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Abstract

B-1 cells constitute a distinct B cell population with unique phenotypic and functional characteristics. They represent the
main B cell population found in mouse peritoneal and pleural cavities. The communication between B-1 cells and peritoneal
macrophages has been previously studied, and the effect this interaction has on macrophages has been previously
described. Using an in vitro co-culture model, herein we demonstrated that peritoneal macrophages were able to increase
survival rates and to stimulate proliferation of B-1 cells. IL-6 was also found to be important in B-1 cell survival; recombinant
IL-6 increases the percentage of viable B-1 cells in culture. Furthermore, molecules involved in the IL-6 signaling pathway,
such as STAT-3 and Bcl-2, were highly expressed in B-1 cells after co-culture with peritoneal macrophages. IL-6-deficient
peritoneal macrophages were not able to increase B-1 cell survival, confirming the importance of this cytokine. Altogether,
our results indicate a novel mechanism in which peritoneal macrophages are able to regulate the B-1 population via IL-6
secretion.
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Introduction

Homeostasis is essential for the maintenance of life. Once this

equilibrium is disrupted, dynamic interactions are initiated and

different components act together to orchestrate a controlled

response in order to restore conditions to the previous homeostasis.

The immune system is central to the maintenance of homeostasis.

It is essential for minimizing damage that originates from the

environment [1].

During an infection, different molecules are responsible for

recognizing potential pathogens that enter the body. These

receptors initiate a signaling cascade that results in the beginning

of an immune response. To clear the infection completely, there

must be communication between different cell types [2]. These

interactions, which occur both by cell-cell contact and through

secreted soluble factors, are observed in many organs and tissues.

The peritoneal cavity is not an exception. Many researchers have

described the peritoneal milieu as a dynamic environment that can

respond to a variety of stimuli, ranging from BCG (Bacillus

Calmette–Guérin) infection to skin transplantation, even if the

stimulus is located outside of the peritoneum [3], [4]. In fact, Palos

et al demonstrated a distinct peritoneal cell response after

inoculating the footpads of mice with an irritant, showing that a

distant stimulus can also affect the peritoneum cavity [5].

B-1 cells are the main B-cell population in the peritoneum of

mice [6]. These cells differ from conventional B lymphocytes (B-2

cells) in many aspects, including localization, surface marker

expression, antibody repertoire, developmental pathways, mor-

phology and function [7,8]. Moreover, Abrahao et al have

demonstrated that the ultrastructure of peritoneal B-1 cells has

no similarity to that of splenic B-2 cells [9]. B-1 cells express typical

B-lineage markers, such as CD19, CD45/B220 and IgM, but

unlike B-2 cells, they lack CD23 [10]. B-1 cells also express the

classical myeloid marker CD11b, and the expression of CD5

characterizes two distinct B-1 subtypes: CD5+ cells are referred to

as B-1a cells, while CD52 cells are described as B-1b cells [7,11].

Additionally, B-1 cells have the ability to secrete IL-10 without

stimulation, and they use this cytokine as an autocrine growth

factor [12].

Communication between B-1 cells and other immune cell

subtypes has been recently elucidated. Russo et al described the

ability of B-1 cells to modulate the cellular composition of BCG-

induced pulmonary granulomatous lesions in mice [3]. Addition-

ally, Nogueira-Martins demonstrated, in a T-cell-mediated allo-

graft rejection model in mice, that B-1 cells permitted the

infiltration of CD8+ T cells rather than T helper lymphocytes

into the allografts [4].

B-1 cells were also described to be important for functional

regulation of macrophages. Using in vivo models, Wong et al.

described the influence that B-1 cells have on macrophage

polarization; B-1 cells drive tumor-associated macrophages to an

alternatively activated phenotype in a B16 melanoma tumor
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model [13]. Moreover, Popi et al. demonstrated that the IL-10

secreted by B-1 cells leads to a decrease in nitric oxide and

hydrogen peroxide production by macrophages, which lowers

their phagocytic capacity in vitro [14]. In agreement with these

data, it was demonstrated that BALB/c mice failed to control a

Paracoccidioides brasiliensis infection when compared to BALB/Xid

mice, which have impaired production of B-1 lymphocytes [15].

This result was attributed to an impairment in macrophage

function because of IL-10 secreted by the B-1 cells [16].

Despite the influence of B-1 cells on many immune cells, little is

known about the possible role of different immune cells on the B-1

population. Based on aforementioned data, we decided to evaluate

the possible influence of peritoneal macrophages on B-1 cells

in vitro. Here, we describe that macrophages can influence B-1 cells

in vitro, mostly by influencing their proliferation and survival.

Methods

Mice
BALB/c, BALB/Xid and C57BL/6 mice, 6–8 weeks of age,

were obtained from the animal facilities of Centro de Desenvolvi-

mento de Modelos Experimentais para Medicina e Biologia

(CEDEME), UNIFESP, Brazil. C57BL/6 IL-6 knockout (KO)

mice, 8 weeks old, were obtained from the University of São Paulo

at Ribeirão Preto School of Medicine. In the majority of

experiments the BALB/c lineage was utilized, unless indicated

otherwise. This study was approved by the Research Ethical

Committee (0243/07) from Universidade Federal de São Paulo,

Brazil, and all efforts were made to minimize suffering.

Peritoneal Cell Culture
B-1 cells were obtained from the peritoneal cavities of mice, as

described elsewhere [17]. Briefly, peritoneal cells were collected

from the abdominal cavity of mice by washing with RPMI-1640

medium (Sigma, St Louis, MO). Cells (56106 cells/ml) were

dispensed onto 6-well plates (Corning Costar, Tokyo, Japan) and

incubated at 37uC in 5% CO2 for 40 minutes. Non-adherent cells

were discarded, and RPMI-1640 containing 10% fetal calf serum

(Cultilab, Campinas, SP, Brazil) (R10) was added to the adherent

fraction, followed by incubation at 37uC in 5% CO2 for 5 days

with no medium renewal. After this procedure, B-1 cells

comprised the main cell type in the non-adherent cell population.

These non-adherent cells (B-1 cells) were collected and used in the

experiments performed. The supernatants of these 5-day cultures

(peritoneal cell-conditioned medium) were collected and used in

some experiments. The adherent fraction of these cultures was also

used as a source of macrophages (Figure S1).

Phenotypic Analysis of Non-adherent and Adherent
Fractions of Peritoneal Cell Cultures by FACS
Cells from non-adherent or adherent fractions of the culture

described above were collected, and their phenotype was

evaluated by fluorescence activated cell sorting (FACS). These

cells were stained with the following antibodies: floating cells were

stained with allophycocyanin (APC) labeled anti-mouse CD19 and

fluorescein-isothiocyanate (FITC) labeled anti-mouse CD23. The

adherent fractions of BALB/c and BALB/Xid mouse cultures were

stained with FITC labeled anti-mouse CD19, phycoerythrin (PE)

rat anti-mouse CD11b and anti-mouse F4/80 biotin-conjugated

antibodies. After washing, these cells were also stained with

streptavidin APC-conjugated antibodies. Anti-CD19, CD23,

CD11b and streptavidin APC-conjugated antibodies were from

BD Biosciences (Pharmingen, San Diego, CA). Anti-F4/80

antibody was from Invitrogen (Life Technologies, Carlsbad, CA).

At each step, cells were maintained for 25 minutes at 4uC
protected from light. Fifty thousand events were acquired on a

BDH FACSCalibur using CELLQUEST software (BD Bioscienc-

es, Mountain View, CA), and data were analyzed using FlowJoH
software (Tree Star).

B-1 Cells and Macrophage Co-cultures
B-1 cells were obtained as described above and cultured in three

different ways: B-1 cells alone (16106 cells - in fresh R10 media);

B-1 cells (16106 cells)+peritoneal adherent cells (16105 cells - in

fresh R10 media) or B-1 cells (16106 cells)+peritoneal-conditioned
medium (B-1 cells+peritoneal cell-conditioned medium). Cells

were obtained from wild type mice (BALB/c), BALB/Xid or IL-6

KO mice, as mentioned in each experiment. Peritoneal-condi-

tioned medium was also obtained from these animals. B-1 cells

were either co-cultured with wild type or IL-6 KO derived

conditioned medium. Alternatively, B-1 cells were cultured with

peritoneal cell-conditioned medium derived from both mouse

strains or co-cultured in a transwell with the macrophages.

Viability Analysis of B-1 Cells by FACS
B-1 cells were washed and stained as described above for

quantification of the CD19+CD232 population. After staining for

cell surface markers, isotonic propidium iodide (PI) (Sigma, ST

Louis, MO) solution (10x) was added to each tube (final

concentration 1x) and incubated for 1 minute. Twenty thousand

events were acquired on a BDH FACSCalibur using CELL-

QUEST software (BD Biosciences, Mountain View, CA).

CFSE-based Proliferation Assay
B-1 cell proliferation was measured using CFSE (Carboxy-

fluorescein diacetate, succinimidyl ester - Molecular Probes,

Eugene, OR, USA) staining. Cells were counted, and 26106 cells

were resuspended in RPMI media and labeled with 5 mM CFSE

at 37uC for 15 minutes. Cells were washed with RPMI 1640

supplemented with 10% FBS and resuspended in R10. Cells were

cultured in 6-well round bottomed plates (16106/well for each

time point) for 24 and 72 hours at 37uC and 5% CO2. Cells were

then harvested, washed with 100 mL PBS with 1% BSA and

stained with peridinin chlorophyll protein (PerCP) anti-mouse

CD23 and APC anti-mouse CD19 (BD Pharmingen, San Diego,

CA) for 25 minutes at 4uC. Cells were then washed with PBS-1%

BSA and resuspended in PBS. Fifty thousand events were acquired

and analyzed on a BD FACSCalibur using CELLQUEST

software (BD Biosciences, Mountain View, CA).

IL-6 Quantification in Culture Supernatant
Supernatants from different co-cultures performed as described

above were collected and stored at 280uC. Later, they were

thawed, and IL-2, IL-4, IL-6, IFN-c, TNF-a, IL-17 and IL-10

were detected using the BD CBA Mouse Th1/Th2/Th17

Cytokine Kit (BD Biosciences, CA, USA). Briefly, 25 mL of each

sample was added to 175 mL of capture beads specific for the

cytokines listed above and PE labeled secondary antibodies.

Samples were incubated for 2 hours at room temperature in the

dark. Two-color flow cytometric analysis was performed using

FACS Canto II (BD Biosciences, Mountain View, CA) and

analyzed using CBA analysis software.

Recombinant IL-6 and Anti-IL-6 Treatments
B-1 cells were obtained as previously described, counted and

cultured alone, with 200, 400 or 800 pg/ml of recombinant IL-6

(BD Biosciences, CA, USA). After 24 and 72 hours, the phenotype

Macrophage-Derived IL-6 Increases B1 Cell Survival
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Figure 1. B-1 cells have their survival and proliferation increased when co-cultivated with peritoneal macrophages. (A) Schematic
representation of gate strategy after 24 hours of culture. Expression of CD19 and PI were evaluated on lymphocyte and dead cell gate (left column).
CD19+PI2 cells (middle column) were analyzed for CD23 expression (right column), and CD23+ population was excluded from all analysis. B-1 cells
cultivated alone (upper panel) or with peritoneal macrophages (lower panel) are shown. (B) Graph represents percentage of viable B-1
(CD19+CD232PI2) cells cultivated alone or with peritoneal macrophages in 24 and 72 hours. (C) Representative dot plots of B-1 cells stained with
CFSE cultured alone (B-1 cells) or with peritoneal macrophages (B-1 cells+macrophage), after 24 hours. (D) Graph represents geometric mean values
of CFSE staining after 24 and 72 hours for B-1 cultivated alone or with peritoneal macrophages. (E) Graph represents percentage of CFSE low B-1 cells
when cultured alone or with peritoneal macrophages.
doi:10.1371/journal.pone.0062805.g001
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and viability of B-1 cells were assessed as previously described.

Alternatively, B-1 cells were treated for 24 hours with anti-IL-6

before or after co-culture with macrophages (BD Biosciences, CA,

USA). The viability of B-1 cells was analyzed by PI staining.

Preparation of Cellular Extracts for Western Blot
B-1 cells were cultured in conditions mentioned above for 24

hours. After this treatment, cells were lysed in hypotonic buffer

(50 mM Tris-HCl pH 7.4, 100 mM NaCl, 50 mM NaF, 0.5%

NP-40, 1 mM NaVO4, 100 mM PMSF, 10 mg/mL leupeptin and

10 mg/mL aprotinin) for 20 minutes on ice. Cell lysates were

centrifuged at 14,000 rpm for 15 minutes at 4uC and the

supernatants were used for Western blotting analysis. Extracts

were stored at 270uC prior to use, and the protein content was

determined by the Bradford method [18].

B-1 cellular extracts were fractionated by SDS–PAGE with 10%

acrylamide under reducing conditions. The proteins were trans-

ferred to nitrocellulose membranes (BioRad, Hercules, CA, USA),

followed by blockage of free sites with TBS containing 5% skim

milk. Anti-pSTAT3 (Cell Signaling Technology, Beverly, MA,

USA), STAT3 (Santa Cruz Biotechnology, Santa Cruz, CA,

USA), anti-Bcl2 (Calbiochem, Merck, Darmstadt, Germany) and

anti-b actin (Sigma, St Louis, MO) were used as primary

antibodies, and peroxidase-conjugated goat anti-mouse IgG

(Sigma, St Louis, MO) or anti-rabbit IgG (BioRad, Hercules,

CA, USA) was used as a secondary antibody. The reactions were

developed with a chemiluminescence ECL kit (Amersham

Pharmacia, Uppsala, Sweden).

Statistics
All data represent at least three independent experiments and

are expressed as the mean 6 the standard deviation. Statistical

comparisons were made by the analysis of the variance and by

Tukey’s or Bonferroni’s post-tests. Differences that present p-

values of less than 0.05 were considered statistically significant.

Results

The Presence of Macrophages Increases B-1 Cell Survival
and Proliferation in vitro
Considering that B-1 cells are able to regulate some macro-

phages [13,14], we decided to evaluate if the presence of

peritoneal macrophages would induce changes in the B-1 cell

population in vitro. To evaluate this question, B-1 cells and

macrophages were obtained from peritoneal cell cultures, as

described above (Figure S1).

B-1 cells were cultured alone or in the presence of peritoneal

macrophages for 24 or 72 hours, and the viability and proliferation

rate of B-1 cells were analyzed. Figure 1A shows a schematic

representation of the gate strategy used throughout the figures.

Using forward (FSC) and side scatter (SSC) dot plots, 30,000

events were acquired from gated lymphoid and dead cells

(Figure 1A, left panel). From this population, B-1 cells (CD19+PI2)

made up 67.4% and 91.4% of the viable cells when cultured alone

or in the presence of peritoneal macrophages, respectively

(Figure 1A, middle panel). To exclude any possibility of

conventional B cell contamination, CD23 expression by

CD19+PI2 cells was analyzed (Figure 1A, right panel) and

CD23+ cells were excluded from all analyses. Figure 1B shows

that a significantly higher percentage of B-1 cells

(CD19+CD232PI2) were alive when cultured in the presence of

peritoneal macrophages for 24 or 72 hours than those B-1 cells

cultured alone. Similar results were obtained when B-1 cells were

purified by cell sorting (99% of purity –Figure S3) and cultured

together with peritoneal macrophages for 24 hours (Figure 1F).

As Almeida et al demonstrated, B-1 cells are able to proliferate

in vitro [17], and we wondered if contact with peritoneal

macrophages could modify the B-1 cell proliferation index. Thus,

B-1 cells were stained for CFSE and cultured alone or in the

presence of peritoneal macrophages. Figure 1C shows CFSE

staining of B-1 cells cultured alone or with peritoneal macrophages

for 24 or 72 hours. Analysis of CFSE-labeled cells showed that

peritoneal macrophages significantly increased B-1 cell prolifera-

tion in vitro (Figure 1D and E). On Figure 1D, the geo mean value

of B-1 cells cultured alone after 24 hours were used as reference for

the analysis B-1 cells cultured alone for 72 hours and with

peritoneal macrophage for 24 and 72 hours. Figure 1E shows the

percentage of B-1 cells with low CFSE staining.

Taken together, these data indicate that macrophages influence

the survival and proliferation of B-1 cells in vitro.

Soluble Factors Produced by Peritoneal Macrophages are
Sufficient to Modify B-1 Cell Survival in vitro
Considering that B-1 cell proliferation and survival are

increased in the presence of peritoneal macrophages, we

hypothesized that soluble factors secreted by the peritoneal

macrophages could have an important role in the observed

phenotype. To investigate this hypothesis, B-1 cells were cultured

as indicated: in fresh medium (B-1 cells), in the presence of

peritoneal macrophages (B-1 cells+macrophages) or with perito-

neal cell-conditioned medium (B-1 cells+conditioned medium)

over the course of 24 or 72 hours. As shown in Figure 2A, after

both periods, we observed an increased amount of viable B-1 cells

when these cells were cultured in conditioned medium compared

to B-1 cells cultured alone. When compared to B-1 cells cultured

with peritoneal macrophages, B-1 cells+conditioned medium had

similar viability after 24 hours, and a reduction was noted after 72

hours (Figure 2A). In addition, using different percentages of

conditioned medium resulted in a progressive dilution of soluble

factors and a decrease in the number of viable B-1 cells in culture,

in a dose-dependent manner, either after 24 or 72 hours

(Figure 2B).

To confirm that a soluble factor is essential for the augmented

B-1 cell survival in vitro, B-1 cells were cultured in the top of

transwell chambers placed over peritoneal macrophages. Figure 2C

shows that even without direct contact between macrophages and

B-1 cells, the presence of peritoneal macrophages increased

lymphocyte viability after 24 and 72 hours, as compared to B-1

cells cultured alone. Altogether, these results confirm the presence

of a peritoneal macrophage-derived soluble factor that increased

the survival of B-1 cells.

To eliminate the possibility that B-1 cells present in the

adherent fraction (less than 0.5% as shown in Figure S1) could

maintain B-1 cell survival by producing a soluble factor, the

adherent fraction of BALB/Xid peritoneal cell cultures was used as

the source for peritoneal macrophages. Flow cytometric analysis of

the peritoneal cell culture from BALB/Xid confirmed the

deficiency of B-1 cells (Figure S2). Analysis of the BALB/Xid

adherent fraction showed that it was mainly composed of

peritoneal macrophages, similar to that previously observed in

BALB/c cultures, with 91.3% of cells with the CD11b+F4/80+

phenotype (Figure 3A).

Corroborating the previous data, BALB/Xid peritoneal macro-

phages were also able to significantly increase B-1 cell survival

in vitro after 24 or 72 hours (Figure 3B), when compared to B-1

cells cultured alone. Moreover, when B-1 cells were cultured in the

conditioned medium obtained from the BALB/Xid peritoneal cell

Macrophage-Derived IL-6 Increases B1 Cell Survival
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culture, we observed similar percentages of viable cells compared

to the results with conditioned medium from BALB/c cells; both

were significantly increased compared to B-1 cells cultured alone

(Figure 3B).

Taken together, our results exclude the possibility of B-1 cell

contamination in the adherent fraction and clearly show that

soluble factors produced by peritoneal macrophages can promote

B-1 cell survival in vitro.

IL-6 Increases B-1 Cell Viability
Considering that macrophages produce high amounts of

interleukin-6 (IL-6) and that this cytokine is responsible for

lymphocyte proliferation and survival [19], we evaluated IL-6

levels in our model. Figure 4A shows higher amounts of IL-6

present when B-1 cells were cultured with conditioned medium

derived from BALB/c or BALB/Xid than when B-1 cells were

cultured in fresh medium. Other cytokines were measured (IL-2,

IL-4, IFN-c, TNF-a, e IL-17), however, none were present in

significant concentrations (data not shown). IL-10 was also

detected within the culture, with no difference between groups

(Figure 4B). Furthermore, the role of IL-6 in sustaining the

viability of B-1 cells in culture was also tested by the addition of

recombinant IL-6. Despite a slight increase in the number of

viable cells after the addition of 200 or 400 pg/ml of recombinant

IL-6 over those cells receiving no cytokine, no significant

differences were observed between these groups (Figure 4C).

However, treatment of B-1 cells with 800 pg/ml of recombinant

IL-6 augmented cell viability when compared to B-1 cells cultured

in fresh medium (Figure 4C). Altogether, these data indicate an

important role for IL-6 on B-1 cell survival.

IL-6 Increases pSTAT-3 and Bcl-2 Expression
STAT-3 phosphorylation is one of the main intracellular

consequences of IL-6 binding to its receptor [19]. Therefore, we

evaluated the activation of this signaling pathway in B-1 cells that

were cultured in different conditions. Figure 5A shows a

representative Western blot of B-1 cells cultured alone (Line 1),

in the presence of BALB/c peritoneal macrophages (Line 2), in

peritoneal cell-conditioned medium (Line 3) and with 800 pg/ml

of recombinant IL-6 (Line 4) after 24 hours of culture. Figures 5B

and C show the relative expression of STAT-3 and phosphory-

lated STAT-3 (pSTAT-3), compared to b-actin, in B-1 cells

cultured with the previously described groups. STAT-3 expression

was not significantly different for any of the groups (Figure 5B),

while pSTAT-3 was increased in all groups compared to B-1 cells

cultured alone. Moreover, Figure 5D shows an increase in Bcl-2,

an anti-apoptotic protein that is regulated by the STAT3

transcription factor, in all treated groups when compared to B-1

cells cultured alone. Together, these data strongly support the idea

that IL-6 is responsible for B-1 survival in our model, primarily

through increased Bcl-2 and pSTAT-3 expression. These data

reinforce the hypothesis that IL-6 participates in the survival of B-

1 cells in vitro.

Peritoneal Macrophages Derived from IL-6 KO Mice are
Unable to Maintain B-1 Cell Viability
To confirm the involvement of IL-6 in maintaining B-1 cell

survival in vitro and to determine the source of IL-6 in our in vitro

model, we cultured B-1 cells derived from IL-6 KO or wild type

(WT) mice together with peritoneal macrophages also derived

from these mouse strains. Since the background of IL-6 knockout

mouse is C57BL/6, the wild type animals used in this experiment

were C57BL/6. After 24 hours, the viability of B-1 cells from IL-6

KO or WT mice was significantly reduced after being cultured

with IL-6 KO peritoneal macrophages compared to B-1 cells

cultured with WT macrophages (Figure 6 A). Similarly, B-1 cells

cultured with conditioned medium from WT macrophages had

increased viability when compared to B-1 cells cultured with IL-6

KO-derived conditioned medium (Figure 6B). Moreover, the

overall IL-6 concentration was reduced when B-1 cells were

cultured with IL-6 KO peritoneal macrophages (Figure 6C). These

Figure 2. A soluble factor is essential for B-1 cell survival
in vitro. (A) Graph represents percentage of viable B-1 cells when
cultivated alone, together with peritoneal macrophages or with
conditioned medium, after 24 and 72 hours. (B) Viability was measured
when B-1 cells were cultivated with different concentration of the
conditioned medium. (C) Survival of B-1 cells was evaluated when they
were cultured on transwells placed on peritoneal macrophages.
*p,0.05, **p,0.01, ***p,0.001.
doi:10.1371/journal.pone.0062805.g002
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results demonstrate that macrophages are the main source of IL-6

in this system.

Finally, anti-IL-6 was added to cultures and the viability of B-1

cells in vitro was evaluated. When anti-IL-6 was added to the

system, the viability of B-1 cells that were cultured with

macrophages or with conditioned medium was statistically

reduced (Figure 6D). Together, these results corroborate the

importance of IL-6 production by peritoneal macrophages for B-1

cell survival.

Discussion

The role of B-1 cells in the regulation of other immune cells has

been widely reported. It has been demonstrated that B-1 cells

down-regulate macrophage functions in vitro [14], induce macro-

phage polarization to an alternative phenotype [13], modulate T

cell infiltration into allografts [4] and into the pancreas in mice

that spontaneously develop diabetes [20], induce the differentia-

tion of CD4+ T cells to become pro-inflammatory Th17 cells [21]

and also have a tolerogenic function in a model of allergic reaction

[22]. Not only do B-1 cells participate in physiological processes,

but they also have a role in some malignancies. Perez et al have

observed that B-1 lymphocytes can alter the properties of tumor

cells required for invasiveness during metastasis [23]. Further-

more, Mussalem et al [24] demonstrated that B-1 cells are

activated by the administration of Propioniumbacterium acnes,

inducing the expression of molecules involved in capturing and

processing antigens. These interactions with different cell types

indicate that B-1 cells may have an important role in regulating

different classes of immune responses, ranging from innate to

adaptive roles.

Significantly less evidence is available regarding the effects of

different cells on B-1 lymphocytes. We have demonstrated that

melanoma cells are able to modify B-1 cells after their interaction,

leading to both increased cell viability and rate of proliferation

[25]. Moreover, contact with melanoma cells also increases the

Figure 3. BALB/Xid peritoneal macrophages and conditioned medium augment B-1 cell survival. (A) Representative dot plot of BALB/Xid
peritoneal macrophages stained with F4/80, CD11b (left panel) and CD19 (right panel). (B) Graph represents percentage of viable B-1 cells present in
culture after 24 and 72 hours when B-1 cells were cultivated alone, on BALB/c or BALB/Xid peritoneal macrophages or with BALB/c or BALB/Xid
conditioned medium. ***p,0.001.
doi:10.1371/journal.pone.0062805.g003
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survival of B-1 cells after irradiation [25]. In this work, we present

data showing that interaction with peritoneal macrophages also

culminates in modifications of B-1 cells.

Here, we demonstrated that peritoneal macrophages were able

to increase B-1 cell viability and proliferation in vitro. This

information introduces an important new mechanism of B-1 cell

survival. Early reports indicate that B-1 cells are self-renewing

Figure 4. IL-6 increases B-1 cell viability. (A) IL-6 and IL-10 (B) were measured when B-1 cells were cultivated alone or with BALB/c or BALB/Xid
conditioned medium, after 24 and 72 hours. (B) B-1 cells were cultivated alone or with 200, 400 or 800 pg/ml of recombinant IL-6, and their survival
was measured. *p,0.05, **p,0.01, ***p,0.001.
doi:10.1371/journal.pone.0062805.g004
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cells, maintaining viability through IL-10 production [12].

Production of this cytokine may be an important mechanism

primarily for B-1 cell development because B-1 cells appear earlier

than follicular B cells or macrophages in ontogeny [26]. Thus, the

fact that B-1 cells, during early phases of development, do not

depend on other cells to maintain themselves may be seen as an

evolutionary advantage. Despite that, it seems reasonable that, in

later phases of development, other mechanisms may act together

to maintain B-1 cell viability and regulation. Indeed, immune cells

are finely regulated, and normally, several mechanisms are

responsible for increasing or reducing certain cell types, depending

on what the organism needs to maintain homeostasis.

Moreover, we showed that regulation of B-1 cell viability

occurred mainly through the production of a soluble factor by

peritoneal macrophages. Because B-1 cells are able to migrate

from the peritoneal cavity to an inflammatory focus [17,27,28], it

is important that this regulation might occur at a distance.

Notably, B-1 cells cultured in transwells or with peritoneal-

conditioned medium, despite the increase in viability, had no

increase in their rate of proliferation (data not shown). These

results show that B-1 cell-macrophage contact is also important for

B-1 regulation.

Considering that B-1 cells are capable of self-maintenance

through production of IL-10 [12], it might be postulated that the

peritoneal adherent cells were contaminated by B-1 cells. Despite

Figure 5. IL-6 cytokine increases pSTAT-3 and Bcl-2 expression. (A) Representative western blot of STAT-3, pSTAT-3 and Bcl-2 of B-1 cells
cultivated alone (line 1), with BALB/c peritoneal macrophages (line 2), with BALB/c conditioned medium (line 3) or with 800 pg/ml of recombinant IL-
6 (line 4), after 24 hours. Results are representative of 3 independent experiments. Relative expression of total (B) STAT-3, (C) pSTAT-3 and (D) Bcl-2
compared to b-actin are shown in the graphs. *p,0.05, **p,0.01, ***p,0.001.
doi:10.1371/journal.pone.0062805.g005
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the demonstration that the main population on adherent fraction

are macrophages, we also excluded this possibility by culturing B-1

cells in the presence of peritoneal macrophages derived from

BALB/Xid, mice, which have impaired production of B-1

lymphocytes [15], or in conditioned medium derived from

peritoneal cells. Similar results were found between these groups.

These data confirm the participation of peritoneal macrophages,

and a macrophage-derived soluble factor, on B-1 cell regulation.

IL-6 is a cytokine produced by several cell types, including

antigen presenting cells, such as macrophages and dendritic cells

[29], and it induces B-cell proliferation [30]. Moreover, B-1 cells

constitutively express high levels of IL-6 receptor [31]. All of these

data strongly indicate that IL-6 could participate in B-1 cell

regulation. Indeed, several experiments confirmed IL-6 participa-

tion in B-1 cell regulation. Not only was the concentration of IL-6

high in conditioned medium, but the addition of recombinant IL-6

was also able to increase B-1 cell viability. Moreover, phosphor-

ylated STAT-3 and Bcl-2 expression was increased when B-1 cells

were cultured with peritoneal macrophages or with conditioned

medium. The IL-6 intracellular cascade includes phosphorylation

of STAT-3 [19], which regulates other anti-apoptotic genes, such

as Bcl-2 [32]. Finally, the addition of anti-IL-6 reduced B-1 cell

viability. Recognizing IL-6 as a B-1 cell regulating factor may have

important consequences. It is known that IL-6 plays a critical role

Figure 6. Peritoneal macrophages derived from IL-6 KO mouse are unable to maintain B-1 cells viability. B-1 cells derived from C57BL/6
wild type or IL-6 KO mouse were cultivated with wild type or IL-6 KO peritoneal macrophages (A), or with conditioned medium derived from IL-6 KO
or WT mouse (B), and viability was measured after 24 hours. (C) IL-6 was measured when B-1 cells derived from wild type or IL-6 KO mouse were
cultivated with wild type or IL-6 KO peritoneal macrophages. (D) Anti IL-6 was added to the culture, and B-1 cells viability was measured. *p,0.05,
**p,0.01, ***p,0.001.
doi:10.1371/journal.pone.0062805.g006
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in the pathogenesis of autoimmune diseases [33], and overpro-

duction of IL-6 has previously been described in rheumatoid

arthritis in humans [34], [35]. Additionally, the involvement of IL-

6 in autoantibody production has been further supported by

studies in human patients and in animal models [33]. Considering

that high levels of B-1 cells have been reported in patients with

Systemic Lupus Erythematosus, Sjogren’s syndrome and rheuma-

toid arthritis [36] and that numerous associations between

expansion of this cell compartment and systemic autoimmunity

have been found in murine models [37], we propose here a link

between these two phenomena. In conditions in which IL-6

production is constitutively high, such as in aging [38] or in

chronic inflammatory situations [39], viable B-1 cells would be

augmented as well. This microenvironment would then be

favorable to the development of autoimmune diseases. It has

already been shown that autoimmunity is more prevalent in these

situations [40]. Whether the B-1 cells of these populations are

somehow altered or present in higher numbers is a question to be

answered. Additionally, in NZB/W F1 mice, a mouse strain that

develops an autoimmune condition accepted as a murine model of

Systemic Lupus Erythematosus [41] and that has a large B-1 cell

population in the peritoneal cavity [7], spontaneous production of

IgG anti-DNA antibodies by splenic B cells was enhanced by IL-6

[42]. IL-6 could have the same effect on B-1 cells because they also

produce anti-DNA antibody [43].

In conclusion, we have shown that peritoneal macrophages are

important for the viability of B-1 cells, mainly by the production of

IL-6. Extrapolating this result to in vivo, we could suggest that an

increase in IL-6 levels could result in the expansion of the B-1 cells

observed in some autoimmune diseases. These findings are

important for the understanding of the biological function of B-1

cells and reveal an as yet unknown mechanism of B-1 cell

regulation.

Supporting Information

Figure S1 B-1 cells and peritoneal macrophages are the
main population of cultures. (A) Analysis of non-adherent

fraction of the peritoneal cells culture demonstrated that B-1 cells,

characterized as CD19+CD232 cells, comprised approximately

80% of non-adherent cells. (B) On adherent fraction, 92.2% of

total cells were CD11b+F4/80+ (left panel), and less than 0.5%

were CD19+ (right panel). These cells were used here as source of

peritoneal macrophages.

(TIFF)

Figure S2 Flow cytometry analysis of peritoneal cells
culture from BALB/Xid. Representative dot plot showing

percentage (3.02%) of B-1 cells (CD19+CD232) of BALB/Xid

peritoneal cell culture.

(TIFF)

Figure S3 Flow cytometry analysis of peritoneal cells
culture after cell sorting. Representative dot plot showing that
99% of the cells present in culture after cell sorting were B-1 cells

(CD19+CD232).

(TIFF)
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