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Abstract: Laccase was immobilized on a chitosan/polyvinyl alcohol/tetraethylorthosilicate electro-
spun film (ceCPTL) and colored with guaiacol to obtain a laccase time–temperature indicator (TTI)
prototype. The activation energy (Ea) of coloration of the prototype was 50.89–33.62 kJ/mol when
8–25 µg/cm2 laccase was immobilized on ceCPTL, and that of lactic acid bacteria (LAB) growth in
milk was 73.32 kJ/mol. The Ea of coloration of the TTI prototype onto which 8–10 µg/cm2 laccase was
immobilized was in the required range for predicting LAB growth in milk. The coloration endpoint
of the TTI prototype onto which 10 µg/cm2 (0.01 U) laccase was immobilized could respond to
the LAB count reaching 106 colony-forming units (CFU)/mL in milk during a static temperature
response test, and the prediction error was discovered to be low. In dynamic temperature response
experiments with intermittent temperature changes between 4 and 25 ◦C, the coloration rate of the
laccase TTI prototype was consistent with LAB growth. The results of this study indicate that the
laccase TTI prototype can be applied as a visual monitoring indicator to assist in evaluating milk
quality in cold chains.

Keywords: TTI; electrospinning; laccase; milk; lactic acid bacteria

1. Introduction

The function of packaging is not only to hold food. In recent years, package has ex-
panded its function to protect food and improve storage quality (active packaging), to offer
the quality information on the package (intelligent packaging), and to offer the commu-
nication function of the package to facilitate communication with consumers throughout
the supply chain (smart packaging). Therefore, an intelligent food package should not
only serve the purposes of containment and protection but also provide consumers with
essential information regarding food quality to ensure food safety. Temperature fluctuation
in the storage environment is the main cause of unpredictable food spoilage, and large
temperature fluctuations may considerably influence the quality of food throughout its life
cycle [1].

As an intelligent food packaging technology, a time–temperature indicator (TTI)
enables monitoring food quality by its color changes based on the accumulation information
of temperature and time, and it can be used to predict the condition of packaged food or its
environment [2,3]. A TTI provides a continuous time–temperature history of foods, thus
providing managers and consumers with reliable and accurate information related to food
quality and safety. The TTI device is attached to the outer packaging of food and records
and provides the time and temperature history of a food to observers [2].
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The functions of TTIs are based on physical, chemical, microbial, or biological mecha-
nisms, such as diffusion emigration, monomer polymerization, microbial reactions, and
enzymatic reactions, respectively [3]. An enzymatic TTI is generally designed to undergo
catalysis for exhibiting coloration, is more sensitive than other TTIs to environmental tem-
perature changes, and is more accurate than a chemical or physical-diffusion-based TTI [4].
Therefore, enzymatic TTI systems have been extensively researched. Laccases, which are
multicopper oxidases, are common natural enzymes that can be used in biosensors. In ad-
dition to undergoing a simple catalytic reaction, laccases can react with various substrates,
including amines and aromatic compounds [5]. Laccase enzymes withdraw electrons
from substrates, converting the substrates into free radicals, which can be polymerized to
develop pigments [6]. Fungal-derived laccases—which catalyze the oxidation of phenolic
compounds such as aminophenols, polyphenols, and phenols—can oxidize guaiacol; this
reaction is observed as a color change from transparent to deep brown or deep purplish
brown [5,7].

Laccases are safe and ecofriendly and have recently received considerable attention
as promising candidates for optical biosensing applications [5,8]. However, enzymatic
TTIs have some limitations, including enzyme instability and irreversible deactivation
when temperature and storage duration are high [9]. Moreover, enzymes are expensive.
The commercially available TTI is about 2–4 US dollars per piece. Such a price is still
too high to be applicable to individual products, which means the TTI cannot be widely
used in the food industry at present. Enzyme stability during storage should be improved
and monitored, and the amount of enzyme required should be reduced to increase cost-
effectiveness; these actions would enable the development of commercial enzymatic TTI
systems. Immobilization is one of the preferred methods for improving enzyme stability
and is achieved by steading enzyme structure to resist changes in environmental temper-
ature, pH, etc., and would reduce the inhibition of reaction products in the electrospun
polyacrylonitrile nanofibrous membranes [10]. Among the various approaches used for en-
zyme immobilization, electrospinning is a progressive and desirable method that produces
fibers (with diameter ranging from submicrons to several nanometers) in a high-voltage
electrostatic field to obtain a material with a large specific surface area; this area is then
available for laccase immobilization with exceptional stability [7,10,11]. Moreover, a large
void between immobilized enzymes on such nanofibers results in fewer spatial structural
obstacles and thus leads to contact and reactions between enzymes and reactants [12,13].
Chitosan (CS) is an excellent biomaterial for use in enzyme immobilization [7]. However,
electrospinning of CS has some limitations; for example, creating continuous fiber jets
during electrospinning is difficult because of the repulsive forces between ionic groups and
the high surface tension of the polymer solution given that CS has high viscosity even at
moderate concentrations. To overcome these limitations, CS is commonly blended with
other polymers for electrospinning, such as polyvinyl alcohol (PVA) [14].

Tetraethyl orthosilicate tetraethylorthosilicate (TEOS) has been used to increase the
adhesion of electrospun fibers and the stability of electrospun CS fiber films [15]. In the
present study, laccase was immobilized on CS/PVA/TEOS electrospun fibers to develop a
laccase TTI prototype for simultaneously reducing the amount and stabilizing the activity
of an immobilized enzyme.

Milk is a perishable food because it is an ideal medium for the growth of different
microorganisms, which leads to its early deterioration. In a cold chain, low-temperature
storage is necessary at every stage for maintaining pasteurized milk quality and safety.
The US Food and Drug Administration (FDA) advises consumers to be aware of the
temperature and duration of storage when consuming this high-risk food [16] because
milk may deteriorate or even spoil before its expiration date if temperature changes occur
during transportation and storage in the cold chain. The shelf life printed on food packages
is not sufficiently reliable to ensure food quality and safety. The monitoring of temperature
fluctuations during food transportation and storage is crucial for determining food quality.
Although lactic acid bacteria (LAB) may not be the main spoilage bacteria causing milk
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deterioration, they are commonly found in expired pasteurized milk in Taiwan and may
decrease the pH of dairy products by metabolizing lactose into lactic acid [17]. In the
present study, a biosensor capable of displaying color changes was developed to respond
to LAB growth and to visually predict milk quality. The TTI developed in this study
is attached to the outer packaging of milk and is expected to be used as an intelligent
packaging. If a TTI is employed to predict food quality or shelf life, overestimation of
quality is unacceptable. To prevent such overestimation, Arrhenius activation energy (Ea)
was estimated to establish guidelines for temperature dependency, and response tests of a
laccase TTI prototype designed in this study were conducted for predicting LAB growth in
milk during temperature fluctuations.

2. Material and Methods
2.1. Immobilization of Laccase on Electrospun Fibers

Following the method of Pirzada et al. [15], a composite gel solution was blended with
PVA (118–124 kDa, First Chemical Manufacture Co., Ltd., Taipei, Taiwan), CS (deacetylation
degree: 76%, 50–190 kDa, Sigma-Aldrich, St. Louis, MO, USA), and TEOS (Sigma-Aldrich)
for electrospinning. To increase the ability of the electrospun fibers to adhere to the
polypropylene (PP) film, approximately 2 g of TEOS was dissolved in 3 mL of acetic
acid solution (1 mol/L) in a round-bottom flask. Subsequently, 4 mL of 10 wt% PVA
and 6 mL of 3 wt% CS/acetic acid (1 mol/L) were added to the aforementioned solution,
which was stirred at 100 rpm for 50 min in a water bath at 60 ◦C. Finally, a homogeneous
CS/PVA/TEOS gel solution was obtained. Ultrasonic degassing was performed for 5 min
in the water bath. The CS/PVA/TEOS gel solution was then fed into a positively charged
spinneret attached to an electrospinning apparatus (NE-300, Falco Enterprise, New Taipei
City, Taiwan) operated at 15 kV. The gel solution used in electrospinning was placed in a
5-mL syringe with a No. 21 needle and was then injected out at a feed rate of 0.5 mL/h.
A PP film was attached to a drum collector. The rotating speed of the drum collector
was 100 rpm and was placed at a distance of 20 cm from the needle tip to collect the
electrospun fibers. The completed single-side electrospun film (CS/PVA/TEOS/PP) was
soaked in 3% glutaraldehyde (GA; Nihon Shiyaku Industries Ltd., Osaka, Japan) and was
incubated for 2 h to covalently bond an aldehyde group of GA to an amine group on
the electrospun CS/PVA/TEOS fiber. Subsequently, the GA-modified CS/PVA/TEOS
was washed with acetate buffer (pH 4.5) and dried overnight in a desiccator at ambient
temperature to produce CS/PVA/TEOS/PP/GA. Three sheets of CS/PVA/TEOS/PP/GA
were generated, and 20 pieces of 1 cm2 were cut from the middle of each sheet. A minimum
of three pieces were randomly selected for enzyme immobilization and coloration tests.
In enzyme immobilization, 50 µL of 0.16–0.5 µg/µL laccase solution (Sigma-Aldrich,
from Trametes versicolor, lot result: 1.07 U/mg) was spread carefully on a 1-cm2 piece of
CS/PVA/TEOS/PP/GA to immobilize 8–25 µg (8.56–26.75 × 10−3 U) of laccase on each
piece of film. The process of laccase immobilization by crosslinking involves binding an
aldehyde group of GA to an amine group on chitosan, followed by the binding of an
amino group of laccase with another aldehyde group, which has been proved according
to Fourier-transform infrared spectroscopy analysis by Jhuang et al. [7]. The enzyme-
immobilized electrospun film was dried in an oven for 1 h at ambient temperature to
produce CS/PVA/TEOS/PP/GA/laccase (ceCPTL), which was stored at 4 ◦C. In addition,
the occurrence of a coupling reaction in ceCPTL was tested by rinsing ceCPTL and then
the rinsing liquid was reacted with a guaiacol solution to confirm that the laccase present
on each batch of ceCPTL had been effectively immobilized.

2.2. Morphology of Chitosan/Polyvinyl Alcohol/Tetraethyl Orthosilicate Tetraethylorthosilicate/
Polypropylene/Glutaraldehyde/Laccase (ceCPTL)

After freeze drying, ceCPTL was lacerated into small pieces. The dried specimens were
mounted on aluminum studs and coated with a gold–palladium alloy under high vacuum
conditions for 90 s. The surface microstructures of the specimens were then examined
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using an ultra-high-resolution field-emission scanning electron microscope (NNS 230, Field
Electron and Ion Company, Oregon City, OR, USA) operated at 10 kV.

2.3. Coloration

Each 1-cm2 piece of ceCPTL with varying amounts of immobilized laccase (8–25 µg/cm2)
was immersed in 1 mL of 20 mM guaiacol solution to obtain the laccase TTI prototype and
to investigate ceCPTL coloration.

2.3.1. Color Measurement

The color of the laccase TTI prototype was measured using six replicates with a
color measurement spectrophotometer (Diffuse/8◦ Spectrophotometer, Hunter Associates
Laboratory, Reston, VA, USA). The results are expressed in accordance with the CIELAB
system. The parameters determined were the degrees of lightness (L*), redness (+a*) or
greenness (−a*), and yellowness (+b*) or blueness (−b*). The difference in the coloration
(∆E) between the sample color and the darkest color of the laccase TTI prototype (the
darkest color is indicated by the subscript 0) was calculated as follows:

∆E =

√
(L∗ − L∗

0)
2 +

(
a∗ − a∗0

)2
+
(
b∗ − b∗0

)2 (1)

2.3.2. Absorbance of Coloration

Because the spectrophotometer could determine only the color of a single sample in
each measurement, conducting numerous experiments could have caused time differences
and interfered with the coloration data. Therefore, an enzyme-linked immunosorbent
assay reader (BioTEK Instruments, Winooski, VT, USA) was used to detect the coloration
of multiple samples simultaneously. Following the method of Jhuang et al. [7], guaiacol
oxidation was measured on the basis of the increase in absorbance at 470 nm. Because
the darkest color in TTI coloration was observed at an optical density (OD)470 of 3.50, the
corresponding L*a*b* of the absorbance value was used to calculate ∆E. The coloration
endpoint was defined as the minimum time taken for ∆E to become less than 5 even when
the reaction time was extended [18]. The normalized absorbance [norm(Abs)] was then
calculated as the OD470 of the sample divided by 3.50.

2.4. Kinetic Evaluation

Laccase TTI prototypes and LAB-inoculated milk were incubated at 4, 15, 25, and 37 ◦C.
The coloration rate was calculated as the change in OD470 within a certain time interval.
For calculating activation energies (Ea, kJ/mol) according to the Arrhenius expression, the
color responses of TTIs and milk quality were analyzed as follows [3]:

y = kt + y0 (2)

ln y = ln y0 + kt (3)

where y is the OD470 or LAB count determined after incubation time t, and k is the kinetic
constant of the reaction rate. Equations (2) and (3) were used to evaluate the zero-order and
first-order reactions, respectively, and were integrated to obtain the reaction rate constant.
Ea was then calculated as follows:

ln k =− Ea/RT + ln A (4)

where R is the general gas constant (8.314 J/K·mol), T is the absolute temperature (K),
and A is the prefactor. Ea was estimated from the slope of the Arrhenius plot and was
determined at least thrice. The coefficient of determination (R2) was calculated for each
test. The highest R2 was selected to represent the accuracy of Ea estimation.
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2.5. Simulation of Milk Quality Change

LAB (Lactococcus lactis subsp. lactis) were purchased from the Bioresource Collection
and Research Center (BCRC 12312) of the Food Industry Research and Development
Institute (Hsinchu, Taiwan). Following BCRC instructions, LAB were cultured in a brain–
heart infusion at 37 ◦C for 16 h to obtain a stationary phase (approximately 109 colony-
forming units (CFU)/mL) for use in milk quality tests. For the study purpose, samples
with identical quality were used rather than practically meaningful samples. Therefore,
by following the method of Haugen et al. [19], 1 mL of 102 CFU/mL LAB was inoculated
into 9 mL of ultra-high-temperature milk (Kuang Chuan Dairy Co. Ltd., Taoyuan, Taiwan).
Because temperatures lower than 10 ◦C are unsuitable for the growth of LAB [20], milk
was incubated at 10, 15, 25, and 37 ◦C in the storage experiment to simulate the growth of
LAB in an abnormal storage temperature environment. The changes in LAB growth, pH,
and titratable acidity (TA) were determined using the methods of Penasa et al. [21] and
were employed to indicate the extent of milk quality change that occurred during storage.
Each determination was performed in triplicate at least.

2.6. Response of the Laccase Time–Temperature Indicator (TTI) Prototype and Lactic Acid Bacteria
(LAB) Growth in Milk
2.6.1. Isothermal Response Test

The LAB-inoculated milk and laccase TTI prototype were stored at isothermal tem-
peratures of 10, 15, 25, and 37 ◦C. The prediction error was calculated in accordance with
the approach of Tsironi et al. [22] to determine the predictive accuracy of the laccase TTI
prototype in response to the growth of LAB in milk:

Prediction error (%) =
tLAB − tTTI

tLAB
(5)

where tLAB and tTTI represent the time taken for the LAB concentration to reach 106 CFU/mL
(h) and the coloration endpoint (h) of the laccase TTI, respectively.

2.6.2. Dynamic Temperature Response Test

Following the method of Kim et al. [4], temperature fluctuations between 4 ◦C (re-
frigeration temperature) and 25 ◦C (room temperature) were applied to simulate dynamic
storage conditions. Incubation of the LAB-inoculated milk and laccase TTI prototype at
4 ◦C for 8 h, followed by storage at 25 ◦C for 8 h, was performed three times. After each
incubation of 8 h, the growth of LAB in the milk and OD470 of the TTI prototype were
quickly determined, and the LAB-inoculated milk and TTI prototype were then incubated
again at the other temperature.

2.7. Statistical Analysis

All treatments were performed in triplicate at least. All statistical analyses were
conducted in triplicate, and the results are represented as the mean and standard deviation.
When the results of analysis of variance indicated significance (p < 0.05), data means were
compared using the least significant difference test by employing SPSS (SPSS Inc., Chicago,
IL, USA).

3. Results and Discussion
3.1. Immobilized Laccase on Electrospun Chitosan (CS) Fibers

PVA could be used as a cooperator to enhance the mechanical property of the elec-
trospun CS fibers through the formation of intermolecular and intramolecular hydrogen
bonds between the CS and PVA side chains. A polymer blend of PVA with CS was selected
as the organic polymer and was cross-linked with TEOS through the coupling reaction [15],
with the sol-gel method used to prepare hybrid fibers. The morphologies of electrospun
CS/PVA/TEOS fibers with diameters mainly distributed in 250–300 nm were observed
(Figure 1A,D). Large fibers of diameter mainly distributed in 400–450 nm, which had a
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smooth appearance, were observed after the fibers were soaked in GA (Figure 1B,E). More-
over, the ceCPTL fibers onto which 25 µg/cm2 laccase was immobilized were considerably
thicker (mainly distributed in 500–550 nm) than the fibers without laccase immobilization
(Figure 1C,F).

Figure 1. Scanning electron microscopy images (inset: 10,000× images) and the fibers diameter distribution of (A,D)
chitosan/polyvinyl alcohol/tetraethyl orthosilicate tetraethylorthosilicate/polypropylene (CS/PVA/TEOS/PP), (B,E)
CS/PVA/TEOS/PP/glutaraldehyde (GA), and (C,F) ceCPTL (CS/PVA/TEOS/PP/GA/laccase) with 25 µg/cm2 laccase
immobilized, respectively.

Susanto et al. [14] reported that cross-linking PVA/CS nanofibers with GA resulted
in morphological changes to the membrane microstructure, such as an increase in fiber
diameter. The addition of GA may produce a more stable membrane because, theoretically,
it more efficiently cross-links the free –OH groups of PVA and amine groups of CS to the
aldehyde group of GA. Koloti et al. [23] reported that laccase enzymes could be anchored
on fibers through the formation of bonds with the abundant peripheral amine groups of
CS by using GA as a cross-linker, which resulted in the increased thickness of the laccase-
modified membrane surface; this was attributed to the swelling of nanofibers onto which
the enzymes were covalently immobilized. In the present study, the diameters of the
CS/PVA/TEOS fibers were higher after the fibers had been soaked in GA because the
attached GA expanded the molecular chains, and laccase immobilization on the swollen
fibers also increased the width of the ceCPTL fibers.

3.2. Coloration of the Laccase TTI Prototype

The ceCPTL fibers onto which various amounts of laccase were immobilized were
immersed in the guaiacol solution at 4 ◦C, and the color of laccase TTI prototype changed
from transparent to light brown, dark brown, reddish brown, reddish purple, and finally
purplish brown; the color thus gradually deepened during isothermal coloration (Figure 2).
Through comparison of ∆E (between the sample after coloration and the darkest color of
the laccase TTI prototype reacted for 202 h at 25 ◦C) with OD470, ∆E was discovered to be
less than 5 when OD470 was 3.04 ± 0.06 (Table 1) and such reaction time was regarded to
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be the coloration endpoint at which the color change of the laccase TTI prototype could not
be distinguished visually [18]. Norm(Abs) was approximately 0.87 when the laccase TTI
prototypes reached the coloration endpoint.

Figure 2. Color change of laccase time–temperature indicator (TTI) prototypes onto which various
amounts of laccase (8–25 µg/cm2 on ceCPTL) were immobilized under storage at (A) 4, (B) 15, (C) 25,
and (D) 37 ◦C.

Table 1. Color response correlates with coloration of TTI prototype (onto which 8 µg/cm2 laccase was immobilized) at
25 ◦C.

Time (h) L* a* b* ∆E OD470

0.00 101.50 ± 1.94 a 0.04 ± 0.03 f 0.11 ± 0.16 e 65.67 ± 0.84 a 0.033 ± 0.00
4.00 86.24 ± 1.76 b 14.61 ± 0.24 de 17.14 ± 2.02 a 52.64 ± 1.25 b 1.209 ± 0.07
6.00 67.48 ± 1.90 c 21.65 ± 0.96 a 12.93 ± 1.84 b 34.75 ± 0.91 c 1.909 ± 0.04

18.00 52.59 ± 1.02 d 21.67 ± 1.42 a 6.71 ± 1.84 c 19.53 ± 0.96 d 2.58 ± 0.09
22.00 49.63 ± 1.08 e 20.54 ± 1.29 a 4.25 ± 1.29 cd 15.64 ± 0.64 e 2.64 ± 0.09
26.00 45.73 ± 0.73 g 18.84 ± 1.33 b 2.17 ± 1.91 de 10.60 ± 1.75 f 2.81 ± 0.02
58.00 43.37 ± 1.07 gh 18.08 ± 1.45 bc 0.42 ± 1.55 de 4.55 ± 1.52 g 3.04 ± 0.06
82.00 41.47 ± 1.05 hi 16.43 ± 0.97 cd −0.78 ± 1.51 e 3.58 ± 0.93 g 3.19 ± 0.08

106.00 40.24 ± 1.26 hi 15.56 ± 1.65 d −0.84 ± 1.46 e 3.47 ± 0.88 g 3.27 ± 0.04
202.00 37.24 ± 1.03 j 13.38 ± 1.17 d −2.06 ± 1.16 e 0.00 ± 0.87 h 3.50 ± 0.00

a–j The different superscript for sample in each column represents significant difference (p < 0.05).
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At a given temperature, the coloration rate increased with an increase in the amount
of immobilized laccase; for the same amount of immobilized laccase, the coloration rate
increased with an increase in the storage temperature (Figure 2). These results revealed
that the coloration response duration of the laccase TTI prototype can be regulated through
adjustment of the amount of immobilized laccase.

3.3. Arrhenius Activation Energy (Ea) of Laccase TTI Coloration and LAB Growth in Milk

Variation in the initial bacterial count of a sample had to be avoided, especially
when the initial bacterial count was zero, because the growth of bacteria as a spoilage
indicator would otherwise lack credibility. According to Yang [17], LAB are the quality
indicator bacteria of refrigerated pasteurized milk in Taiwan. Therefore, the effect of storage
conditions on microbial growth was evaluated by adding LAB to milk.

To accurately predict LAB growth in milk by using the laccase TTI prototype, the
kinetics of the coloration of the laccase TTI prototype and LAB growth in milk were
analyzed. Accordingly, ceCPTL specimens onto which 8, 10, 15, 20, and 25 µg/cm2

laccase were immobilized were placed in the guaiacol solution, and the coloration test
was performed at 4, 15, 25, and 37 ◦C. Equations (2) and (3) were used to evaluate the
zero-order and first-order reactions, respectively. The results indicated a strong linear
relationship between the reaction rate constant (ln k) and temperature (1/T) when the
first-order reaction was considered. All determination coefficients (R2) were >0.94 for the
regression lines of TTI prototypes with the laccase amounts 8–25 µg/cm2 (Figure 3A).

Figure 3. Arrhenius plots of ln k versus 1/T for (A) coloration of the TTI prototypes onto which various amounts of laccase
were immobilized and (B) lactic acid bacteria (LAB) growth in milk.

An integral method dependent on the relationship of 1/T with lnk was employed to
evaluate the Arrhenius activation energy (Ea) of the coloration of the laccase TTI prototype.
The Ea of the laccase TTI prototype onto which 8–25 µg/cm2 laccase was immobilized
(i.e., 0.0086–0.0268 U) was 33.62 ± 2.62 to 50.89 ± 2.16 kJ/mol, and the corresponding R2

was >0.94 (Figure 4). However, Kim et al. [5] found that Ea varied only in the range of
43.90–45.44 kJ/mol for the free laccase concentration of 0.104–0.650 U/mL. The reason for
the discrepancy in the Ea of these two types of laccase TTI was the immobilization of laccase
on electrospun fibers with a high specific surface area in the present study. Jhuang et al. [7]
reported that the Brunauer–Emmett–Teller (BET) specific surface area of their electrospun
CS/PVA fibers was approximately 17.0455 m2/g, which was approximately 247 times of
that of the non-electrospun film (20 mL of CS/PVA gel was spread evenly on a 10 × 20-cm2

PP film). Electrospun submicron fibers with a high BET specific surface area have a large
and effective immobilization area that results in large gaps between laccase immobilized
on the fibers [12]. This greater space results in fewer spatial structural obstacles and thus
preserves the structural integrity of the immobilized enzymes for contact and reaction with
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reactants [13]. Therefore, the desirable coloration and Ea change could be obtained at a
small amount of laccase in this study.

Figure 4. Arrhenius activation energy (Ea) of laccase TTI prototype coloration and LAB growth.

The first-order reaction is the most commonly used model to describe the deterioration
of a quality attribute or the degradation of a nutrient in foods [24]. During the milk storage
test, the LAB count was input to Equation (3), the first-order reaction equation. Linear
regression indicated a strong correlation between the reaction rate constant and temperature
(R2 = 0.93) (Figure 3B). This result revealed that the change in the LAB count during milk
storage, when used as a quality indicator, exhibited a linear relationship described by
a first-order reaction; this finding is consistent with the milk quality monitoring results
obtained by Kim et al. [25]. Thus, using the equation of the first-order reaction, the Ea of
LAB growth was calculated to be 73.32 ± 4.28 kJ/mol (Figure 4).

According to Kim et al. [4], the allowable difference in Ea between foods and TTIs is
± 25 kJ/mol for predicting food quality, with an error of <15%. The laccase TTI prototype
coloration and LAB growth had an allowable Ea difference of <25 kJ/mol, within the
range between the dotted line in Figure 4, when the amount of immobilized laccase
was 8 (49.20 ± 3.91 kJ/mol) and 10 (50.89 ± 2.16 kJ/mol) µg/cm2. Therefore, the TTI
prototype onto which 8–10 µg/cm2 laccase was immobilized was selected for testing
the isothermal storage temperature for determining the effectiveness of the laccase TTI
prototype under temperature abuse conditions other than the temperature of 4 ◦C, thus
providing information regarding milk quality changes. The effects of long-term storage
at non-refrigeration temperatures (10, 15, 25, and 37 ◦C isothermal storage temperatures)
and of fluctuating temperatures (a 4 and 25 ◦C dynamic temperature cycle) on LAB growth
in milk were then simulated, and the consequent coloration of the laccase TTI prototype
was investigated.

3.4. Milk Quality Change during Storage

LAB growth increased markedly after the hysteresis period when the milk was stored
at temperature >10 ◦C (Figure 5). Although the bacterial count was not the only criterion
for judging milk deterioration, milk was considered to have expired when the LAB count
reached 5–6 log CFU/mL [26]. In a dairy experiment with bacteria addition, unacceptable
milk quality was indicated by a cell count of >6 log CFU/mL [27,28]. Microbial growth
remains a crucial indicator when evaluating milk quality.

The pH of commercially available milk is 6.6–6.8, and the TA of pasteurized milk is
approximately 0.16–0.18% [28,29]. The bacteria had already induced a quality change (LAB
count > 106 CFU/mL) when the pH began to decrease and the TA began to increase remark-
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ably (Figure 5). Therefore, this study regarded the LAB count > 106 CFU/mL as the index of
quality change for milk stored at a temperature higher than the refrigeration temperature.

Figure 5. LAB growth and quality change in milk stored at various temperatures.

3.5. Response of Laccase TTI Prototype Coloration to Milk Quality Change

In the isothermal response test of milk containing LAB, 167.8 ± 1.5, 43.2 ± 2.3,
23.7 ± 1.7, and 15.6 ± 2.0 h were required for the LAB count to reach 106 CFU/mL in
the milk stored at 10, 15, 25, and 37 ◦C, respectively. The norm(Abs) of coloration for
laccase TTI prototypes with 10 µg/cm2 immobilized laccase was approximately 0.87, and
the prediction error was small (<10%) at every temperature (Table 2). According to Lin
et al. [29], the TTI could accurately and effectively monitor the quality change when the TTI
color reaction endpoint time was applied to predict the critical food quality deterioration
time (actual shelf life), and the prediction error was <15%. Moreover, a positive value
of prediction error indicated that the TTI reached the coloration endpoint before quality
deterioration. The results of this isothermal response test in this study revealed that the
color response of the TTI prototype onto which 10 µg/cm2 laccase was immobilized was
sufficient and desirable for predicting LAB growth in milk.

Table 2. Prediction error of coloration of laccase TTI prototype for monitoring LAB growth in milk.

Temperature (◦C)

Immobilized Enzyme (µg/cm2) Coloration Endpoint (h) Prediction Error (%) Time for LAB Count
Reached

106 CFU/mL (h) 18 10 8 10

10 190.8 ± 4.9 165.6 ± 3.7 −13.7 1.3 167.8 ± 2.5
15 57.9 ± 2.1 39.5 ± 3.4 −34.0 8.6 43.2 ± 2.3
25 34.1 ± 2.6 21.8 ± 1.5 −43.9 8.0 23.7 ± 1.7
37 27.5 ± 3.3 15.2 ± 2.4 −76.2 2.6 15.6 ± 2.0

1 Time for LAB count reached 106 colony-forming units (CFU)/mL (h) was estimated with the regression of LAB growth curve.

The kinetic parameters of the laccase TTI prototypes were further verified under
non-isothermal conditions to simulate temperature fluctuations, which may occur in a cold
chain. Therefore, to determine whether laccase TTI prototype coloration was reproducible
under temperature fluctuations, it was necessary to investigate the increase in coloration
with an increase in temperature and then the decrease in coloration with a decrease in
temperature to verify the reliability of the obtained milk quality information. The TTI
prototype with 10 µg/cm2 immobilized laccase and LAB-containing milk were employed
in dynamic temperature response tests. The laccase TTI prototype and milk were incubated
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to simulate normal and abnormal storage temperatures 4 and 25 ◦C, and the temperature
was switched every 8 h; 8 h of 4 ◦C followed by 8 h of 25 ◦C was regarded as one cycle,
and three cycles were performed over 48 h. The results showed that the reaction rate (k) of
laccase at 4 ◦C was lower than that at 25 ◦C in all cycles, except the first (Figure 6), which
indicated that the laccase TTI prototype exhibited a favorable response to temperature,
and that the coloration was reproducible under temperature fluctuations. Temperature
sensitivity was thus retained by the immobilized laccase during temperature fluctuations,
and dynamic modeling performed through kinetic parameters and numerical analysis
was effective; the present findings are similar to the results of a reaction kinetics study of
a lipolytic enzyme TTI examined under dynamic temperature profiles [30]. Because the
coloration of the laccase TTI prototype was considered to follow a first-order reaction, the
initial reaction occurred quickly. Thus, in the first cycle, the rate of TTI coloration at a 4 ◦C
storage temperature [k1–4 = 0.036 norm(Abs)/h for 0–8 h] was slightly higher than that
at 25 ◦C [k1–25 = 0.034 norm (Abs)/h for 8–16 h]. However, irrespective of temperature,
the reaction rate in the first temperature cycle was higher than that in the third cycle, in
which the coloration of the laccase TTI prototype was close to the endpoint and the rate of
coloration decreased. TTIs are employed to determine whether a food product’s quality
is unacceptable. Although the initial color reaction occurred quickly for the present TTI
prototype, this did not affect the reliability of the quality change predicted using the TTI.

Figure 6. Correlation between coloration of the TTI prototype onto which 10 µg/cm2 laccase was
immobilized [k is the coloration rate, norm(Abs)/h; the 1st and 2nd subscripts of k represent the
number of cycles and temperature, respectively] and LAB growth in milk under dynamic temperature
conditions; three cycles of 8 h each at 4 and 25 ◦C.

The dynamic temperature profiles showed that the LAB count in milk increased
rapidly at 25 ◦C but then increased slowly at 4 ◦C, and this occurred for all three cycles.
The LAB count in milk reached 106 CFU/mL after 40 h of storage (Figure 6). At this time,
the norm(Abs) of the laccase TTI prototype was approximately 0.87, which was close to the
coloration endpoint. Neglecting the accumulated LAB count that increased slowly at 4 ◦C,
the LAB count reached 106 CFU/mL after 16 h when LAB growth at 25 ◦C was separately
evaluated in the dynamic temperature test. However, the LAB count reached 106 CFU/mL
within 23.7 ± 1.7 h when the milk was isothermally stored at 25 ◦C (Figure 5). LAB
were expected to grow continuously during temperature increase and decrease periods
within the fluctuation cycle. Clearly, temperature fluctuations during storage considerably
influence milk quality. If the milk storage environment deviates from the appropriate
refrigeration temperature, the risk of product deterioration before or on the expiration
date specified on the label is considerably higher. In this situation, laccase TTI can provide
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information about the temperature history to the observer in order to assess the quality of
the milk product.

4. Conclusions

Cold chain temperature is not always maintained within the recommended range;
therefore, developing a real-time and cost-effective monitoring system for perishable foods
is vital. Immobilization of a small amount of laccase on a TTI produced an Ea and color
response consistent with LAB growth in milk and provided visible information of the prod-
uct temperature history. Managers and consumers can monitor milk quality by considering
a TTI’s color changes along with the expiration date printed on labels. Because the enzyme
in the TTI is immobilized on submicron electrospun fibers, the amount of laccase required
is small, minimizing TTI production costs, which is beneficial in commercial applications.

Author Contributions: Conceptualization, H.-H.C., and T.-Y.T.; data curation, T.-Y.T.; formal analysis,
S.-H.C.; funding acquisition, H.-H.C.; investigation, S.-B.L., and L.-C.C.; methodology, S.-N.L., and
Y.-H.C.; project administration, H.-H.C.; resources, T.-Y.T.; supervision, S.-N.L.; validation, Y.-H.C.;
writing, H.-H.C. All authors have read and agreed to the published version of the manuscript.

Funding: The study was supported by the Ministry of Science and Technology (Taiwan, MOST
106-2320-B-197-001-MY3 and MOST 107-2321-B-197-003).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are available on request to the corresponding author.

Acknowledgments: The authors thank the Ministry of Science and Technology (Taiwan) for their
financial support (MOST 106-2320-B-197-001-MY3 and MOST 107-2321-B-197-003) of this study and
express appreciation to partners in the Nano-Biomaterial Application Lab (NBA) for their assistance
with the experiments.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. La Scalia, G.; Nasca, A.; Corona, O.; Settanni, L.; Micale, R. An Innovative Shelf Life Model Based on Smart Logistic Unit for an

Efficient Management of the Perishable Food Supply Chain. J. Food Process. Eng. 2017, 40, e12311. [CrossRef]
2. Singh, R.P.; Wells, J.H. Use of time-temperature indicators to monitor quality of frozen hamburger. Food Technol. 1985, 39, 42–50.
3. Taoukis, P.; Labuza, T. Applicability of Time-Temperature Indicators as Shelf Life Monitors of Food Products. J. Food Sci. 1989,

54, 783–788. [CrossRef]
4. Kim, J.U.; Ghafoor, K.; Ahn, J.; Shin, S.; Lee, S.H.; Shahbaz, H.M.; Shin, H.H.; Kim, S.; Park, J. Kinetic modeling and characterization

of a diffusion-based time-temperature indicator (TTI) for monitoring microbial quality of non-pasteurized angelica juice. LWT-Food
Sci. Technol. 2016, 67, 143–150. [CrossRef]

5. Kim, K.; Kim, E.; Lee, S.J. New enzymatic time–temperature integrator (TTI) that uses laccase. J. Food Eng. 2012, 113, 118–123.
[CrossRef]

6. Dwivedi, U.N.; Singh, P.; Pandey, V.P.; Kumar, A. Structure–function relationship among bacterial, fungal and plant laccases. J.
Mol. Catal. B Enzym. 2011, 68, 117–128. [CrossRef]

7. Jhuang, J.-R.; Lou, S.-N.; Lin, S.-B.; Chen, S.H.; Chen, L.-C.; Chen, H.-H. Immobilizing laccase on electrospun chitosan fiber to
prepare time-temperature indicator for food quality monitoring. Innov. Food Sci. Emerg. Technol. 2020, 63, 102370. [CrossRef]

8. Wang, Y.; Chen, G.H. Bioinformatics and enzymatics investigation of Trametes laccase for optical biosensing application. J Mater.
Sci. 2019, 54, 4970–4983. [CrossRef]

9. Hsu, C.A.; Wen, T.N.; Su, Y.C.; Jiang, Z.B.; Chen, C.W.; Shyur, L.F. Biological degradation of anthroquinone and azo dyes by a
novel laccase from Lentinus sp. Environ. Sci. Technol. 2012, 46, 5109–5117. [CrossRef]

10. Li, S.-F.; Chen, J.-P.; Wu, W.-T. Electrospun polyacrylonitrile nanofibrous membranes for lipase immobilization. J. Mol. Catal. B
Enzym. 2007, 47, 117–124. [CrossRef]

11. Kim, M.; Lee, H.; Kim, M.; Park, Y. Coloration and Chromatic Sensing Behavior of Electrospun Cellulose Fibers with Curcumin.
Nanomaterials 2021, 11, 222. [CrossRef]

12. Fatarella, E.; Spinelli, D.; Ruzzante, M.; Pogni, R. Nylon 6 film and nanofiber carriers: Preparation and laccase immobilization
performance. J. Mol. Catal. B Enzym. 2014, 102, 41–47. [CrossRef]

13. Kumari, A.; Datta, S. Phospholipid bilayer functionalized membrane pores for enhanced efficiency of immobilized glucose
oxidase enzyme. J. Membr. Sci. 2017, 539, 43–51. [CrossRef]

http://doi.org/10.1111/jfpe.12311
http://doi.org/10.1111/j.1365-2621.1989.tb07882.x
http://doi.org/10.1016/j.lwt.2015.11.034
http://doi.org/10.1016/j.jfoodeng.2012.05.009
http://doi.org/10.1016/j.molcatb.2010.11.002
http://doi.org/10.1016/j.ifset.2020.102370
http://doi.org/10.1007/s10853-018-03187-9
http://doi.org/10.1021/es2047014
http://doi.org/10.1016/j.molcatb.2007.04.010
http://doi.org/10.3390/nano11010222
http://doi.org/10.1016/j.molcatb.2014.01.012
http://doi.org/10.1016/j.memsci.2017.05.060


Nanomaterials 2021, 11, 1160 13 of 13

14. Susanto, H.; Samsudin, A.M.; Faz, M.W.; Rani, M.P.H. Impact of post-treatment on the characteristics of electrospun poly (vinyl
alcohol)/chitosan nanofibers. In Proceedings of the 3rd International Conference on Advanced Materials Science and Technology
(ICAMST 2015), Semarang, Indonesia, 6–7 October 2015; Volume 1725, p. 20087. [CrossRef]

15. Pirzada, T.; Arvidson, S.A.; Saquing, C.D.; Shah, S.S.; Khan, S.A. Hybrid carbon silica nanofibers through sol-gel electro-spinning.
Langmuir 2014, 30, 15504–15513. [CrossRef]

16. Food and Drug Administration (FDA). Ready-to-Eat Foods from Food Safety for Moms to be. 2018. Available online: https:
//www.fda.gov/food/people-risk-foodborne-illness/ready-eat-foods-food-safety-moms-be (accessed on 27 September 2018).

17. Yang, Y.L. Indicator Bacteria. Kinmen County Health Bureau. 2013. Available online: https://phb.kinmen.gov.tw/cp.aspx?n=
0FAF18998E49EA5F. (accessed on 1 August 2020).

18. Pourjavaher, S.; Almasi, H.; Meshkini, S.; Pirsa, S.; Parandi, E. Development of a colorimetric pH indicator based on bacterial
cellulose nanofibers and red cabbage (Brassica oleraceae) extract. Carbohydr. Polym. 2017, 156, 193–201. [CrossRef]

19. Haugen, J.E.; Rudi, K.; Langsrud, S.; Bredholt, S. Application of gas-sensor array technology for detection and monitoring of
growth of spoilage bacteria in milk: A model study. Anal. Chim. Acta 2006, 565, 10–16. [CrossRef]

20. Cuecas, A.; Cruces, J.; Galisteo-López, J.F.; Peng, X.; Gonzalez, J.M. Cellular Viscosity in Prokaryotes and Thermal Stability of
Low Molecular Weight Biomolecules. Biophys. J. 2016, 111, 875–882. [CrossRef]

21. Penasa, M.; Toffanin, V.; Cologna, N.; Cassandro, M.; De Marchi, M. Effects of dairy factory, milk casein content and titratable
acidity on coagulation properties in Trentingrana dairy industry. J. Dairy Res. 2016, 83, 242–248. [CrossRef]

22. Tsironi, T.; Stamatiou, A.; Giannoglou, M.; Velliou, E.; Taoukis, P.S. Predictive modelling and selection of Time Temperature
Integrators for monitoring the shelf life of modified atmosphere packed gilthead seabream fillets. LWT 2011, 44, 1156–1163.
[CrossRef]

23. Koloti, L.E.; Gule, N.P.; Arotiba, O.A.; Malinga, S.P. Laccase-immobilized dendritic nanofibrous membranes as a novel ap-proach
towards the removal of bisphenol A. Environ. Technol. 2018, 39, 392–404. [CrossRef]

24. Corradini, M.G. Shelf Life of Food Products: From Open Labeling to Real-Time Measurements. Annu. Rev. Food Sci. Technol. 2018,
9, 251–269. [CrossRef] [PubMed]

25. Kim, M.J.; Park, H.R.; Lee, S.J. Guideline for proper usage of time temperature integrator (TTI) avoiding underestimation of food
deterioration in terms of temperature dependency: A case with a microbial TTI and milk. Food Sci. Biotechnol. 2016, 25, 713–719.
[CrossRef] [PubMed]

26. Ziyaina, M.; Govindan, B.N.; Rasco, B.; Coffey, T.; Sablani, S.S. Monitoring shelf life of pasteurized whole milk under refrig-erated
storage conditions: Predictive models for quality loss. J. Food Sci. 2018, 83, 409–418. [CrossRef] [PubMed]

27. Schmidt, V.S.; Kaufmann, V.; Kulozik, U.; Scherer, S.; Wenning, M. Microbial biodiversity, quality and shelf life of microfiltered
and pasteurized extended shelf life (ESL) milk from Germany, Austria and Switzerland. Int. J. Food Microbiol. 2012, 154, 1–9.
[CrossRef]

28. McAuley, C.M.; Singh, T.K.; Haro-Maza, J.F.; Williams, R.; Buckow, R. Microbiological and physicochemical stability of raw,
pasteurised or pulsed electric field-treated milk. Innov. Food Sci. Emerg. Technol. 2016, 38, 365–373. [CrossRef]

29. Lin, Y.; Kelly, A.L.; O’ Mahony, J.A.; Guinee, T.P. Altering the physico-chemical and processing characteristics of high heat-treated
skim milk by increasing the pH prior to heating and restoring after heating. Food Chem. 2018, 245, 1079–1086. [CrossRef]

30. Kim, W.; Park, E.; Hong, K. Development of a time-temperature integrator system using Burkholderia cepacia lipase. Food Sci.
Biotechnol. 2012, 21, 497–502. [CrossRef]

http://doi.org/10.1063/1.4945541
http://doi.org/10.1021/la503290n
https://www.fda.gov/food/people-risk-foodborne-illness/ready-eat-foods-food-safety-moms-be
https://www.fda.gov/food/people-risk-foodborne-illness/ready-eat-foods-food-safety-moms-be
https://phb.kinmen.gov.tw/cp.aspx?n=0FAF18998E49EA5F.
https://phb.kinmen.gov.tw/cp.aspx?n=0FAF18998E49EA5F.
http://doi.org/10.1016/j.carbpol.2016.09.027
http://doi.org/10.1016/j.aca.2006.02.016
http://doi.org/10.1016/j.bpj.2016.07.024
http://doi.org/10.1017/S0022029916000212
http://doi.org/10.1016/j.lwt.2010.10.016
http://doi.org/10.1080/09593330.2017.1301570
http://doi.org/10.1146/annurev-food-030117-012433
http://www.ncbi.nlm.nih.gov/pubmed/29328810
http://doi.org/10.1007/s10068-016-0124-5
http://www.ncbi.nlm.nih.gov/pubmed/30263328
http://doi.org/10.1111/1750-3841.13981
http://www.ncbi.nlm.nih.gov/pubmed/29369352
http://doi.org/10.1016/j.ijfoodmicro.2011.12.002
http://doi.org/10.1016/j.ifset.2016.09.030
http://doi.org/10.1016/j.foodchem.2017.11.063
http://doi.org/10.1007/s10068-012-0063-8

	Introduction 
	Material and Methods 
	Immobilization of Laccase on Electrospun Fibers 
	Morphology of Chitosan/Polyvinyl Alcohol/Tetraethyl Orthosilicate Tetraethylorthosilicate/ Polypropylene/Glutaraldehyde/Laccase (ceCPTL) 
	Coloration 
	Color Measurement 
	Absorbance of Coloration 

	Kinetic Evaluation 
	Simulation of Milk Quality Change 
	Response of the Laccase Time–Temperature Indicator (TTI) Prototype and Lactic Acid Bacteria (LAB) Growth in Milk 
	Isothermal Response Test 
	Dynamic Temperature Response Test 

	Statistical Analysis 

	Results and Discussion 
	Immobilized Laccase on Electrospun Chitosan (CS) Fibers 
	Coloration of the Laccase TTI Prototype 
	Arrhenius Activation Energy (Ea) of Laccase TTI Coloration and LAB Growth in Milk 
	Milk Quality Change during Storage 
	Response of Laccase TTI Prototype Coloration to Milk Quality Change 

	Conclusions 
	References

