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A B S T R A C T

Microalgae are a major natural source for a vast array of valuable compounds as lipids, proteins,
carbohydrates, pigments among others. Despite many applications, only a few species of microalgae are
cultured commercially because of poorly developed of cultivation process. Nowadays some strategies of
culture have been used for enhancing biomass and value compounds yield. The most strategies applied to
microalgae are classified into two groups: nutrimental and physical. The nutrimental are considered as
change in media composition as nitrogen and phosphorous limitation and changes in carbon source,
while physical are described as manipulation in operational conditions and external factors such as
application of high-light intensities, medium salinity and electromagnetic fields. The exposition to
electromagnetic field is a promising technique that can improve the pigments and biomass yield in
microalgae culture. Therefore, is important to describe the advantages and applications of the overall
process. The aim of this review was to describe the main culture strategies used to improve the
photosynthetic and lipids content in chlorophyceae species.
ã 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Microalgae are biological resource for a vast array of high
valuable compounds, are rich source of protein, carbohydrates,
lipids (especially essential fatty acids) and diversity of pigments
(such as chlorophylls, carotenoids and phycobiliproteins). The
cultivation of these photosynthetic microorganisms represents an
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attractive process for obtaining biochemical components with high
potential applications in different industries [21,24,58,76]. Micro-
algae combine properties typical of higher plants (efficient
oxygenic photosynthesis and simplicity of nutritional require-
ments) with biotechnological attributes properties of microbial
cells (fast growth in liquid culture and ability to accumulate or
secret some metabolites). This particular combination represents
the basis of microalgal biotechnology for the use of these
microorganisms on high-valued metabolites production [24].

In recent years the commercial applications of microalgae
biomass have drastically increased. In alimentary industry, micro-
algae has been used to enhance the nutritional and organoleptic
properties of foods (color, flavor and texture) such as pastas [31],
bread [29], mayonnaises [70] and gelled desserts [9]. Microalgal
biomass also plays a crucial role in aquaculture and cosmetic
industries, especially in the astaxanthin production [65]. For this
reason is necessary enhancing the biomass and value compounds
yield in the culture of microalgae. The cultivation of microalgae in
photobioreactors is recognized as the best way to achieve high
production speed, while maintaining monocultures without
contamination. This form of culture requires strict control of
operating conditions for the development of microorganism such
as nutrients, pH, temperature, aeration rate, CO2 concentration and
light regime, inoculum stage and size [78].

Actually, some strategies have been studied for enhancing
biomass and high value compounds yields. Stress strategies have
been used as culture strategies. These conditions are defined as a
significant deviation from the optimal conditions for the normal
development and growth of microalgae and cause changes in all
functional levels of the organism. Among the stress factors applied
to microalgae cultures can be classified into two groups:
nutrimental and physical. The nutrimental factors are considered
as manipulation of culture media composition (carbon source,
nitrogen, phosphorus and iron deficiency), while physical are
described as manipulation in operation conditions and external
factors that affect the microalgae growth (high light intensities,
temperature, pH, salinity and electromagnetic fields)
[68,59,85,89,63].

In this review, we present a general perspective of several
culture conditions (N and P depravation, salt-stress, high light
intensities, electromagnetic fields and two stage cultivation) used
as strategies to increases the biomass yield, pigments and lipids
content in chlorophyceae species.

2. Microalgae cultures conditions

The growth characteristics and composition of microalgae are
known to significantly depend on the cultivation conditions. There
are four major types of cultivation conditions for microalgae:
photoautotrophic, heterotrophic, mixotrophic and photohetero-
trophic cultivation [22]. Table 1 shows the principal differences
between each cultivation.

Phoautototrophic cultivation occurs when the microalgae uses
light, such as sunlight, as energy source, and inorganic carbon (e.g.,
carbon dioxide) as the carbon source to produce chemical energy
through photosynthesis [42]. This is the most commonly cultiva-
tion condition used for microalgae growth [33,32,44,91]. In
Table 1
Characteristics of the different culture conditions [16].

Culture Energy source Carbon source

Photoautotrophy Light Inorganic carbón
Heterotrophy Organic carbon Organic carbón
Photoheterotrophy Light Organic carbón
Mixotrophy Light and organic carbon Inorganic and organic carbon
contrast, heterotrophic cultivation is when microalgae undergo
photosynthesis and uses organic carbons such as sugars and
organic acids as carbon and energy sources in absence of light [17].
In contrast to photoautotrophic culture, heterotrophic culture can
be performed in conventional microbial bioreactors (CSTR). The
mixotrophic culture regime is a variant of the heterotrophic
culture, where CO2 and organic carbons are simultaneously
assimilated and both respiratory and photosynthetic metabolism
operates concurrently Cheirsilp and Torpee, 2012. Photohetero-
trophic cultivation is when the microalgae require light when
using organic compounds as the carbon source. The main
difference between mixotrophic and photoheterotrophic cultiva-
tion is that the latter requires light as the energy source, while
mixotrophic cultivation can use organic compounds to serve this
purpose.

3. Culture strategies

Changes in culture conditions, nutrients deficiency, physical
modifies and regimen growth are developed as strategies in
microalgae cultures to increase compounds of interest to different
process [68,59,89,63,11]. This section describes some of the most
important strategies to increase microalgae biomass yields with
high content of photosynthetic pigments and lipids.

3.1. Nitrogen starvation

Nitrogen is a very important element for life, as a main
constituent of protein and genetic material and is the most
abundant element in microalgae (after carbon, oxygen and
hydrogen) without mineralized walls [83]. Therefore, as cells
grow and divide they require a supply of nitrogen. In microalgae
culture, N starvation is carried out either by N depletion or N
limitation. Under N depletion, microalgae grow in a medium
lacking an N source, while under N limitation there is a constant
but insufficient supply of N [13]. If nitrogen supply is limited in
proportion to other elements, photosynthesis may continue but
the resultant compounds will include a smaller proportion of
nitrogen-rich components, accessories pigments as carotenoids
and more energy-rich components such as lipids and carbohy-
drates (Fig. 1). In addition, nitrogen-depleted cells may slowly
convert nitrogen-containing non-lipid, cell components to lipids,
thereby liberating nitrogen [77].

In marine phytoplankton, nitrogen limitation affects photosyn-
thesis by reducing the efficiency of energy collection due to loss of
chlorophyll (chl) and increases in non-photochemically active
carotenoid pigments. It also directly affects photochemical energy
conversion because of a decrement in protein synthesis that
appears to affect chloroplastic proteins (and thus the proteins of
PSI and PSII reaction centers) more strongly than cytoplasmic
proteins [12].

As chlorophyll is a nitrogen-rich compound and is easily
accessible, it is utilized as an intracellular nitrogen pool to support
further cell growth and biomass production as the nitrogen in the
media becomes depleted [55]. For example, Chlamydomonas
reinhardtii and Scenedesmus subspicatus only entered the stationary
growth phase once nitrogen levels in the media were below
0.05 mg/L [23]. In a study with the freshwater microalga Chlorella
minutissima, Ördög et al. [63] reported that when nitrogen was
added to the nitrogen starved C. minutissima inoculum, an increase
in chlorophyll (a and b) content was observed, being this an
indicative of nitrogen is available, and accumulates in the
chlorophyll molecules while carotenoid concentrations did not
increase in this microalga in response to a nitrogen spike. The
restoration of chlorophyll would account for the faster growth
rates measured in the higher nitrogen treatments. However, as



Fig. 1. Overview of nitrogen stress in microalgae cultures.
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growth depleted the nitrogen in the media, chlorophyll was
degraded to reutilize the nitrogen for growth with chlorophyll a
and b levels decreasing. Similar results were reported in Neochloris
oleoabundus by Li et al. [55], where a rapid decrease in chlorophyll
a was observed after 2 days of culture in low-nitrogen treatments.
The chl a content started to decrease by day 4 in intermediate
nitrogen treatment and did not decrease in higher nitrogen
treatments. This trend followed the inorganic nitrogen in the
media with nitrogen depleted by day 2 in the low nitrogen
treatments, by day 3 in the intermediate treatment and in the high
treatment; nitrogen was not depleted [55].

The accumulation of the carotenoid astaxanthin also can be
improving by nitrogen stress. In culture of Haematococcus pluvialis,
Fábregas et al. [27] reported the highest values of astaxanthin
cellular content with a N deficiency for high and low light
intensities (40 and 230 mmol/m2 s), indicating that N deficiency
has a greater effect than light intensity on astaxanthin synthesis.
This behavior proposes the use of N limitation as economic
strategy for carotenoids production rather than application of high
light intensities.

Neochloris oleoabundans is a green microalga well known for the
ability to increase its fatty acid (FA) content when it is cultured
under nitrogen depletion. Li et al. [55] reported that during the
culture of N. oleoabundans, as long as nitrogen was available, the
rapid chlorophyll accumulation and cell division was observed.
However when nitrogen was consumed, cell division stopped, even
though biomass accumulation continued for several days. The new
biomass was composed mostly of lipids and storage oils. In the
same study, the consumption of nitrogen by the cells resulted in a
fast decrease in chlorophyll a levels in the cultures, suggesting that
cells metabolized chlorophyll during of nitrogen stress. There was
also an increase in the ratio of carotenoid to chlorophyll. These
observations indicated that the photo-physiology (chlorophyll
content) the cells was adversely affected.

Also different reports have been applied N limitation to increase
lipids in microalgae. Ho et al. [40] studied the N starvation time,
obtaining the highest lipid content of 22.40% at 5 day of N
starvation. In other study, the accumulation of FA and their
composition were compared by cultivating N. oleoabundans in N
limitation and N depletion conditions [13], using a semi-
continuous cultivation mode as a strategy to optimize lipid
accumulation. N limitation culture attained higher values of algal
productivity and total FA concentration (0.42 mg/L d and 91.2 mg/
L) in comparison with N depletion culture (0.15 mg/L d and
53.2 mg/L), where N limitation led to a significant increase of
polyunsaturated triacylglycerols (PUFA), while N depletion led to
the highest level of monounsaturated triacylglycerols. Similarly
study was done by Chen et al. [18], these authors evaluated the
effect of each medium component in lipid accumulation, founded
that medium lacking the maximal accumulation in the third day of
culture with lipid content 6 times higher than basal media.

Based on the above, the limitation of essential nutrients such as
N in the culture medium increases the content of metabolites of
interest like lipids and pigments, being this strategy a scalable
technology in mass cultures, providing the same effect as the use of
external factors such as light intensity.

3.2. Phosphorous limitation

Phosphorous (P) is an important rate limiting nutrient in many
ecosystems [26]. It is considered as one of the nutrients most likely
to limit the rate of phytoplankton production [67], being also
associated with various other facets of phytoplankton growth.
Phosporous is one of the major elements in the cell, and plays a
critical role in producing ATP for energy metabolism, forming
ribotides for nucleic acid metabolism, biosynthesis of phospho-
lipids for membrane biogenesis, and production of other cell
components [16]. Phosphorus is the component of several
intermediate and final biological compounds; participating in
energy conversion process and in the transfer of genetic
information. The inorganic orthophosphate in the cell regulates
enzyme activity and metabolic pathways as well as the transport
processes. It affects various aspects of photosynthesis [61,25].
Therefore, this element is an essential ingredient in microalgal
culture media [87].

Kozlowska-Szerenos et al. [51] evaluated the effect of phos-
phorus limitation on Chlorella vulgaris growth, reporting a lower
microalgae growth by 30–40% in cultures with P deficiency in
comparison with controls. However, pigment content was no
affected by P deficiency, showing no significant difference in total
chlorophyll (a and b) content.

The photosynthetic oxygen evolution of C. vulgaris cells taken
from phosphate-deficient (�P) cultures during 8 days of culture
growth was also evaluated [52]. In this study, the phosphorus
deficiency did not markedly affect the total content of total
chlorophyll (30.12 � 0.52 � 10–8 mg cell – 1) in the cells and only
slightly increment in Chl a/b ratio was observed. However the �P
cells showed a significantly decrement in Chls/carotenoids mass
comparing with controls. These results indicated alterations in
photosynthetic apparatus of C. vulgaris �P cells.

Qu et al. [67] reported the phosphate assimilation by Chlorella
pyrenoidosa in biomass production under heterotrophic, mixo-
trophic and autotrophic culture conditions. During heterotrophic
cultures the final biomass production under phosphate deficiency
was lower, whereas under mixotrophic and autotrophic conditions
maximal phosphate assimilation was observed. These findings
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suggested that illumination and autotrophic growth might
significantly increase the metabolic requirement for phosphorous
by C. pyrenoidosa.

Phosphorous-starvation was also used in biomass production
by Scenedesmus sp. [87]. In this study, two cultivation modes were
evaluated referred as phosphorous-starvation (high initial nitro-
gen-to-phosphorous N/P = 46:1) and luxury-nutrient. Under phos-
phorous starvation the algal biomass exhausted the phosphorous
in the earlier stage of growth achieving that the cells are exposed to
phosphorous starvation for some time. The results showed that
continuous nitrogen and phosphorous feeding in luxury nutrient
mode had no stimulating effect on biomass productivity (less than
40 g biomass/g �P), in contrast, the sustained growth of biomass
after the exhaust of phosphate in phosphorous-starvation mode
led to significant increase in the biomass yield (160 g biomass/g
�P). This study proposed a phosphorous-starvation cultivation
mode to minimize phosphorous resource consumption during the
production of algal biomass.

Lipid accumulation can be improved by manipulating the levels
of phosphorus in culture media. Liang et al. [57] reported the effect
of phosphorus concentration at different stages of culture in the
lipid accumulation by Chlorella sp. These authors reported that
lipid accumulation in cells was increased when incubation was
carried out at low phosphorus concentration (K2HPO4, 32 mM),
indicating that Chlorella sp. could accumulate lipids under
phosphorus-deprived conditions. Similar study was carried out
by Chia et al. [20] with C. vulgaris varying phosphate (PO4

3�)
concentrations plus Cd addition, obtaining an increment in neutral
lipids proportion, showing an interactive effect between Cd added
and PO4

3�. This effect was also observed in Scenedesmus sp., where
an increment in lipid content by 35% was observed when �P
starvation was used [86]. In base of these reports, it can be
observed that during microalgal cell exposition to phosphorus
deprivation, the biosynthetic pathways are altered, thus the
synthesis of lipids is increased as a response to this stress. Hu
et al. [41] mentioned that under stress conditions, the formation of
lipids is a response to consume 24 NADPH derived from the excess
of electron transport chain (formation of reactive oxygen species),
which is twice that demanded for the synthesis of a carbohydrate
or protein molecule of the same mass.

The use of media composition changes as phosphorous
deprivation reduces process costs in large-scale culture and it is
applicable in open and closed systems.

3.3. Salt-stress

Salt-stress causes a multitude of bioenergetics and biochemical
changes in photosynthetic organisms. In plants, salt-stress is
caused due to the excess of ions Na+ and Cl� in the environment,
decreasing the osmotic potential of soil and hence water uptake by
the plant root. During osmotic stress, photosynthetic organism
accumulate low molecular mass compounds known as compatible
solutes or osmolytes such as proline, protein, mannitol, sorbitol,
glycine, etc. [2]. Among the important non-specific changes of
microalgal cells to salt stress are: (i) increased rates of biopolymers
and lipid catabolism; (ii) changes in the rates of energy yielding
processes; (iii) change of membrane permeability with interrup-
tion of ion homeostasis [3].

The effect of salt-stress, as increase of NaCl concentration, on
biomass and pigments production, specifically carotenoids, has
been studied in freshwater microalgae species suggest that salt-
stress can replace light stress to induce carotenoid production,
however, in several cases the microalgae growth decreased as NaCl
concentration increased [6].

Pelah et al. [64] found that this phenomenon affect Chlorella
zofingiensis growth under low light irradiance and subjected to salt
and nitrogen stress, accumulating higher amounts of total
secondary carotenoids. Furthermore, C. zofingiensis growing under
salt-stress conditions and low light accumulated higher amounts
of canthaxanthin than astaxanthin, suggesting that for canthaxan-
thin accumulation under salt stress light is not a limiting factor, but
for astaxanthin accumulation high light irradiance is mandatory
[54]. These results may be applied in a commercial production of
canthaxanthin by C. zofingiensis in systems where light availability
is poor. The above was observed in study with C. vulgaris [11] where
different salt concentrations (0.17, 0.34 and 0.51 M) were evaluated
under different light regimes (24:0 h, 12:12 h and 0:24 h light:dark
regimens). At 0.017 M, biomass yield was higher in comparison
with cultures without salt. Pigment content changed under salt
treatments in C. vulgaris, the higher pigment yield was observed at
0.34 M of NaCl using a photoperiod of 12:12 h light/dark cycles. At
these conditions, the total chlorophyll content was 49.92 mg/g
(68% chl a and 32% chl b) and 5.96 mg/g for carotenoids. For
treatment with 0.34 and 0.51 M under dark conditions the total
chlorophyll reduces 54.6 and 78.2% respectively, while carotenoids
production was higher by 88.9 and 6.9% respectively in comparison
with control samples.

Tam et al. [96] in a recent study with H. pluvialis reported the
effect of high NaCl concentrations (0.13, 0.25 and 0.43 M NaCl) on
astaxanthin accumulation. The obtained results have indicated
that the high NaCl concentrations caused an increase in carotenoid
content per cell and a decrease in the algal growth. The best
carotenogenic condition by addition of salt was obtained at 0.43 M
NaCl under high temperature. Astaxanthin content per cell
increased 4.8 folds in comparison to the initial value after 15 days
of salt stress. It was also observed that accumulation of total lipid
content was correlated with an increasing in astaxanthin content.
The total lipid content of control was 15% of dry cell weight
whereas for cells exposed to salt-stress was 19% and 26% at
0.25 and 0.43 M NaCl concentrations, respectively. This salt
tolerance has been reported in some freshwater microalgaes
where concentration ranged between 0.1 and 0.2 M promoted the
growth [50,48].

The tolerance of Scenedesmus almeriensis to medium salt
concentrations has been well documented, where it was found
higher biomass productivities at 0.1 M NaCl in comparison with
fresh media [75]. However in some species of Chlorella, specifically
C. vulgaris, the observed growth was lower at 0.17 M of NaCl in
comparison with the media without salt, and a total inhibition of
growth was observed when NaCl concentration ranged from 0.34
to 0.51 M [6]. The inhibitory effect of salinity on microalgae growth
can be attributed by imbalance in ion homeostasis, osmotic change
and by the accumulation of reactive oxygen species (ROS), and
consequently, a programmed cell death [1].

The decrease in microalga growth rate with high levels of
salinity has frequently been reported in the literature [69]. It is
accompanied by a decrease in photosynthetic efficiency, probably
by that salinity stress affects light utilization and metabolism
(particularly carbohydrates involved in osmoregulation) to coun-
teract ionic and osmotic stresses [73].

It is noted that the increase in salinity can increase the lipid
content of microalgae, but can decrease growth rate of a species.
Salt stress is a major abiotic environmental factor that limits plant
growth and productivity. The salinity stress and unfavorable light
conditions are the main limiting factors of plant productivity both
in aquatic and terrestrial, natural and anthropically modified
environments [30]. Microalgae differ in their adaptability to
salinity and other stress conditions. The ability of cells to survive
and flourish in saline environment under the influence of osmotic
stress has received considerable attention. Under favorable and
unlimited growth conditions microalgae produces primarily polar
lipids (e.g., glycolipids and phospholipids), which enrich
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chloroplast and cellular membranes. However, under unfavorable
growth conditions microalgae accumulate neutral lipids in lipid
droplets located in the cytoplasm. Asulabh et al. [5] studied the
effect of salt-stress in Chlorococcum sp., Microcystis sp. (fresh water
algae) and Chaetoceros sp. (marine alga) for 7 days under light
conditions. The halotolerance of all the three algae were
determined by growing them in three different salinity concen-
trations (0.013, 0.014 and 0.034 mM for freshwater algae and 0.6,
3 and 6 mM for marine alga). The cell growth of all the three algae
did not show a definite pattern. The total lipid content was found to
be higher on the 5th day of culture experiment in case of
Chaetoceros sp. (8.06 mg/L at 3 mM) and Microcystis sp. (8.4 mg/L at
0.013 mM) whereas, it was higher on 6th day for Chlorococcum sp.
(6.6 mg/L at 0.0133 mM). The increase in lipid content at higher
NaCl concentration may be due to adaptation under stress
conditions, which help in accumulation of lipid content in cells.

Talukdar et al. [80] documented a study with oleaginous
microalga Ankistrodesmus falcatus in batch culture under light and
dark diurnal cycles. An improved growth and total lipid contents
were observed with the culture salinity reached up to 160 mM.
Total lipid content increase to 55.3% under salinity compared to
control medium (lipid 38.3%). It was found that the major fatty
acids synthetized where C16:0, C18:1 and C18:3.

Salt stress not only occurs in freshwater microalgal species. This
behavior has been reported in Botryococcus braunii cells when
grown in 0.5 M NaCl and halophile strains of Dunaliella salina and
Dunaliella tertioletca when grown in 4.0 M NaCl found low contents
of proteins, carbohydrates and pigments except lipids [10,81]. In
similar study, the accumulation of glycerol in Dunaliella cells
determines the cell osmotic status and protects the enzyme
functions at low activity of intracellular water caused by salinity
[92].

Salt-stress was also used for maintaining the culture under
axenic conditions. Open cultivation systems are more susceptible
to contamination for others microorganism. Increasing lipid
production in these systems while minimizing the invasion of
non-target algae (competitors) and grazers (predators) will
improve the economic viability of microalgal biomass. Bartley
et al. [8] manipulated a basic environmental parameter, salinity, to
promote algal growth and limit invading organisms, monitoring
the growth of marine microalga Nannochloropsis salina and
invasion of algal competitors and predators (ciliates and rotifers)
in open cultures grown at different salinities ranging from brackish
to hypersaline. Algal growth rate and biomass yield were higher at
salinities of 0.61 and 0.94 M, whereas the density of invading
organisms was lowest at 0.61 M. To determine if lipid accumulation
could be maximized by salinity stress, N. salina was growth at
0.61 M until the population was at stationary phase and then
evaluated different salinities up to 1.60. The results showed that
lipid content increased significantly at higher salinities, and was
highest at 0.94 M (36% dry tissue mass), where high triglycerides
content was observed, meanwhile membrane lipids decrease as
salinity increased. These findings represent an advantage to
massive culture of chlorophycae species using seawater as a
growth media to reduce freshwater utilization and to decrease the
risk to bacterial contamination.

3.4. High-light intensities

Light conditions are the main factors affecting microalgal
physiology and the most important factor affecting the photo-
synthesis. Light regime determinates the quantity and quality of
the amount of light energy available to photosynthetic organisms
to conduct their metabolic activities [53]. Numerous studies
analyzing the light effect on microalgae production of pigments,
unsaturated fatty acids, carbohydrates and proteins content have
been carried out [76,49]. Also from those reports it has observed
that changes in production yields responds to the increments or
decrements in light intensity. In this topic, several studies
describes that microalgae growth is a function of the total
amount of light per day and this can be controlled by the
photoperiod [28,72,46]. In this section the description of the use
of light intensity to stimulate the growth, accumulation of
pigments, fatty acids and proteins in different species of
microalgae is addressed.

In outdoor photobioreactors the light intensity is determi-
nate by light harvesting process that plays a crucial role in the
overall growth response to such light fluctuations. Ma et al. [60]
evaluated the growth of C. zofingiensis in semi-continuous
culture in an outdoor enclosed tubular photobioreactor with
special emphasis on N and C metabolism. They found that of
carbon and nitrogen content in the biomass showed a linear
correlation with incident (photosynthetically active radiance,
PAR), suggesting that the cultures were light limited. On sunny
days, a rapid increase in the C/N ratio of the biomass was
attributed to a slow response of protein synthesis to a high
increment in PAR, compared to carbohydrate synthesis suggest-
ing that carbon from carbohydrate storage polymers can be
transferred to protein during night.

Seyfabadi et al. [76] studied the effects of irradiance and
photoperiod on growth rate, chlorophyll a, b-carotene, total
protein and fatty acid content of C. vulgaris. They evaluated the
phototrophic growth under different irradiances and cycles (light/
dark). In this study, the maximal growth rate (1.13 d�1), protein
content (46%), saturated fatty acids and b-carotene were obtained
at irradiance of 100 mmol photons/m2 s and 16:8-h light/dark
photoperiod, while chlorophyll a, monounsaturated and polyun-
saturated fatty acids decreased with increasing irradiance and light
duration.

Similar finding were observed during the culture of H. pluvialis
where high light levels accelerated the growth process, increasing
the rate of nutrient depletion and providing more energy for
astaxanthin biosynthesis [27]. The same effect was observed in
b-carotene and phyocyanin production by Dunalliella salina and
Spirulina platensis, respectively; where increasing light exposure
the synthesis of these pigments increased [38,84].

Khoeyi et al. [49] reported a maximum biomass yield (2.05 g
L�1) when C. vulgaris was cultured at 62.5 mmol photons/m2 s and
16:8 h light/dark photoperiod. Fatty acid composition changed in
different light regimes, the maximum percentage of total saturated
fatty acids (SFA) (33.38%) was recorded at 100 mmol photons/m2 s
and 16:8 h photoperiod, while maximal production of monoun-
saturated (MUFA) (15.93%) and polyunsaturated (PUFA) (27.40%)
was recorded at 37.5 mmol photons m�2 s�1 and 8:16 h photoperi-
od.

The growth and biochemical composition of H. pluvialis is
controlled or regulated by light. Imamaglu et al. [45] found that
maximal growth rate in batch culture for this strain (0.195 1/d) was
obtained the light intensity of 40 mmol photons/m2 s, in contrast,
in similar study with this microalgae where evaluated different
light intensities H. pluvialis showed a maximal growth rate 0.243 1/
d at a light intensity of 170 mmol photons/m2 s used acetate as
carbon source [47].

From a practical point of view, these results emphasizes that a
high light irradiation had improved the content of high values
compounds, where pigments and lipids production are dependent
and controlled by the irradiance and photoperiod in microalgal
cultures. This technology is widely used for laboratory scales
studies; however, results are very expensive in massive cultivation
due to the use of artificial light and its application will depend on
natural irradiance of sunlight.
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3.5. Electromagnetic fields

In recent years, the application of electromagnetic fields (EMF)
to improve or accelerated processes has been used successfully in
many areas such as chemical engineering, biomedical engineering,
food technology and agriculture. However, few studies regarding
the application of EMF in biotechnological processes have been
reported [4,7]. A number of bioprocesses could be successfully
integrated with electromagnetic or electrochemical stimulation if
the cultivation conditions are properly engineered using special-
ized reactors as electrolytic bioreactors, electro-bioreactors and
bioelectro-reactors [82]. Fig. 2 shows the different forms for apply
electromagnetic stimulation in biological systems.

Electromagnetic fields treatments cause a variety of effects in
microorganisms and plants such as changes in gene expression,
growth rate, lag phase duration and biomass yields during
fermentative process in bacteria and yeast [15,66], increased seed
germination, growth, and pigments content in plants such as
wheat and been [14], and increased oxidative stress in plant cells
[74]. Photosynthetic cells have been used as models of electric
fields induced oxidative stress [85]. Electromagnetic stimulation
can alter the energy levels and spin orientation of electrons to
increase the activity, concentration, and lifetime of free radicals
[71,74]. It also affects enzyme activity, gene expression, and release
of calcium from intracellular storage sites, which in turn influences
the membrane structure, cell growth and cell death [85]. Living
organisms have developed metabolic pathways leading to the
accumulation of antioxidants including carotenoids and enzyme
systems to protect cells against oxidation under conditions of
stress [34].

Several studies were carried out to investigate the effect of
electromagnetic stimulation in microalgae for enhancing growth
and metabolites production. Hader [37] evaluated the effect of
external electric field in Phorrnidium uncinatum and found that low
voltages (<2.5 V) did not affect the photophobic reactions in this
blue-green algae, but at electric field between 3 and 7 V the
photophobic reactions are replaced and at high voltage (>7 V)
induced cell death.

Wang et al. [85] in a study with C. vulgaris, proposed three
mechanisms by which EMF interact with living organisms. The first
one is so called electromagnetic induction that is EMF exerts forces
on moving ions in solution (e.g., electrolytes) which gives rise to
induced currents. The second is the electromechanical effect that is
uniform EMF produce torques on certain molecules and any
ferromagnetic materials in the body. The third mechanism, which
is often used to explain the variation of biological reaction in cells,
is electronic interactions that is static EMF can alter energy levels
and spin orientation of electrons. EMP alters the spin states of the
Fig. 2. Overview of various electromagnetic stimulation
free radicals, which in turn changes the relative probabilities of
recombination and other interactions, possibly with biological
consequences [71].

In a study with Chlorella kessleri, the exposition to electromag-
netic field (10 mT) resulted an increased in biomass, pigments,
proteins, Ca and Zn contents [79]. In similar study with C. vulgaris,
Benavente-Valdés [13] reported maximal production of pigments
(15.02 mg/L for total chlorophyll and 3.33 mg/L for carotenoids)
when the microalga was exposure in the exponential phase of
culture (96 h) with an EMF of 2 V and 4 h of duration under
photoheterotrophic conditions.

Li et al. [56] observed similar behavior in the cyanobacterium
Spirulina platensis when was exposed at static magnetic field
intensities stimulated growth rate, uptake of carbon and light
energy utilization. They observed that the levels of micro and trace
elements (Ni, Sr, Cu, Mg, Fe, Mn, Ca, Co and V) and essential amino
acids such as histidine improved at 250 mT magnetic field
treatments. Also, chlorophyll a content of the magnetically treated
sample was higher than the control, suggesting better light
harvesting for photosynthesis. In this concept, Hirano et al. [39]
observed that S. platensis was stimulated by geomagnetic field
increasing the phycocyanin content which plays an important role
in the activation of photosystem II to help the activation of electron
transfer reactions during photosynthesis.

In D. salina, b-carotene content was increased when it was
exposed to static magnetic field (10 mT) and addition of Fe-EDTA. It
also showed higher accumulation of the heavy metals (Co, Cd, Cu
and Ni) indicating its potential for bioremediation of heavy metals
[88].

The application of EMF fields in microalgae cultures represents
an alternative for production of microalgal biomass with high
contents of pigments, protein and minerals. Also it is important to
evaluate the operation cost at large scale by studying the impact on
yields in open and closed systems in comparison with other
strategies.

3.6. Two-stage culture

In commercial production of microalgae biomass, high cell
density culture is desirable in order to reduce the cost for down-
stream processing. The two-stage culture technique refers to
microalgae growth under two different culture conditions
(generally changing carbon source or type of reactor) in order to
increase biomass productivity and metabolites of interest (Fig. 3).
Although most of the microalgae are autotrophic organisms, some
species are able to use organic carbon as source of nutrients for cell
growth and development. The use of substances containing
organic carbon and energy source in addition of supplementation
 modalities from fields in biological systems [43].



Fig. 3. Two stage strategy for microalgae culture.
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with CO2 creates an additive or synergistic effect of the two
processes which are reflected in increased productivity.

Two-stage culture strategy has been used for enhancing
accumulation of high-valuable compounds in microalgae cells.
In a study with Schizochytrium limacinum [19] for production of
docosahexaenoic acid (DHA) the cultivation was divided into two
stages: (1) a cell-number-increasing stage in which cell reproduc-
tion and cell number increase with little increase in the size and
weight of each cell; and (2) a cell-size-increasing stage in which
cells stop reproduction but cell size enlarges due to lipids
accumulation, where the production of algae biomass and DHA
was improved to levels of 37.9 g/L and 6.56 g/L.

Sequential heterotrophic and autotrophic cultivation methods
were investigated for production of high concentration of
C. pyrenoidosa biomass with high cellular protein and chlorophyll
contents [62]. In this study, the cultivation system was composed
of the conventional mini-jar reactor for the heterotrophic phase
and a tubular photobioreactor for the autotrophic phase. During of
steady state cultivation, 27% of CO2 emitted in heterotrophic phase
was used in the autotrophic phase. In this system was possible to
produce high biomass concentration (14 g/L) containing 60.1% of
protein and 3.6% of chlorophyll continuously for more than 640 h.

Yen and Cheng [90] developed a two-stage strategy for the
cultivation of C. vulgaris using an autotrophic growth followed by a
mixotrophic process. The experimentation was carried out in glass
flask bubbled with supplemented air (2% CO2) illuminated with
LED lights (1300 mmol photon/m2 s) for autotrophic phase. In the
mixotrophic stage, carbon sources (glucose or glycogen) were
added diary to the medium. The results indicated that a two-stage
cultivation process achieved 7.4 g/L of biomass, which was about a
64% increase over simple autotrophic cultivation; however it was
observed lower levels of lipids. In contrast, the lipid content
increased when the two-stage culture process started with
heterotrophic phase using organic waste and municipal wastewa-
ter followed by phototrophic conditions was used with Chlorella
sorokiniana [93]. These results indicated this two-stage algae
culture system could also benefit waste treatment.

Two-stage cultivation for nutrient removal is often adopted in
wastewater treatment. Zhou et al. [94] developed a sequential two-
stage mix-photoautotrophic culture strategy for swine wastewater
treatment for the production of biofuels and animal feeds with the
advantage of remove total phosphorus (100%) and ammonia
(89.46%) after second-stage cultivation. They used facultative
heterotrophic microalgal strains isolated from local waste. Also a
hetero-photoautotrophic algal growth culture was studied to
improve wastewater treatment and to produce a low-cost algal
biofuel feedstock using Auxenochlorella protothecoides [95]. There-
fore, two-stage cultivation represents an economic and feasible
technology to enhance the industrial viability of microalgae
pigments and lipids.

4. Conclusions

Limitation of N and P, and increment of salinity in microalgae
cultures represents a feasible strategy to increase biomass,
pigments and lipids in chlorophyceae species. Also, the control
irradiance and photoperiod in cultures are crucial to the
development of metabolic activities of the microalgae for the
production of these high-value compounds. The application of
physical stress-strategies such electromagnetic or electric fields to
increase microalgae yields it is at the early development stage, and
more research is needed to quantify their impact at commercial
scale production systems. Two-stage cultivation processes are
promising strategies to explore at commercial levels in a near
future to maximize yields and decreasing costs. Finally it is
important to fully understand the operation of the overall process,
making more efficient and economically viable the application of
these technologies to enhance the commercial viability of micro-
algae industry.
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