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ABSTRACT Soybean is a crop of major economic importance with low rates of genetic gains for grain yield
compared to other field crops. A deeper understanding of the genetic architecture of yield components
may enable better ways to tackle the breeding challenges. Key yield components include the total number
of pods, nodes and the ratio pods per node. We evaluated the SoyNAM population, containing
approximately 5600 lines from 40 biparental families that share a common parent, in 6 environments
distributed across 3 years. The study indicates that the yield components under evaluation have low
heritability, a reasonable amount of epistatic control, and partially oligogenic architecture: 18 quantitative
trait loci were identified across the three yield components using multi-approach signal detection. Genetic
correlation between yield and yield components was highly variable from family-to-family, ranging from -0.2
to 0.5. The genotype-by-environment correlation of yield components ranged from -0.1 to 0.4 within
families. The number of pods can be utilized for indirect selection of yield. The selection of soybean for
enhanced yield components can be successfully performed via genomic prediction, but the challenging
data collections necessary to recalibrate models over time makes the introgression of QTL a potentially
more feasible breeding strategy. The genomic prediction of yield components was relatively accurate
across families, but less accurate predictions were obtained from within family predictions and predicting
families not observed included in the calibration set.
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Soybean is a field crop ofmajor importance due to its seed composition,
containing approximately 40% protein and 20% oil. Its unique com-
positionandscalableproductionmakesoyakeycroptoworld-wide food
security (Qiu et al. 2013). However, soybean germplasm has narrow
genetic basis (Carter et al. 2004, Mikel et al. 2010) that has limited the
rate of genetic gains of yield grain to 29 kg/ha/year in North America
(Rincker et al. 2014). Better breeding strategies are needed to explore
soybeans’ full genetic potential (Specht et al. 1999, 2014), and a possible
approach to increase grain yield is through trait dissection, breaking
down yield into yield components. In fact, whereas modern cultivars
have around 30 pods per plant (Kahlon et al. 2011), some accessions
have as many as 200 pods per plant (Zhang et al. 2015).

Kahlon and Board (2012) contrasted cultivars released over the past
few decades and observed that grain yield increases may have been
triggered by changes in yield components over time, particularly in
pods and nodes. Suhre et al. (2014) found that the number of nodes
and pods per node have steadily increased in cultivars released from
1920 to 2010. The number of pods and nodes are key yield-driver
(Robinson et al. 2009) that reflects the efficiency of the complex
physiological process (Board and Tan 1995). These yield compo-
nents can be increased at farming levels with good agronomic
practices and high-end genetics (Board and Kahlon 2011,
Kahlon et al. 2011). However, the labor-intensive phenotyping
of counting soybean pods and nodes can restrict the number of
entries and most studies have been conducted with a small number of
genotypes (Egli and Bruening 2006, Robinson et al. 2009, Kahlon et al.
2011, Nico et al. 2019).

The first large-scale genetic assessment of complex traits was
performed in the SoyNAM population, where 5600 genotypes from
40 bi-parental families sharing a common parent were phenotyped for
various agronomic traits (Xavier et al. 2016, Xavier et al. 2017a, Diers
et al. 2018). Whereas soybeans have constrained genetic diversity
(Carter et al. 2004), the SoyNAM is a relatively rich panel of locally
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adapted genotypes that represents an invaluable resource for the
breeding community.

Fromapreliminary analysis in the SoyNAMpopulation, Xavier et al.
(2017a) found that grain yield presents strong genetic correlation to
yield components, canopy development, and the length of the repro-
ductive period. The latter is a function of days to flowering and days to
maturity, both traits controlled by a few major genes (Watanabe et al.
2009, 2011, Xia et al. 2012, Langewisch et al. 2014). The genetic archi-
tecture of canopy development has been recently described by Xavier
et al. (2017b) and Kaler et al. (2018). However, the in-depth genetic
architecture of yield components had not been characterized with suf-
ficient power and resolutions.

This study aims to conduct a set of quantitative genetic analyses
performed with genome-wide markers to unravel the underlying ar-
chitecture of yield components and assess potential breeding applica-
tions. Our evaluation approach includes comparing different strategies
for genomic prediction within and across family; perform genomic
covariance analysis to uncover the pleiotropy between yield and yield
components, as well as the amount of genetic variation attributed to
epistasis and genotype-by-environment interactions; andmulti-approach
associationstudies to identifyregionscontainingQTLwith thepotential to
be deployed for marker-assisted selection.

METHODS

Population
The panel under evaluation is a nested association panel, namely the
SoyNAM populations, where the standard parent IA3023 (Dairyland
DSR365 x Pioneer P9381) was crossed to 40 founder parents that
attempt to capture the diversity of public germplasm, each family
comprising approximately 140 individuals. Among the 40 founder
parents, 17 lines are U.S. elite public germplasm, 15 have diverse
ancestry, and eight are planted introductions. The descriptions of
parents are available https://www.soybase.org/SoyNAM/. The popula-
tion’s maturity ranged from late maturity group II to early maturity
group IV. More details about the population composition are available
inDiers et al. (2018) andXavier et al. (2018). After quality control based
on segregation patterns, 5363 individuals were used for this study.

Experimental design
The experiment was conducted under a modified augmented design,
with a 7:1 lines-to-check ratio, in two Purdue University research
centers: Throckmorton-Purdue Agricultural Center (TPAC) located
in Throckmorton, Indiana, and at the Agronomy Center for Research
and Education (ACRE) in West Lafayette, Indiana. The experiments
were planted during the third week of May in two-row plots (2.9m ·
0.76m), at a density of approximately 36 plants m-2. The phenotypes
were collected in 10 field blocks, these being distributed as 4 adjacent
blocks in 2013, 4 adjacent blocks in 2014 and 2 field blocks in different
locations in 2015. In 2013 and 2014 the experiments were conducted at
the ACRE farm, where each field block contained all 40 families with
35 recombinant inbred lines (RIL) per family, that is, one-quarter of the
total number of RILs. In 2013 and 2014 RILs were not replicated, but
the same checks were used across fields. In 2015, the experiments were
conducted on 6 of the 40 SoyNAM families in two locations, ACRE and
TPAC, with two replicates per location.

Phenotyping
The number of pods and nodes was counted in the main stem, between
phenological stages R5 and R7, averaging the counts of 3, 6 and 4
representative plants per plot in 2013, 2014 and 2015 respectively.

The variable number of subsamples varied according to the resources
available each year. The number of pods per node was obtained by the
ratio. Grain yield was collected at harvest, converting the grain weight
from individual plots to bushels per acre adjusted to 13% grain
moisture. The number of days to maturity (Fehr et al. 1971) was
collected by scoring the plots every 3 days from the time where the
first mature plot was observed, using back-and-forth scoring to
assign the plots that matured between scoring dates.

Genotyping
The genetic information was collected from Illumina SoyNAM
BeadChip SNP array specially designed for SoyNAM, comprising
5305 SNPmarkers selected from the sequencing of all 41 parental lines
(Song et al. 2017). Missing loci were imputed using a hidden Markov
model and removed markers with minor allele frequency below 0.05
using the R package NAM (Xavier et al. 2015). A total of 4240 SNPs
were used for genomic analysis.

Genetic merit
The genetic values were estimated as the best linear unbiased predictors
(BLUP), as a random term of a mixed model. The mixed linear model
was fitted with variance components based on restricted maximum
likelihood (REML), computed using the R package lme4 (Bates et al.
2014). The linear model used to model genetic values:

y ¼ mþ f ðsÞ þ ZuþWg þ e

Where the response variable ywasmodeled as a function of an intercept
m, spatial covariate f ðsÞ based on a moving-average of neighbor plots
as described by Lado et al. (2013) implemented in the functions
NNscr/NNcov of the R package NAM (Xavier et al. 2015), a random
effect Zu to capture the genetic effects of individual lines, namely the
genetic effects, assumed to be normally distributed as u � Nð0;s2

uÞ,
a nuisance random effectWg to capture the local environment effects,
as normally distributed as g � Nð0;s2

gÞ, and a vector eof residuals,
normally distributed e � Nð0;s2

eÞ. The inverse phenotypic variance
was computed for each environment and used as observation weights
to account for the heteroscedasticity among trials. Although the
checks were not explicitly included in the genetic merit model, these
were invaluable for the spatial correction of the field plot variation.
Broad-sense heritability (H) was estimated from the REML variance
components as:

H ¼ s2
u

s2
u þ r21s2

e
:

Where r is the average number of replicates per entry. The reliabil-
ity of the jth genotype (Hj) was used to deregress (Garrick et al.
2009) its corresponding BLUP (uj) in order to obtain the genetic
values in natural scale (yj ¼ uj=Hj). This procedure of unshrink
BLUPs precludes the downstream analyses to be performed upon a
vector of phenotypes with heterogeneous degree of shrinkage,
which may lead to biased results.

The narrow-sense heritability estimates (h2) were based on the
following SNP-BLUP model:

y ¼ mþMaþ e

Where y correspond to the genetic values, modeled as a function of an
intercept m, matrix with SNP information and marker effects (Ma), and
the vector of residuals (e). Both marker effects and residuals were as-
sumed to be normally distributed with variances s2

a and s
2
e , respectively.
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Thenarrow-senseheritabilitywas computedunder two scenarios: 1) deploy-
ing all markers and 2) only with the markers found to be associated with
yield components. The narrow-sense heritability was estimated as follows:

h2 ¼
s2

a · 2
PJ

j¼1
pjð12 pjÞ

s2
a · 2

PJ

j¼1
pjð12 pjÞ þ s2

e

:

Polygenic epistasis
We performed a within-family variance component analysis to deter-
mine the amount of variability jointly explained by additive and
additive-by-additive epistasis. For that, we fit a kernel-based model
referred to as the G2A model (Zeng et al. 2005). Variance compo-
nents were estimated using REML estimates (Misztal 2008). The
analysis followed the linear model:

y ¼ mþ cþ vþ e

c � Nð0;Ks2
cÞ

v � Nð0;Qs2
vÞ

e � Nð0; Is2
eÞ

Where y correspond to the genetic values, modeled as a function of an
intercept (m), additive genetic values (c), additive epistatic value (v),
and the vector of residuals, (e). The relationship matrices were built in
accordance to Zeng et al. (2005) and Xu (2013). The additive genetic
relationship matrix was obtained by the cross-product of the central-
ized marker matrix (M) with centralized trace, thus K=MM’a
with a=n·Tr{(MM’)^{{21}}}, and the additive epistatic relationship
matrix was computed by the additive Hadamard product with cen-
tralized trace, thus Q=(MM’\##MM’)a with a normalizing factor
a=n·Tr{(MM’\##MM’)^{{21}}}.

Multivariate analysis of pleiotropy and stability
Multivariate analysis, namely genetic and additive genetic correlations,
allows exploring the interaction between traits across years (pleiotropy)
or within trait between years (stability or genotype-by-environment
correlation). The genetic correlationswithin-familywereobtained as the
Pearson’s correlation between the BLUPs of yield and yield compo-
nents for pleiotropy analysis, as well as the correlations of yield com-
ponents from year to year for stability analysis.We estimated the additive
genetic correlation between yield and yield components for pleiotropy
analysis, and yield components across years for stability analysis, for each
of the 40 families using amultivariate GBLUPmodel. TheGBLUPmodel
was fit with REML variance components. For the multivariate polygenic
analysis, we fitted the following multi-trait model:

y ¼ mþ cþ e

c � Nð0;K5ΣcÞ

e � Nð0; I5ΣeÞ
Where, under multivariate settings, y ¼ fy1; y2; :::; ykg correspond to
the genetic merits, modeled as a function of their corresponding
intercepts, m ¼ fm1;m2; ::: ;mkg, the additive genetic values,
c ¼ fc1;c2; ::: ;ckg, and the residuals, e ¼ fe1; e2; ::: ; ekg. With

respect to the model variances, Kis the relationship matrix defined in
the previous model, the additive covariances Σc is a dense k· kmatrix
where the ij cell corresponds to the additive genetic covariance
scði; jÞ between ith and jth traits, and the residual covariance was
assumed to be diagonal Σe ¼ diagðs2

e1;s
2
e2 ; ::: ;s2

ekÞ. Additive
genetic correlations were estimated from the covariance compo-
nents as rcði; jÞ ¼ scði; jÞ=½scðiÞscðjÞ�. From the genetic correla-
tions and heritabilities, the efficiency of indirect selection (Falconer
and Mackay 1996) using ith trait to select the jth trait was estimated as
E ¼ hj22 hi 2 rcði; jÞ.

Association studies
Since various signal detection strategies may capture different QTL
(Yang et al. 2018), three complementary methodologies of genome-
wide association studies were deployed in this study: Single marker
analysis, implemented in the R package NAM (Xavier et al. 2015),
whole-genome regression BayesCpi (Habier et al. 2011) imple-
mented in the R package bWGR (Xavier et al. 2019), and random
forest implemented in the R package ranger (Wright and Ziegler
2015). A brief description of the methods is provided below.

Mixed Linear Model (MLM): This method of an association study is
based on the likelihood ratio between amodel containing the marker of
interest (full model) and a model without the marker (reduced model).
Both models include a polygenic term that accounts for the population
structure. The statistical model that describes this association study
is tailored to NAM populations (Xavier et al. 2015) and follows the
linear model:

y ¼ mþ Xbþ cþ e

Where the genetic values (y) are modeled as a function of an intercept
(m), the matrix containing the interaction between the SNP informa-
tion and family for the target marker under evaluation (X), the vector
of marker effect within family b � Nð0;s2

bÞ, the vector of indepen-
dent residuals, e � Nð0;s2

eÞ, and the polygenic term defined previ-
ously, c � Nð0;Ks2

cÞ, which parametrizes the genetic covariance
among individuals through the full-ranking genomic relationship
matrix K . Bonferroni thresholds were utilized to account for multiple
testing and mitigate false-positives, yielding a two-sided threshold of
-log10(0.025/4240)=5.23. The association model was fit with REML
variance components.

Whole-genome regression (WGR): Designed primarily for prediction,
WGRmethods fit all markers at once. The prior distribution of marker
effects follows a mixture of distributions to perform feature selection.
The association statistics are based on the posterior probability of each
marker to be included in the model, or “model frequency”. The model
of choice, BayesCpi, assumes each marker has a probability p of being
included in the model, where the parameter p is estimated in each
MCMC iteration. Markers reached statistical significance if 1-p was
smaller than a two-sided threshold of a ¼ 0:05, which translates
into a threshold for the Manhattan plot of -log10(0.025)=1.6. The
linear model that describes BayesCpi is the following:

y ¼ mþMaþ e

Where y correspond to the genetic values, modeled as a function of
an intercept (m), the matrix containing the all SNP information (M)
and the vector of all marker effects jointly estimated (a), which
followed a mixture of distributions, having probability p of having
null effect and probability 12p or being normally distributed as
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Nð0;s2
bÞ, and the vector of independent residuals, e � Nð0;s2

eÞ.
The marker and residual variances were assumed to follow an inverse
scaled chi-squared distribution, s2

b � x2ðSb; n0Þand s2
e � x2ðSe; n0Þ,

assuming n0 ¼ 5 prior degrees of freedom and shape parameters com-
puted assuming prior heritability of 0.5 (Pérez and de Los Campos 2014),
thus Sb ¼ 0:5 s2

y MSx21ð12pÞ21and Se ¼ 0:5 s2
y . The model

was fit with 20000 MCMC iterations, discarding the initial 2000 it-
erations, and no thinning, such that the posterior means were com-
puted by averaging 18000 MCMC iterations.

Random forest regression (RFR): Random forest is a non-parametric
regression derived from the bootstrapping aggregation of decision trees
built from subsets of data and parameters. The association statistics of
RFR is based on feature importance (Botta et al., 2014). The forest was
grown with 10000 decision trees. The trees were built having as starting
point

ffiffiffiffi
m

p ¼ 65 SNPs sampled at random with replacement. The met-
ric of variable importance was the ‘impurity’ index, which is a measure
of the out-of-bad explained variance. Because there is no objective way
of defining an association threshold for significant SNPs, we estimated
the global empirical threshold (Doerge and Churchill 1996) based on
1000 permutations (a ¼ 0:05), thus making no assumptions about the
distribution of the associations.

Cross-validation studies
Cross-validations were performed for each yield component. Due
to the known population structure of the SoyNAM, three types of

cross-validationswereperformed: (1)within-family, (2) across-family,
and (3) leave-family-out. Within- and across-family validations were
performed as fivefold cross-validation, randomly selecting 80% of the
data as a calibration set, and using the remaining 20% as a prediction
target. The sampling and prediction procedure is repeated 25 times.
Leave-family-out validation use 39 families to predict the family left
out, and the procedure is performed to all 40 families. The prediction
statistic is the predictive ability (PA), as the correlation between
predicted and observed values.

The cross-validationwas performed using the functions emCV of
the R package bWGR (Xavier et al. 2019). In accordance with the
genomic prediction benchmark proposed by Daetwyler et al.
(2013), two statistical models evaluated in this study were GBLUP
(VanRaden 2008) and BayesB (Meuwissen et al. 2001). The GBLUP
model was fitted as a ridge regression with REML variance compo-
nents, and the BayesB assumes that markers effects follow a mixture
of distribution, where the jth marker had probability p ¼ 0:95 of
having null effect and probability 12p of being normally distrib-
uted asNð0;s2

bjÞ, variances were assumed to follow an inverse scaled
chi-squared distribution, s2

bj � x2ðSb; n0Þand s2
e � x2ðSe; n0Þ,

assuming n0 ¼ 10 prior degrees of freedom and shape parameters
computed as Sb ¼ 0:5 s2

y MSx21and Se ¼ 0:5 s2
y .

Data availability
All phenotypic and genotypic data are available in the R package
SoyNAM available on CRAN. To access the data, install the SoyNAM

Figure 1 Phenotypic distribution of the pod number (top), node number (center) and pods per node (bottom). Families had elite (2-23), diverse
(2-39) and exotic (40-64) genetic background.
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package (CRAN.R-project.org/package=SoyNAM), then load the
Indiana dataset with the following command in R: data(soyin,
package=9SoyNAM9).

RESULTS
The SoyNAM provided reasonable variation for the three yield com-
ponents. The phenotypic distributions of the yield components for each
of the SoyNAM families is presented in Figure 1. The mean and stan-
dard deviation across families is provided in Table 1, alongside the
broad- and narrow-sense heritability estimated across families.

The broad-sense heritability of the number of pods and nodeswas
slightly higher than the broad-sense heritability of yield, however, the
narrow-sense heritability of yield was almost twice as large and the
number of nodes, and almost three times higher than the narrow-
sense heritability of the number of pods. The narrow-sense herita-
bility estimated from the 18 markers found associated with yield
components recovered almost entirely the narrow-sense heritability
of the number of pods, but just a third of the heritability of the number
of nodes and grain yield. And, surprisingly, the narrow-sense herita-
bility of the ratio of pods per nodewas higher when only the significant
markers were used.

Association analysis
The genome-wide screening for segments associated to yield compo-
nents is presented in Figure 2. Regions associated with the number of pods
were located in chromosomes 3, 5, 14 and 19; significant associations for
node number were observed in chromosomes 2, 3, 5, 6, 14, 18 and

19; and regions associated with pods per node were detected in chro-
mosomes 3, 7, 12 and 19. The summary of the associated regions is
presented in Table 2, alongside the impact of each significant marker
on the yield components, grain yield and days to maturity. With the
exception of the association between the marker Gm02_6396340 and
the number of nodes, our study did not find any other consensus QTL
detected by all three association methods for any of the yield compo-
nents. All three yield components had significant associations in
chromosomes 3 and 19, and themarker Gm19_1587494 was associated
with all three traits. From the associatedmarkers, Gm13_14346156 had
the highest impact on grain yield, potentially increasing yield as much
as 0.6 bushels per acre.

Polygenic architecture
The proportion of variance explained by additivity and epistasis for
individual families is presented in Figure 3. The additive fraction of
the genetic variance computed using G2A kernels is comparable to
the narrow-sense heritability estimated across families (Table 1).
All three yield components presented similar average polygenic
architecture, having the additive and epistatic components ranging
from 0 to approximately 50%, but the estimates where highly variable
from family to family. The additive component averaged 7.46%,
9.03%, and 6.18%; the epistatic component averaged 7.92%, 7.02%,
and 7.77%, and the total genomic heritability (additive + epistatic
components) averaged 15.38%, 16.05%, and 13.95% for the num-
ber of pods, nodes, and pods per node, respectively. Many families

n■ Table 1 Trait distribution (mean and standard deviation) and genetic metrics: broad-sense heritability (H), narrow-sense heritability (h2)
estimated using all SNPs and the subset of significant SNPs

Trait Mean Std. Dev. H h2(all SNPs) h2 (QTL SNPs)

Nodes 12.085 1.090 0.352 0.159 0.069
Pods 34.046 4.955 0.361 0.110 0.095
P/N 2.819 2.819 0.301 0.064 0.142
Yield 66.557 14.345 0.334 0.280 0.093

Figure 2 Genome-wide association studies of pod number (A,B,C), node number (D,E,F) and pods per node (G,H,I), performed through three
methodologies: WGR whole-genome regression (A,D,G), RFR random forest regression (B,E,H), and MLM mixed linear model (C,F,I). RFR
significance is defined by permutation threshold; MLM significance is adjusted for multiple testing with Bonferroni threshold; WGR does not
require adjustment for multiple testing.
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provided near-zero genetic control for yield components, in agree-
ment with the low within-family predictive ability (Figure 4).

Prediction analysis
The outcome of the prediction analysis is presented in Figure 4. Pre-
dictions within-family provided lower correlations than leave-family-
out, and across-family predictions yielded the most predictive scenario.
All three yield components had similar heritabilities (Table 1) and, con-
sequently, similar prediction accuracies. For the different cross-validation
scenarios, correlations around 0.05, 0.08 and 0.21 were observed for
predictions within-family, leave-family-out, and across-families,
respectively. BayesB provided a slightly higher predictive ability
than GBLUP across cross-validation scenarios, providing an in-
crease in predictability of as much as 0.02. However, the differences
in predictive ability were negligible, in agreement with previous
results (Xavier et al. 2016). The slightly advantageous performance
of BayesB suggests that some QTL contribute to the prediction of
yield components, but a polygenic model captures most of the
genomic signal.

Genetic correlations and indirect selection
The within-family genetic and additive genetic correlations between
yield components and yield, as well as yield components stability, are
presented in Figure 5. Whereas the average correlations between yield
components and yield are relatively small (Figure 5A), there is a large
variation from family to family, which indicates that some families
could benefit from the selection of yield components. From the three
yield components, the number of pods was the only trait with the
efficiency of indirect selection that departed from zero (data not pre-
sented), so we broke down the efficiency of indirect selection based on
pod counts by the genetic background of the SoyNAM founder (Figure
5C). Families with non-elite genetic backgrounds are more likely to
benefit, and the indirect selection based on pods was more effective
than on yield itself in 10 families (E. 1).

DISCUSSION
The dissection of yield components using multiple quantitative genetic
approachesusing genomic informationprovides an insight onhow such

traits can be utilized for breeding purposes. For that, we performed a
wide range on analysis, including checking the heritability in broad- and
narrow-sense, whether there were major genes involved, whether these
genes are captured by different approaches of association analysis,
whether the genetic control is influenced by epistatic factors, the trait
stability across years, and genomic predictive ability in different settings,
different models, within and across families. The collective interpreta-
tion of these analysis contributes to the construct the big picture of the
genetic architecture of these traits.

Brief overview of the architecture
The number of pods and nodes, as the ratio pods per node, are key yield
components in soybean (Herbert and Litchfield 1982) reported to be
yield drivers (Kahlon and Board 2012, Suhre et al. 2014). Understand-
ing how such traits work may provide insight into better strategies to
increase yield and yield stability (Xavier et al. 2017a). In soybeans, we
found that these yield components have low heritability, both in the
broad and narrow sense, and have partially oligogenic architecture,
where the genomic control is jointly explained by a set of QTL and
polygenic terms (Figures 2 and 3). In addition, within-family analysis
indicates that some populations display more epistatic than additive
control under the polygenic model (Figure 3), whereas other families
presented no genetic control whatsoever.

QTL
Successful mapping of markers associated with complex traits relies on
the size and variability of the mapping population. Our study was
conducted on the SoyNAM, a large population designed to optimize
power and resolution. Yet, only a small number of QTL were detected.
Previous mapping studies on yield components have relied on non-
experimental panels with a highly diverse genetic background. The
studies of Hao et al. (2012), Hu et al. (2014), Zhang et al. (2015) and
Fang et al. (2017) assessed 191, 113, 219 and 809 genotypes, re-
spectively, including landraces and wild accessions. Among the
studies on diverse backgrounds, Fang et al. (2017) found a QTL
for pod and node numbers in close proximity to our QTL peak
on chromosome 06, marker Gm06_47199506. The pod number
QTL detected by Hu et al. (2014) were located in chromosomes
3, 5 and 6, in overlapping regions to signals Gm03_2382974,

n■ Table 2 Summary of association studies: SNP at the peak of each QTL; corresponding trait and method from which the QTL was
identified, and the least squared effect of the SNP for each yield components, yield and days to maturity. Negative values indicate the
desirable allele is inherited from founder parents

SNP GWAS (Figure 2) Number of pods Number of node Ratio pods ped node Yield (bu/ac) Days to Maturity

Gm02_6396340 B,D,E,F 20.26 20.41 20.03 20.47 20.16
Gm03_2182974 A,D,E 20.25 20.38 20.03 20.18 20.33
Gm03_46533591 A,B,G,H 20.32 20.12 20.34 0.07 0.02
Gm05_914933 B 20.20 20.17 20.10 0.15 0.02
Gm05_3661638 B,C 0.13 0.25 20.05 20.23 0.30
Gm06_47199506 D 0.10 0.21 20.05 0.22 0.06
Gm07_7868756 G,H 20.02 0.18 20.18 0.05 20.03
Gm12_2838455 I 0.07 0.15 20.04 20.09 0.08
Gm13_14346156 D 0.19 0.26 0.05 0.62 0.07
Gm14_743883 A 0.23 0.16 0.18 0.18 0.13
Gm14_917668 B 0.23 0.19 0.15 0.11 0.22
Gm14_2322106 D 0.17 0.27 20.01 0.40 0.32
Gm15_5446785 H 20.09 0.14 20.23 20.24 20.02
Gm18_2357823 D,E 20.11 20.24 0.05 20.27 20.02
Gm18_57370051 D,E 0.23 0.28 0.08 0.14 0.22
Gm19_1496625 B,E,I 20.43 20.38 20.28 20.34 0.02
Gm19_1587494 B,C,F,H,I 20.43 20.33 20.31 20.15 0.09
Gm19_1991181 E 20.36 20.34 20.21 20.15 0.10
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Gm03_46533591, Gm05_914933, Gm05_3661638, Gm06_47199506,
and Gm07_7868756.

The significant markers found from this study do not overlap with
the signals found for grain yield (Diers et al. 2018) and yield stability
(Xavier et al. 2018) in the SoyNAM population. However, markers
Gm02_639640, Gm07_7868756 and Gm12_2838455 are in close prox-
imity to seed size QTL reported by Diers et al. (2018). Two markers,
Gm19_1587494 and Gm18_57370051, were found to be associated
with important traits from previous studies. The marker Gm19_
1587494 was also found to be the key association to canopy coverage
(Xavier et al. 2017b), which means that canopy coverage could be
associated with the three yield components. The marker Gm18_
57370051 is linked to the stem termination gene Dt2 (Bernard et al.
1972), which has been previously detecting in NAM families by Ping
et al. (2014). In previous studies, Hao et al. (2011) and Fang et al. (2017)
found that Dt2 is an influential gene on the number of pods and nodes.
The Dt2 gene is also believed to have played a role in the soybean
domestication (Sedivy et al. 2017).

The markers that were found to be associated to yield com-
ponents in this study had little to no impact in maturity, which
can be amajor limiting factor to their use in breeding asmost QTL
that improve yield often increase the number of days to maturity
(Table 2). However, the QTL peaks also had a limited impact
on grain yield across family, with effects ranging from -0.46 to
0.62 bu/ac.

It is important to point out that Table 2 presents an average effect
of allele substitution for simplicity. However, two association
methods deployed in this study do not directly estimate the allele
effects: The MLM utilized in this study computes the significance
from within-family effects, hence capturing signal in different link-
age phases between marker and QTL. The RFR also does not nec-
essarily provide an allele effect, instead it computes recursive
decision trees that would capture QTL with additive, dominant
or epistatic effect. Therefore, the intend of this study was mostly
focused on tracking which markers are likely associated to the yield

components rather than inferring from which parent the desirable
alleles are inherited from.

Genomic selection
Markers are informative in two levels for genomic predictions: they can
inform the relationship and detect markers linked to, or under linkage
disequilibrium with, the quantitative trait loci (Habier et al. 2007).
Within-family predictive ability solely relies on the linkage disequilib-
rium (LD) between markers and QTL, as the relationship among in-
dividuals is constant. The predictions of families not included in the
training set (leave-family-out) can yield mixed results since the training
set often holds families with shared ancestry. Of course, the controlled
ancestry is a key property of NAMpopulations since all families share a
common parent and, therefore, the outcome predictive ability is higher
than the non-experimental population where neither parent has off-
spring in the calibration set. Predictions performed across family are
presumably the most likely to be accurate, as they capture relationships
among families and disequilibrium between markers and QTL.

Figure 4 depicts well the expected predictive ability, as within-family
predictions hold a high degree of uncertainty, with correlations aver-
aging from 0.064 across yield components, followed by leave-family-
out predictions, with an average correlation of 0.092, and the most
predictive was across-family predictions, with average correlations
above 0.224. Predictive abilities computed from leave-family-out and
within-family can be penalized from the fact that some families pre-
sented had near-zero heritability and hence no variation for yield com-
ponents.Within-family predictionsmay be further penalized due to the
small population size to calibrate the genomic models. However, across
family predictions are relatively more accurate as those capture both
relationship and LD information, and the lower dispersion of the pre-
dictions can be attributed to the fact that the prediction model is large,
containing a large number of full- and half-siblings. Results from the
enhancement in predictive ability due to the joint availability of LD and
relationship information have been previously presented from a theo-
retical standpoint by Habier et al. (2013) and Schopp et al. (2017), and

Figure 3 Barplot of the proportion of variance explained by different genetic components of pod number (left), node number (center) and pods
per node (right) by family. Additive (black), epistatic (gray) and residual (white) variances. Families had elite (2-23), diverse (24-39) and exotic
(40-64) genetic background.
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similar results in real data were reported by Ogut et al. (2015) in the
maize NAM population. In hybrid maize study, Lehermeier et al.
(2014) claimed 375 half-siblings to provide the same predictive ability
of 50 full-siblings, but emphasized the degree of relatedness among
families would also play a key role in the predictive ability.

Prediction accuracies estimated across families can also have a
misleading interpretation, as these are subject to the Simpson paradox
(Chipman and Braun 2017), where the model is able to detect large
differences across families, but the predicted families may display neg-
ative correlation within-family. Such limitations could be addressed if
the cross-validations across-family were performed sampling 20% of
individuals from each family and training with the remaining set com-
prising all families, then estimating the average within-family predictions.
However, across-family validations have two advantages: (1) these indi-
cate the predictive potential of selections performed across populations
and (2) provide results that can be more easily compared to other
literature reports, as most studies performed cross-validations dis-
regarding within-population studies.

The difference in predictive ability between GBLUP and BayesB,
which translated into an average improvement of 0.02 going from
GBLUP to BayesB, is due the larger flexibility the BayesB model, which
is more likely to capture large effects and perform variable selection
(Meuwissen et al. 2001, Habier et al. 2011, Pérez and de los Campos
2014, Xavier et al. 2016). Having a comparison between GBLUP and
BayesB can provide an insight into the genetic architecture of the trait
under evaluation (Daetwyler et al. 2013). In this study, we expected
BayesB to outperform GBLUP since we uncover a partially oligogenic
architecture from the association analysis, but a key piece of informa-
tion that the genomic prediction analysis provides is discrepancy be-
tween GBLUP and BayesB, which inform the degree to which the
genetic architecture of the traits under evaluation depart from a poly-
genic architecture.

Note that the advantage provided by changing the model from
GBLUP to BayesB is nowhere comparable to the difference in predict-
ability between cross-validation methods (i.e., within-family, leave-
family-out, and across-family). The reason why this phenomenon
occurs is that different methods may improve how well the model
detects the genetic architecture, but different types of cross-validation
provide different information. Thus, gains associated to the choice of
a prior are often considered negligible in comparison to increases in
population size, better experimental practices, or more representa-
tive calibration sets (de los Campos et al. 2013, Xavier et al. 2016).

A possible way of capturing more information for genomic prediction
is the explicit modeling of other sources of genetic information, such as
dominance and epistasis (Xu 2013). As presented in this study, yield
components in some populations have a greater influence of epistasis
than the additive background and, on average, the within-family var-
iance decomposition indicates that additive genetics explains as much
of the yield components phenotypes as epistasis (Figure 3).

Stability and plasticity
When assessing genotype-by-environment, the total genetic corre-
lation was larger the additive genetic correlation for all yield com-
ponents (Figure 5B), approximately ranging from 0 to 0.4, whereas
the additive genetic correlations ranged from 0 to 0.25. The discrep-
ancy between genetic and additive genetic correlations is attributed
to the genetic control due to QTL and non-additive polygenic ge-
netic background.

For the families with near-zero genotype-by-environment correla-
tion, performing selectionswith a single year of datamaynot reflect into
observable genetic gains in the coming years, and that collecting data
from more environments may not necessarily increase the predictive
ability of the yield components. Particularly for yield components, low
genotype-by-environment correlations is not necessarily bad since the
soybean yield plasticity relies on reallocating resources among yield
components, which serves as a physiological response to mitigate
yield losses under stress (Board and Tan 1995, Board et al. 1997,
Pedersen and Lauer 2004, Zhang et al. 2004). Whereas yield com-
ponents are mainly responsible for the yield formations, these are
not necessarily the best linear yield predictors (Board and Modali
2005). For example, Board and Harville (1993) showed that the
number of pods serves as the mechanism by which seed production
increases in response to greater light interception.

Our previous study (Xavier et al. 2017a) assessed the association
among soybean agronomic traits and yield components in the SoyNAM
population-based on undirected graphical models. The graphical models
depicted genetic and environmental interdependence among yield com-
ponents. That means that interactions among yield components occur
due to genetic forces as well as a response to environmental stimuli and
agronomic practices. Such a phenomenon is also described in a summary
of agronomic studies on soybean yield components authored by Board
and Kahlon (2011). The interactions among yield components play a key
role in the redistribution of resources and yield stability (Ball et al. 2000).
It is possible that breeding any given yield component toward extreme

Figure 4 Boxplot of predictive ability of pod number (left), node number (center) and pods per node (right), where two prediction models (BayesB
and GBLUP) tested three cross-validations strategies: across-family (green), leave-family-out (blue) and within-family (red). The three cross-
validations schemes provide an insight on across-family selection (across family), prediction and selection of individuals from unobserved family
(leave family out), and within family selection that capture only QTL segregating in the family under evaluation (within family).
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values may result in a compromised ability of soybeans to compensate
yield under stress (Malausa et al. 2005).

Yield increases
From the standpoint of trait decomposition, the breaking down of
grain yield into pods and nodes does not seem to be an effective
approach since there is no strong evidence that these yield compo-
nents are more heritable than yield (Table 1) or strong genetic
correlation to yield (Figure 5A) that would justify the selection
based on yield components. With the exception of a few families,
yield components are not good proxies for grain yield (Figure 5C). It
is possible that the genetic architecture of the yield components
under evaluation is just as complex as grain yield itself, not justifying
predicting yield components instead of yield per se.

In our previous genomic prediction study (Xavier et al. 2016), we
assessed how a variety of different genomic prediction models would
predict the agronomic traits and yield components under the following
scenario: within year and across-population. Even though that study
did not provide in-depth insight into the genetic architecture of yield
components, it was found that genomic prediction models that can
jointly account for large effect QTL and epistasis were advantageous over
simpler prediction approaches. That study also found that predicting
yield is easier than predicting yield components. Those results were
further confirmed by the current study, where we assessed the architec-
ture of yield components withmore data and under different approaches.

Phenotyping
Amajor challenge ofworkingwith yield components is the data collection
as the counting is highly subjective to human error, lowering the trait
heritability and affecting the signal detection in downstream analysis. As
deep learning methods for computer vision become increasingly pop-
ulation for phenotyping morphological traits (Singh et al. 2018), the
current limitations with data collection could be addressed by an
automated high-throughput phenotyping instead of human counts,
that would likely increase both accuracy and scalability of the pro-
cess. A recent study by Zhang et al. (2019) provides a procedure
using computer vision for counting soybean pod under experimen-
tal settings that would address the phenotypic limitation of this
study. Similarly, Uzal et al. (2018) and Li et al. (2019) recently
proposed an imagery system for counting seeds directly from images
of soybean pods, yet another yield component limited by the chal-
lenging phenotyping. Technologies that enable better, faster and cheaper
data collection remain a key limiting factor for the research in yield
components.
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