of syllables [all t (198) < 1.66, p > 0.11]. In addition, the
consonant strings in the non-lexical task were matched in length
to the lexical stimuli. Within each task, the items were divided into
five lists, again matched for all factors [all F(4, 95) < 2.1, p > 0.1].
Then, the lists were paired with each of the five time windows
such that the lists occurred with equal frequency within each time
window across participants.

TRANSCRANIAL MAGNETIC STIMULATION
Stimulation was performed using a Magstim Rapid2 stimulator
(Magstim, Carmarthenshire, UK) and a 70-mm diameter figure-
of-eight coil. The stimulation intensity was set to 55% of the
maximum stimulator output and held constant for all subjects.
During the localizer task, trains of five pulses (i.e., 10 Hz for
500 ms) were pseudorandomly delivered at 100, 200, 300, 400,
500 ms post-stimulus onset in half of all trials. During the main
task, double pulses were delivered 40 ms apart at five different
time windows: 40/80, 80/120, 120/160, 160/200, and 200/240 ms
following stimulus onset in each trial. The TMS frequency, inten-
sity, and duration were well within established international safety
limits (Wassermann, 1998; Rossi et al., 2009). During testing, a
Polaris Vicra infrared camera (Northern Digital, Waterloo, ON,
Canada) was used in conjunction with the Brainsight frameless
stereotaxy system (Rogue Research, Montreal, Canada) to register
the participant’s head to their own MRI scan in order to accurately
target stimulation throughout the experiment. All participants
used an earplug in their left ear to attenuate the sound of the
coil discharge and avoid damage to the ear (Counter et al., 1991).
All participants tolerated TMS well. In some cases, stimulation
affected the temporalis muscle and produced a small, unilateral
facial twitch. Participants described the sensations as “unusual”
but not uncomfortable.

ANALYSES
Reaction times were recorded from the onset of the stimulus and
only correct responses were analyzed. TMS was expected to affect

RTs rather than accuracy, as previous studies utilizing similar lan-
guage tasks and stimuli indicate that TMS rarely affects accuracy
(Devlin and Watkins, 2007). For the localizer task, the group analy-
sis compared responses to TMS and no-TMS trials when TMS was
delivered to the main testing site vs. when it was delivered to the
other SMG targets. For the main task the earliest timing window
(i.e., pulses delivered at 40/80 ms) was considered the baseline con-
dition as previous ERP, MEG, and TMS findings (e.g., Khateb et al.,
1999; Pammer et al., 2004; Stoeckel et al., 2009) indicate that this
is too early for TMS to have an effect on SMG during phonologi-
cal processing. As a result, within each of the three tasks, each of
the four later time windows was compared to the baseline, using
two-tailed, planned paired t -tests. Anticipatory responses were
defined as RTs ≤300 ms and were trimmed from the data (0.04% of
responses). In all analyses, median RTs for correct responses were
used in the statistical analyses to minimize the effect of outliers
(Ulrich and Miller, 1994).

In order to identify testing sites in terms of standard space
coordinates, each participant’s structural scan was registered to
the Montreal Neurological Institute-152 template using an affine
registration (Jenkinson and Smith, 2001). Note that all stimulation
was done in native anatomical space – the standard space coordi-
nates were computed solely for reporting purposes. In addition, for
illustrative purposes a group mean structural scan was created in
standard space and used as a background image when presenting
the stimulation sites in order to accurately reflect the anatomical
variability across subjects (Devlin and Poldrack, 2007).

RESULTS
FUNCTIONAL LOCALIZATION
In 8 out of 40 participants, the functional localization process
failed and testing ceased after 10 runs. In the remaining 32 par-
ticipants, an average of five localizer runs per subject (range:
2–10, mean = 6) were required to successfully identify the main
SMG testing site. In these participants, rTMS produced a sig-
nificant inhibitory effect of 44 ms relative to the no-TMS trials
[paired t -test; t (31) = 9.8, p < 0.001]. When normalized to reflect
between-subject variability in overall RT, this equated to a 6%
slowdown in individuals. In contrast, stimulation of the other
SMG sites produced a significant facilitation effect of 32 ms [paired
t -test; t (31) = 4.9, p < 0.001]. When normalized, this constituted
a 4% speed-up in RTs. In other words, there was a clear difference
between the final test site and other locations, even though they
were only 1–2 cm away and still within anterior SMG. The precise
location where stimulation interfered with phonological process-
ing varied across individuals and is illustrated in Figure 1B. Here,
white filled circles show where stimulation led to a slowdown for
rhyme judgments in each participant. The mean coordinate in
standard space was [−52, −37, +32], a region previously impli-
cated in phonological processing (e.g., Price et al., 1997; Devlin
et al., 2003; Seghier et al., 2004; Zevin and McCandliss, 2005;
Raizada and Poldrack, 2007).

CHRONOMETRIC TASK
Overall accuracy levels were reasonably high (88%) indicating
that participants did not have any difficulty performing the tasks.
When accuracy was analyzed with an omnibus 3 × 5 ANOVA with
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Task (Phonological, Semantic, Visual) and TMS (40/80, 80/120,
120/160, 160/200, 200/240) as independent factors, it revealed a
significant main effect of Task [F(2, 63) = 30.4, p < 0.001] indi-
cating that the semantic task (83%) was significantly more difficult
than either the phonological task (90%) or the visual task (91%).
Neither the main effect of TMS nor its interaction with Task were
significant (both F < 1). In other words, there was no evidence
that TMS affected accuracy in performing any of the three tasks.

The RT results are shown in Figure 3. From the figure, it
is apparent that there was a main effect of Task [F(2, 62) = 98,
p < 0.001], with slowest responses on the semantic task (893 ms),
followed by the phonological task (803 ms) and then the visual
task (665 ms), each of which was significant different from the
others (all p < 0.001, after Bonferroni correction for multiple

FIGURE 3 | Reaction times (RTs) from the onset of the visual stimulus

for each of the five stimulation timings for all three tasks in the main

experiment. Note the scales of the y -axes are not identical due to different
RTs across the three tasks with visual < phonological < semantic. The solid
line represents the baseline RTs. Error bars reflect standard error of the
mean adjusted to correctly reflect the variance in the within-subject design
(Loftus and Masson, 1994).

comparisons). Neither the main effect of TMS [F(4, 124) = 1.2,
p = 0.31] nor the Task × TMS interaction reached significance
[F(8, 248) = 1.26, p = 0.27] in the omnibus ANOVA. Even so, a
set of planned comparisons were performed to specifically eval-
uate whether TMS modified RTs in the phonological and/or
semantic task.

For the phonological task, a comparison of each time con-
dition to the baseline condition (40/80 ms) indicated inhibitory
effects at all four time windows relative to baseline (plotted in
Figure 4). We observed RT increases of 30, 30, 25, and 21 ms,
although only the first three were significant [80/120: t (31) = 3.9,
p = 0.001; 120/160: t (31) = 2.4; p = 0.02; 160/200: t (31) = 2.3,
p = 0.03; 200/240: t (31) = 1.6, p = 0.11]. Despite a similar size
inhibitory effect, the final time window did not reach statistical
significance because of greater inter-subject variability. Specifi-
cally, only 20 out of 32 participants were slowed by TMS during
the 200/240 time window. In contrast, 26 subjects showed a slow-
down in the 80/120 window, 22 subjects in 120/160 window, and
24 subjects in the 160/200 window. In summary, double pulses of
TMS delivered to the same site that slowed performance in the
rhyme judgment localizer task resulted in significantly longer RTs
between 80 and 200 ms post-stimulus onset.

In contrast, SMG stimulation had no significant effect on either
the semantic or visual judgment task. For the semantic task, there
were net slowdowns in each of the time windows relative to the
baseline condition (40/80 ms), but none of these were significant
[all t (31) < 0.96, p > 0.34]. This was due to considerable inter-
subject variability. Specifically, only 18, 15, 19, and 14 participants
(out of 32) showed increased RTs in the four respective time win-
dows. For the visual judgment control task, the effects of TMS
were variable and none were significant [all t (31) < 1.1, p > 0.3].

To investigate the functional specificity of the slowdowns
observed in the phonological test, we compared them to the TMS
effects in the semantic and visual tasks. Figure 4 illustrates the
difference in RTs between TMS and no-TMS trials per time win-
dow. Dark gray, light gray, and white bars show TMS effects for
phonological, semantic, and visual tasks, respectively. It is clear
from the figure that slowdown in the phonological task was sig-
nificantly greater than both the semantic [paired t -test: t (31) = 2,
p = 0.03] and visual task [t (31) = 3.1, p = 0.002] in the 80/120
time window. In the later time window, however, the phonologi-
cal TMS effect did not differ statistically from the semantic TMS
effect, despite the fact that there were significant slowdowns rel-
ative to baseline in the phonological, but not the semantic, task.
Relative to the TMS effects in the visual task, TMS produced signif-
icantly larger slowdowns in the phonological task in the 120/160
[t (31) = 2.2, p = 0.02] and 160/200 [t (31) = 2.6, p = 0.01] time
windows. Finally, there were no significant differences between the
TMS effects in the semantic and visual tasks in any time windows
[all t (31) < 0.83, p > 0.41].

DISCUSSION
In the present study TMS was used to investigate functional speci-
ficity and timing of phonological processing within the left SMG
during reading. There were two main findings. First, the effects
of TMS were present for phonological judgments but were not
observed for either semantic or visual judgments. Moreover, the
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FIGURE 4 |The difference between reaction times for each time window

relative to its baseline condition (i.e., the 40/80 time window) is plotted

for all three tasks. Dark gray bars represent the phonological task, light gray
the semantic task and white the visual control task. *p < 0.05.

effect of TMS was significantly greater for phonological judg-
ments than either semantic or visual judgments in the 80/120 time
window. Second, the inhibitory effects of TMS were apparent as
early as 80–120 ms following stimulus presentation and were sus-
tained for approximately another 100 ms. Both of these findings
are discussed as they pertain to the neural information processing
underlying visual word recognition.

The first aim of this study was to investigate the functional
specificity of SMG contributions to word recognition. Previous
functional imaging studies involving explicit phonological deci-
sions have consistently revealed SMG activation (Petersen et al.,
1988; Booth et al., 2004; Seghier et al., 2004; Zevin and McCandliss,
2005; Raizada and Poldrack, 2007; Buchsbaum and D’Esposito,
2008; Yoncheva et al., 2010). Moreover, the region is activated
when participants focus on the sounds of words relative to their
meaning (Demonet et al., 1994; Price et al., 1997; Mummery et al.,
1998; Devlin et al., 2003; McDermott et al., 2003) suggesting that
SMG is preferentially engaged by phonological, rather than seman-
tic, processes. Indeed, the current TMS results are consistent with
the imaging findings, confirming a causal link between SMG and
phonological processing (Hartwigsen et al., 2010a). SMG stimu-
lation increased response latencies in the phonological task but
not in the semantic or visual control tasks. Indeed, at the earliest
time window (80/120) the effect of TMS on the phonological task
(+30 ms) was significantly greater than in the semantic (−1 ms)
or the visual (−8 ms) task, suggesting a degree of functional speci-
ficity for phonology early in the time course of processing visual
words. Moreover, the results imply that the region is not neces-
sary for other types of linguistic processing such as visual word
recognition or semantic processing, nor for more domain-general
processes such as sustained attention, decision making, action
selection, and initiation, etc. A previous study, however, found
a different pattern of results where SMG stimulation affected both
phonological and semantic processing (Stoeckel et al., 2009). We
are cautious about these previous findings for three reasons. First,
Stoeckel et al. (2009) reported that TMS facilitated, rather than
inhibited, response times – an effect that has no clear physiological

basis (Walsh and Pascual-Leone, 2003; Devlin and Watkins, 2007).
Second, this facilitation was only present following single pulse
stimulation; trains of repetitive TMS delivered to the same site
inhibited phonological processing (Stoeckel et al., 2009). Finally,
their findings stand in contrast to several previous studies (as well
as the current results) that demonstrate stimulation of SMG pref-
erentially interferes with phonological processing (Romero et al.,
2006; Hartwigsen et al., 2010a; Pattamadilok et al., 2010). As a
result, the weight of evidence from TMS seems to support the
imaging findings and suggests that SMG provides a necessary
contribution to phonological, but not semantic, processing.

Precisely what aspects of phonological processing are being
computed in SMG are open to debate. Studies of speech compre-
hension, for instance, typically do not show supramarginal activa-
tion (Hickok and Poeppel, 2007; Rauschecker and Scott, 2009),
even though phonology plays a central role in speech percep-
tion. Instead, the region seems to be engaged by more demanding
phonological tasks such as rhyme (Petersen et al., 1988; Yoncheva
et al., 2010), syllable (Price et al., 1997; Devlin et al., 2003), or
phoneme judgments (Zevin and McCandliss, 2005; Raizada and
Poldrack, 2007). Pattamadilok et al. (2010) hypothesized that this
may be because each of these tasks involves a form of covert artic-
ulation where the participant monitors their own inner speech.
The SMG is anatomically well situated for this role with reci-
procal connections linking it to ventral premotor (PMv) cortex
and pars opercularis (POp; Catani et al., 2005; Rushworth et al.,
2006; Petrides and Pandya, 2009), two regions involved in articu-
latory motor planning (Price, 2010). These reciprocal connections
between PMv/POp and SMG may form a processing loop for act-
ing on reproducible sound patterns that would provide a simple
resonance circuit for temporarily storing these patterns (McClel-
land and Elman, 1986; Botvinick and Plaut, 2006). Indeed, studies
of verbal working memory commonly implicate these regions
(Paulesu et al., 1993; Buchsbaum and D’Esposito, 2008; Koelsch
et al., 2009) and TMS delivered to PMv/POp also disrupts phono-
logical processing (Nixon et al., 2004; Gough et al., 2005; Romero
et al., 2006; Hartwigsen et al., 2010b). In other words, SMG may
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play an integral role in representing and processing representations
for phono-articulatory patterns that contribute to “phonological
processing.”

It is important to note, however, that phonological process-
ing is only one of several functions that the SMG contributes to.
For instance, the region is also involved in making visually guided
hand actions (Rushworth et al., 2001; Binkofski et al., 2004; Price,
2010) and in spatially localizing auditory stimuli (Lewald and
Ehrenstein, 2001; Renier et al., 2009). In other words, the appar-
ent functional specificity of the SMG for phonological processing
is limited to a very restricted context – namely when processing
linguistic information.

The second aim of this study was to investigate the tempo-
ral dynamics of SMG contributions to each task by disrupting
processing at different time intervals during the first 250 ms of
stimulus processing. In the phonological task, a TMS-induced
inhibitory effect was present from 80/120 ms post-stimulus onset.
Although the detailed mechanisms of action on the cerebral cor-
tex remain unknown (Wagner et al., 2009), it is clear that TMS
induces ionic currents in a percentage of neurons in all cortical
layers within the stimulated area, leading to inhibitory and excita-
tory currents within local microcircuits (Esser et al., 2005). These
can cause spiking of pyramidal neurons that in turn send a vol-
ley of spikes to distal, but anatomically connected regions. Affected
neurons then enter a brief refractory state, such that the local phys-
iological effect of a single TMS pulse within the stimulated area
lasts approximately 10 ms (Esser et al., 2005), although the dis-
tal effects may last for tens of milliseconds. Indeed, chronometric
TMS experiments have shown functionally distinct effects of TMS
for pulses separated by as little as 40 ms (Amassian et al., 1993;
Corthout et al., 1999; Juan and Walsh, 2003; Pitcher et al., 2007).
Consequently, it is reasonable to assume that the inhibitory effects
of 80/120 stimulation did not last beyond 160 ms post-stimulus
onset – earlier than expected based on many ERP findings. For
instance, Bentin et al. (1999) used ERPs to measure the time
course of phonological processing during a rhyme monitoring
task. Both written words and pseudowords produced a negative-
going potential beginning as early as 290 ms after the onset of the
stimulus, consistent with many similar studies showing phono-
logical effects in the 250- to 300-ms time range (Niznikiewicz and
Squires, 1996; Newman and Connolly, 2004; Grainger et al., 2006).
Other studies have reported even later phonological effects rang-
ing from 350- to 550-ms (Rugg, 1984; Carreiras et al., 2009). In
other words, many studies indicate that the time course of phono-
logical processing in word recognition begins roughly 100 ms later
than reported here.

One possible explanation for this apparent discrepancy may
have to do with the nature of the different methodologies. ERP
and MEG signals reflect the aggregate electromagnetic activity of
synchronous neuronal firing and as a result may be less sensi-
tive to the earliest processing dynamics within a region before
synchrony has time to develop (Schroeder et al., 1998). In con-
trast, the effect of TMS occurs immediately with the stimulation
pulse and can interfere with neuronal activity that contributes to
the build up of the ERP/MEG signal (Walsh and Cowey, 2000).
As a result, TMS effects tend to precede those seen in ERP/MEG

and correspond more closely to the timings seen in intracellu-
lar recording studies (Corthout et al., 2000; Duncan et al., 2010;
Schuhmann et al., 2012). In other words, despite its poorer tem-
poral resolution (tens of ms as opposed to ms), TMS may provide
more precise information regarding the onset of regional neuronal
activity.

Another possible explanation for the relatively late ERP record-
ings is that the ERP components such as the N250 or N400 index
processes based on recurrent feedback rather than the initial infor-
mation passing through the system (Sereno and Rayner, 2003).
When reading text, the eyes fixate on a word for an average of 250–
300 ms (Just and Carpenter, 1980; Rayner et al., 1996), indicating
that lexical processing must be underway well before the next sac-
cade. Indeed, Sereno et al. (1998) found that during reading, early
ERP components such as the P1 and N1 are influenced by factors
such as lexicality and frequency, demonstrating that higher order
properties of the word are accessed as early as 100–200 ms post-
stimulus onset (see also Hauk and Pulvermuller, 2004). In other
words, there is growing evidence that non-visual properties of a
word become available as early as 100–200 ms from the onset of
the visual word (Ashby et al., 2009; Wheat et al., 2010; Reichle et al.,
2011; Hauk et al., 2012).

In addition to this rapid onset, we observed that the effects
of TMS were sustained through the 160/200 ms time windows.
In contrast, most previous chronometric TMS studies of visual
processing have demonstrated separate early and late effects of
stimulation, suggesting temporally distinct feed-forward and feed-
back phases of processing (e.g., Corthout et al., 1999). In our data,
however, TMS to each of the time windows between 80/120 and
160/200 ms significantly slowed responses, suggesting on-going
phonological processing, presumably due to dynamic interactions
with regions processing other aspects of the word including visual
and semantic information (Cao et al., 2008; Carreiras et al., 2009;
Frye et al., 2010). Indeed, the same temporal pattern of disruption
was observed in a chronometric TMS study of left vOTcortex – a
region critically involved in processing the visual forms of words
(Duncan et al., 2010). Taken together, the results suggest contin-
uous and simultaneous communication between vOT and SMG
occurring between approximately 100 and 200 ms after the pre-
sentation of a visual word. This type of interactive processing
(as opposed to strictly feed-forward processing) is a fundamen-
tal principle of virtually all computationally explicit cognitive
accounts of visual word recognition (McClelland and Rumel-
hart, 1981; Seidenberg and McClelland, 1989; Plaut et al., 1996;
Coltheart et al., 2001; Jacobs et al., 2003; Harm and Seidenberg,
2004; Perry et al., 2007) and is increasingly important for neuro-
anatomical models of reading as well (Price and Devlin, 2011;
Twomey et al., 2011; Wang et al., 2011; Woodhead et al., 2011). In
other words, these data are not only consistent with accounts of
visual word recognition that suggest parallel processing of ortho-
graphic, phonological (and presumably semantic) information
over time and their integration as a result of constant regional
interaction in order to achieve stable word representations, but
they also provide a tentative time frame for this processing (i.e.,
80–200 ms), consistent with estimates of the time available based
on both eye movement and ERP data (Sereno and Rayner, 2003).
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