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Abstract: A novel chemical profile essential oil, distilled from the aerial parts of Clinopodium taxifolium
(Kunth) Govaerts (Lamiaceae), was analysed by Gas Chromatography-Mass Spectrometry (GC-MS,
qualitative analysis) and Gas Chromatography with Flame Ionization Detector (GC-FID, quantitative
analysis), with both polar and non-polar stationary phase columns. The chemical composition mostly
consisted of sesquiterpenes and sesquiterpenoids (>70%), the main ones being (E)-β-caryophyllene
(17.8%), α-copaene (10.5%), β-bourbonene (9.9%), δ-cadinene (6.6%), cis-cadina-1(6),4-diene (6.4%) and
germacrene D (4.9%), with the non-polar column. The essential oil was then submitted to enantioselec-
tive GC analysis, with a diethyl-tert-butyldimethylsilyl-β-cyclodextrin diluted in PS-086 chiral selector,
resulting in the following enantiomeric excesses for the chiral components: (1R,5S)-(−)-α-thujene
(67.8%), (1R,5R)-(+)-α-pinene (85.5%), (1S,5S)-(−)-β-pinene (90.0%), (1S,5S)-(−)-sabinene (12.3%), (S)-
(−)-limonene (88.1%), (S)-(+)-linalool (32.7%), (R)-(−)-terpinen-4-ol (9.3%), (S)-(−)-α-terpineol (71.2%)
and (S)-(−)-germacrene D (89.0%). The inhibition activity against acetylcholinesterase (AChE) and
butyrylcholinesterase (BChE) of C. taxifolium essential oil was then tested, resulting in selective activity
against BChE with an IC50 value of 31.3 ± 3.0 µg/mL (positive control: donepezil, IC50 = 3.6 µg/mL).

Keywords: Clinopodium taxifolium; Gardoquia taxifolia; Satureja taxifolia; essential oil; GC-MS; GC-FID;
enantioselective analysis; AChE; BChE; Ecuador

1. Introduction

According to the UN Environment Program World Conservation Monitoring Cen-
tre [1], Ecuador belongs to the group of the 17 megadiverse countries in the world, making
it an extraordinary reservoir of biodiversity. As a megadiverse country, it must possess
“at least 5000 of the world’s plants as endemics” [1]. Most of the botanical species de-
scribed in Ecuador have never been studied so far from a phytochemical point of view;
this makes the country an unbelievable source of potentially new chemical structures and
biologically active compounds. In 2016, two of us (J.R. and G.G.) reported that about
50% of all the phytochemical publications on the Ecuadorian flora referred only to 8 of
the 245 botanical families of the native species known in the country [2]. For this reason,
the authors have been involved for years in the description of specialized (secondary)
metabolites contained in the Ecuadorian flora, to contribute to the advance in its phyto-
chemical and phytopharmaceutical knowledge [3–10]. Within a project focused on the
description of new essential oils (EOs) [11–20], the aim of this study is to describe a novel
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chemical profile of an already known EO, distilled from the aerial parts of Clinopodium
taxifolium (Kunth) Govaerts. Clinopodium taxifolium (Kunth) Govaerts is a species belonging
to the family Lamiaceae, also known with many synonyms, such as Gardoquia taxifolia
Kunth, Satureja andrei Epling, Satureja taxifolia (Kunth) Briq., Gardoquia glabrata Kunth,
Thymus taxifolius Willd. ex Benth, Satureja glabrata (Kunth) Briq., Satureja taxifolia (Kunth)
Briq. and Satureja lineata Epling. [10,21–23]. This plant is also known with the homonym
Clinopodium taxifolium (Kunth) Harley [21]. The species is native of the Andean region of
Ecuador [23], where it has been described in the provinces of Azuay, Oro y Loja. How-
ever, specimens have also been described in Bolivia and Peru [21]. This plant grows at
an altitude of 1500–3000 m above sea level [23] and it is known as Culantrillo de Cerro or
Polea de Castilla [10]. Furthermore, C. taxifolium is used by infusion in folk medicine for
treating internal inflammations, flatulence, stomach pain, malaria and cough [10]. In 2018,
one of the authors (G.G.) first published the composition of an EO from this species as a
part of a phytochemical study [10]. Afterwards, the authors studied the composition of
the EO of a different sample of C. taxifolium of different origin, obtaining very different
quali-quantitative and general sensory results, compared to that described in 2018. The EO
was therefore re-investigated on a statistically significant number of samples, rigorously
identified from the botanic point of view and submitted to new biological essays.

The inhibition activity of a cholinesterase (ChE) was here investigated, within a project
focused on the identification of plant specialized metabolites active against Alzheimer’s
disease (AD). AD is a chronic neurodegenerative illness, characterized by a progressive
deterioration of memory and cognitive functions. According to the World Health Organi-
zation (WHO), AD is currently the first cause of dementia in the world, being responsible
for 60–70% of cases [24]. The universal interest in finding new anti-AD drugs is due to
the rapid diffusion of this illness in western countries, mainly as a consequence of the
increase in life expectancy. The 2016 World Alzheimer’s Report indicated that 47 million
people live with dementia worldwide, and this number is expected to increase to more
than 131 million by the year 2050. The disease is due to the accumulation of anomalous
protein fragments (amyloid β peptides and hyper-phosphorylated tau proteins) into the
brain. Several hypotheses try to explain this phenomenon, the most important of them
being the so-called cholinergic hypothesis Accordingly, the cognitive degradation is due
to the destruction of cholinergic neurons and the consequent ChE depletion, which can
be counteracted by inhibiting the acetylcholinesterase (AChE) and butyrylcholinesterase
(BChE) enzymes [24]. The administration of ChE inhibitors has been shown to produce an
increase in the levels of acetylcholine (ACh) in the brain [25,26], counteracting the progress
of the symptoms. The present discussion on the effectiveness and availability of drugs to
treat AD [27,28], is the basis for the investigation of natural products in this field [26].

To the best of the authors’ knowledge, the present study is the first description of
these chemical profile and biological activity of an EO distilled from C. taxifolium.

2. Results
2.1. Chemical Analysis

The EO was obtained in a quite low yield (0.07 ± 0.02%) from fresh plant material.
A total of 37 compounds were detected, of which 32 with a non-polar Gas Chromatography
(GC) column and 36 on a polar column. Most of the detected constituents were identified
according to the corresponding Electron Ionization Mass Spectrum (EIMS) and Linear
Retention Index (LRI). Two sesquiterpene hydrocarbons (204 amu) and one sesquiterpene
alcohol (220 amu) could not be identified (unknown). The component abundance, here
reported for both GC on non-polar (first value) and polar columns (second value), was mea-
sured by normalized percent abundance. The abundance of a total of 34 components was
determined with at least one column, obtaining values corresponding to 88.1% and 86.0% of
the whole sample, respectively, with a detection threshold fixed at 0.1%. The chemical anal-
ysis showed that this EO mainly consisted of sesquiterpenes and sesquiterpenoids (more
than 70%), the main ones being (E)-β-caryophyllene (17.8–14.5%), α-copaene (10.5–8.0%),
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β-bourbonene (9.9–8.2%), δ-cadinene (6.6–5.4%), cis-cadina-1(6),4-diene (6.4–0.2%) and
germacrene D (4.9–4.9%). The full chemical composition is reported in Table 1.

Table 1. Chemical composition of C. taxifolium EO with 5%-phenyl-methylpolysiloxane (DB-5ms) and polyethylene glycol
(INNOWax) columns.

N◦ Component
DB-5ms HP-INNOWax

LRI a LRI b % c σ d LRI a LRI b % c σ d

1 α-thujene 919 924 [29] trace - 1022 1025 [30] trace -
2 α-pinene 925 932 [29] 0.7 0.22 1017 1020 [31] 0.4 0.19
3 sabinene 965 969 [29] 3.2 1.67 1119 1122 [32] 3.0 1.42
4 β-pinene 968 974 [29] 3.5 1.37 1106 1105 [30] 2.9 1.06
5 α-terpinene 1012 1014 [29] trace - 1176 1178 [32] trace -
6 limonene 1024 1024 [29] 2.6 2.91 1198 1198 [32] 1.8 2.68
7 1,8-cineole 1026 1026 [29] 1.3 1.92 1205 1211 [32] 1.2 2.04
8 terpinolene 1078 1086 [29] trace - 1280 1282 [32] trace -
9 linalool 1101 1095 [29] 0.5 0.59 1554 1543 [32] 0.6 0.61
10 1-ethenyl-4-methoxy-benzene 1147 1154 [33] 1.6 0.04 1679 1670 [34] 0.3 0.02
11 citronellal 1151 1148 [29] 1.0 0.02 1448 1469 e 0.8 0.02
12 cis-pinocamphone 1167 1172 [29] 0.8 1.09 1537 1545 [32] 1.2 1.08
13 Terpinen-4-ol 1174 1174 [29] 0.6 0.41 1600 1601 [32] 0.2 0.35
14 α-terpineol 1191 1186 [29] 0.3 0.30 1672 1694 [32] 0.3 0.04
15 methyl geranate 1320 1322 [29] 1.0 0.03 - - - -
16 α-copaene 1363 1374 [29] 10.5 0.36 1483 1491 [32] 8.0 0.38
17 β-bourbonene 1369 1387 [29] 9.9 0.32 1509 1523 [31] 8.2 0.36
18 (Z)-β-caryophyllene 1389 1408 [29] 2.7 0.06 1565 1588 [32] 0.9 0.14
19 (E)-β-caryophyllene 1403 1417 [29] 17.8 1.26 1587 1599 [32] 14.5 1.30
20 β-cubebene 1414 1387 [29] 2.0 0.03 1580 1580 [35] 0.6 0.04
21 α-humulene 1438 1452 [29] 0.9 0.08 1658 1667 [32] 1.2 0.07
22 cis-cadina-1(6),4-diene 1466 1461 [29] 6.4 0.41 1664 - 6.2 0.05
23 germacrene D 1480 1480 [29] 4.9 0.65 1669 1674 e 4.9 0.72
24 δ-cadinene 1506 1522 [29] 6.6 0.28 1751 1756 [32] 5.4 0.47
25 elemol 1539 1548 [29] 2.1 0.78 2079 2079 [32] 1.5 1.75
26 hedycaryol 1542 1546 [29] 0.1 0.10 2046 2037 [36] 1.2 0.48
27 spathulenol 1562 1577 [29] 0.9 0.33 2119 2121 [32] 1.4 1.60
28 10-epi-γ-eudesmol 1618 1622 [29] 1.8 0.51 2164 2170 [31] 1.3 0.24
29 caryophylla-4(12),8(13)-dien-5β-ol 1621 1639 [29] 0.4 0.62 2292 2299 [37] 1.6 0.54
30 β-eudesmol 1638 1652 [29] 1.0 1.11 2222 2220 [31] 1.1 0.31
31 γ-eudesmol 1639 1630 [29] 1.7 0.37 - - - -
32 unknown (mw = 204) - - - - 1697 - 2.1 0.36
33 bicyclogermacrene - - - - 1723 1735 [32] 2.6 1.02
34 caryophyllene oxide - - - - 1968 1970 [31] 3.0 0.42
35 unknown (mw = 220) - - - - 2144 - 2.1 0.66
36 α-eudesmol 1651 1652 [29] 1.3 0.30 2214 2223 [32] 1.3 0.31
37 unknown (mw = 204) - - - - 2247 - 4.2 2.21

Monoterpene hydrocarbons 10.0 8.1
Oxygenated monoterpene 5.5 4.3

Sesquiterpene hydrocarbons 61.7 58.8
Oxygenated sesquiterpene 9.3 14.5

Others 1.6 0.3
Total amount 88.1 86.0

aCalculated linear retention index (LRI); b reference linear retention index; c content; d standard deviation; trace σ0.1%; mw = molecular
weight; e identification confirmed by injection of original standards by one of the authors (B.S.).

2.2. Enantioselective Analysis

The enantioselective analysis was carried out on a 30% diethyl-tert-butyldimethylsilyl-
β-cyclodextrin in a PS-086 capillary column. A total of nine chiral components were
identified, eight of them were monoterpenoids and one a sesquiterpene hydrocarbon.
None of the detected chiral compounds were enantiomerically pure. The results of the
enantioselective analysis are reported in Table 2 and in Figure 1.
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Table 2. Enantioselective analysis of some chiral constituents of C. taxifolium EO on diethyl-tert-
butyldimethylsilyl-β-cyclodextrin column.

Component RT a (min.) LRI b Enantiomer Percentage ee%

(1S,5R)-(+)-α-thujene c 12.96 920 16.1
67.8(1R,5S)-(−)-α-thujene c 13.20 924 83.9

(1R,5R)-(+)-α-pinene 13.72 933 92.8
85.5(1S,5S)-(−)-α-pinene 13.85 935 7.2

(1R,5R)-(+)-β-pinene 15.28 959 5.0
90.0(1S,5S)-(−)-β-pinene 15.76 967 94.9

(1R,5R)-(+)-sabinene 16.85 985 43.9
12.3(1S,5S)-(−)-sabinene 17.66 998 56.2

(S)-(−)-limonene 21.55 1061 94.1
88.1(R)-(+)-limonene 22.59 1078 5.9

(R)-(−)-linalool 29.84 1198 33.7
32.7(S)-(+)-linalool 30.47 1209 66.3

(S)-(+)-terpinen-4-ol 33.98 1270 45.4
9.3(R)-(−)-terpinen-4-ol 34.12 1272 54.6

(S)-(−)-α-terpineol 36.37 1312 85.6
71.2(R)-(+)-α-terpineol 37.13 1326 14.4

(R)-(+)-germacrene D 38.74 1354 5.5
89.0(S)-(−)-germacrene D 45.15 1474 94.5

a Retention time (RT); b Linear Retention Index (LRI) calculated on the 30% diethyl-tert-butyldimethylsilyl-β-
cyclodextrin in PS-086 column; c tentative enantiomer identification according to [38]; ee = enantiomeric excess.

Figure 1. Enantioselective chromatogram of C. taxifolium EO on 30% diethyl-tert-butyldimethylsilyl-β-cyclodextrin/PS-086
column.

2.3. Cholinesterase Inhibition Test

The inhibitory activity of C. taxifolium EO against BChE showed an IC50 value of
31.3 ± 3.0 µg/mL; however, it was shown to be inactive against AChE (IC50 > 250 µg/mL)
(Figure 2). These results were compared to the ones of donepezil as positive control, which
showed an IC50 value of about one order of magnitude less against BChE.
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Figure 2. Half maximal inhibition concentration (IC50) of C. taxifolium essential oil (A) and donepezil (B) against AChE
(green curve) and BChE (red curve).

3. Discussion
3.1. Selective BChE Inhibition Activity

The activities on the Central Nervous System (CNS) are not usually investigated
for the EOs [39], due to antibacterial and antifungal properties being the most common.
Nevertheless, the literature reports several volatile fractions with an interesting in vitro
inhibition activity [24,40,41] versus AChE and BChE. Some of them are also significantly
active against AD in vivo, or even in clinical trials [24]. The secondary metabolites that
have been recognized to be active as pure compounds are linalool, α-terpinene, carvacrol,
α-terpineol, thymol, α-pinene, (E)-β-caryophyllene and eugenol [24]. Five of them are
also present in the investigated EO of C. taxifolium, where (E)-β-caryophyllene is the main
constituent with an abundance of 17.8–14.5% on the two columns, respectively. However,
the C. taxifolium EO produced a selective inhibition of BChE, differing from what is usually
described in the literature, where (E)-β-caryophyllene, and some of the above mentioned
terpenoids, inhibit both enzymes [41]. Actually, the selective inhibition of BChE is a very
interesting property, since many studies have been investing the clinical application of
similar drugs during the last 20 years [42–44]. AChE and BChE are both present in the
CNS but in different locations. In particular, AChE is typically found in neurons, whereas
BChE is common in glial cells [42]. In normal brain, about 80% of the total cholinesterase is
constituted by AChE, and only 20% by BChE. However, with the progress of the AD, the
ratio between the activities of BChE and AChE can increase from the normal value of 0.5
up to 11 [42]. This phenomenon could convert BChE to the main ChE in the development
of AD. From a speculative point of view, the inhibition mechanism for C. taxifolium EO
can be explained considering the different shapes of the active sites. According to X-ray
diffraction data, the selective activity can be achieved by using the additional space present
in the active site of BChE [42], which implies that selective inhibitors are usually bigger
molecules than those of AChE. Since this is not the case for C. taxifolium EO components,
the most probable hypothesis is a synergic effect of the whole mixture, where the combined
effect of many constituents is different from that of the sum of the same pure components.
This behaviour has already been demonstrated for some essential oils and described in
the literature, e.g., for Salvia lavandulifolia and Melaleuca alternifolia (tea tree) EOs [45,46].
The other major EO constituents were α-copaene (10.5–8.0%), β-bourbonene (9.9–8.2%),
δ-cadinene (6.6–5.4%), cis-cadina-1(6),4-diene (6.4–6.2%) and germacrene D (4.9–4.9%).
These components can be responsible for the selective synergic effect, although, to the best
of the authors’ knowledge, no evidence has been reported in this respect. Although the
IC50 value calculated for this EO is quite higher than the one calculated for the positive
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control, the EO can be considered an active product. In fact, donepezil (positive control)
is a pure substance while the EO is a mixture of at least 37 compounds, most of them
likely inactive.

3.2. Enantiomeric Abundance and Biological Activity

A second important factor influencing the biological activity of a complex mixture is
the enantiomeric composition of its chiral components [47–49], which makes their recog-
nition a step necessary for a correct definition of its chemistry and biological activity. The
enantiomeric excess of the chiral compounds is also important to characterize another fun-
damental property of an EO, i.e., its olfactive profile [50]. The C. taxifolium EO was therefore
analyzed by enantioselective GC-MS (Es-GC-MS), to determine the enantiomeric excess
(ee%) of eight chiral monoterpenoids and one sesquiterpene hydrocarbon, resulting in the fol-
lowing ee% values: (1R,5S)-(−)-α-thujene (67.8%), (1R,5R)-(+)-α-pinene (85.5%), (1S,5S)-(−)-
β-pinene (90.0%), (1S,5S)-(−)-sabinene (12.3%), (S)-(−)-limonene (88.1%), (S)-(+)-linalool
(32.7%), (R)-(−)-terpinen-4-ol (9.3%), (S)-(−)-α-terpineol (71.2%) and (S)-(−)-germacrene D
(89.0%).

3.3. Novel EO Chemical Profile in C. taxifolium

Regarding the different chemical profile, compared to the one previously described,
most of the essential oils of the genus Clinopodium present in the literature can be divided
into three main categories: (i) EOs based on oxygenated monoterpenoids, (ii) EOs based
on sesquiterpenes and sesquiterpenoids, and (iii) EOs based on both classes of metabo-
lites. The first group is absolutely dominant, and it can be considered typical for the
composition of Clinopodium essential oils. It is characterized by a fresh and minty aroma,
sometimes phenolic. Pulegone, isopulegone, piperitone, piperitenone, piperitenone oxide,
menthone, isomenthone and menthol are the main constituents. 1,8-Cineole, menthofuran,
carvacrol, thymol, linalool and their derivatives can also seldom be found [51–65]. The
second group is decidedly less common, and includes species like Clinopodium umbrosum
(M.Bieb.) Kuntze and Clinopodium gracile (Benth) Matsum, whose EO major components
are (E)-β-caryophyllene, germacrene D, spathulenol, β-elemene, α-bergamotene and cis-β-
farnesene, among others [66,67]. The third type of EO is very rare and it is characterized
by the presence of major compounds of both monoterpene and sesquiterpene. This is
the case for Clinopodium chinense (Benth.) Kuntze, whose volatile fraction contains, most
prevalently, piperitone, (E)-β-caryophyllene and spathulenol [68]. According to this classi-
fication, the chemical composition of the volatile fraction described in this study clearly fits
with the second EO profile, since (E)-β-caryophyllene (17.8–14.5%), α-copaene (10.5–8.0%),
β-bourbonene (9.9–8.2%), δ-cadinene (6.6–5.4%), cis-cadina-1(6),4-diene (6.4–0.2%) and
germacrene D (4.9–4.9%) are the most abundant constituents. Nevertheless, the EO de-
scribed in 2018 for C. taxifolium belongs to the first group [10]. Therefore, two quite different
chemical profiles of C. taxifolium EO can be hypothesized, with the one described here
probably being rarer.

4. Materials and Methods
4.1. Materials and Equipment

The chemical analyses were run by gas chromatography-mass spectrometry (GC-MS),
with a 6890N GC unit from Agilent Technologies, coupled with a quadrupole Mass Spec-
trometry Detector (MSD) 5973 (Santa Clara, CA, USA). The MSD was operated with
an electronic ionization (70 eV) source, in scan mode, with a mass range detection of
35–350 m/z. The MS transfer line and ion source temperatures were 280 ◦C and 200 ◦C,
respectively. The analyses were carried out with a non-polar DB-5ms capillary column
(5%-phenyl-methylpolysiloxane, 30 m length, 0.25 mm internal diameter and 0.25 µm
film thickness; J & W Scientific, Folsom, CA, USA) and a polar HP-INNOWax column
(polyethylene glycol, 30 m length, 0.25 mm internal diameter and 0.25 µm film thickness;
Agilent Technologies, Santa Clara, CA, USA).



Molecules 2021, 26, 45 7 of 12

Quantitative analyses were carried out with a 6890N GC-FID system from Agilent
Technologies (Santa Clara, CA, USA), equipped with a 7683 autoinjector also from Agilent
Technologies (Little Falls, DE, USA). Linear retention indices were calculated through a
homologous series of linear alkanes, from n-nonane to n-pentacosane (C9 purity 99% from
BDH, Dubai, UAE; C10–C25 purity 99% from Sigma-Aldrich, St. Louis, MO, USA).

The enantiomeric excesses of chiral components were determined with an enantioselec-
tive column based on 30% diethyl-tert-butydimethylsilyl-β-cyclodextrin diluted in PS-086.
(length: 25 m, internal diameter: 0.25 mm, film thickness: 0.25 µm, from Mega, Legnano,
Italy).

All the analytical grade (purity >99%) solvents, 5,5′-dithiobis-2-nitrobenzoic acid
(DNTB), Electrophorus electricus acetylcholinesterase (Type VS, freeze-dried powder,
744 U/mg solid, 1272 U/mg protein), equine serum butyrylcholinesterase (lyophilized
powder, 900 units/mg protein) and acetylthiocholine iodide were purchased from Sigma-
Aldrich. A Varioskan Flash detection system was used for enzymatic inhibition experi-
ments (Thermo Fisher Scientific, Waltham, MA, USA). Donepezil (purity >98%) was used
as positive control of ChE inhibition (Sigma-Aldrich).

4.2. Plant Material

The aerial parts of C. taxifolium were collected on 24 May 2018 in the province of Loja,
mount Villonaco, at an altitude of 2724 m above sea level. The geographic point was located
at coordinates 004◦00’00” S–079◦17’00” W. In order to grant a statistically representative
number of samples, five different specimens were collected within a radius of 500 m
from these coordinates. The plant was collected with the permission of the Ministry of
Environment of Ecuador (MAE-DNB-CN-2016-0048) and the specimens were identified by
one of the authors (N.C.). A voucher specimen was also deposited inside the Universidad
Técnica Particular de Loja herbarium (herbarium code: HUTPL), with the identification
code VMZ_010. To ensure the correct botanical identification, both the current and the
previous specimens (voucher n. PPN-la-101) were compared with an original sample from
the herbarium of the Universidad Nacional de Loja (herbarium code: LOJA), with all
showing morphologically identical results.

4.3. Isolation of the Essential Oil and Samples Preparation

Five analytical hydrodistillations were performed on the fresh aerial parts of each
botanical specimen. These processes were carried out with a glass laboratory-scale Mar-
cusson apparatus, with recycling of the lower phase. During each analytical distillation,
seventeen grams of fresh plant material were hydrodistilled for 90 min and the essential oil
collected in 500 µL of an extraction layer of cyclohexane, containing n-nonane as internal
standard (0.7 mg/mL). The cyclohexane layers were recovered and directly injected for GC
analyses.

After verifying the similarity of the five chemical patterns, the entire remaining plant
material was gathered to perform a preparative distillation. For this purpose, 1.6 kg of
fresh plant material were hydrodistilled for 4 h [69], with a stainless-steel Clevenger-type
apparatus, obtaining a pure essential oil that separated spontaneously from the water
phase.

All samples were stored in amber vials at −15 ◦C. The pure essential oil was used
for biological tests, while the 5 laboratory-scale repetitions were used for chemical and
enantioselective analyses.

4.4. Qualitative Chemical Analysis

The GC-MS analyses on DB-5ms were carried out under the following conditions:
carrier gas: helium, constant flow rate: 1 mL/min; injection volume: 1 µL, injection mode:
split (ratio of 40:1), injection temperature: 250 ◦C; temperature program: from 50 ◦C (1 min)
to 250 ◦C (10 min) at 3 ◦C/min. Analyses on the HP-INNOWax column were carried out
under the same conditions as for DB-5ms, only the final oven temperature was set at 230 ◦C.



Molecules 2021, 26, 45 8 of 12

The EO components were identified by comparing both their linear retention indices
(LRIs), calculated according to Van Den Dool and Kratz [70], and their mass spectra to
those reported in the literature and, where available, with authentic standards (see Table 1).

4.5. Abundance Chemical Analysis

The abundance analyses were carried out under the same instrumental conditions as
those adopted above, with the exception of the temperature program: from 50 ◦C (1 min)
to 180 ◦C at the rate of 3 ◦C/min, then 15 ◦C/min until 250 ◦C (15 min) for DB-5ms and
230 ◦C (15 min) for HP-INNOWax. FID conditions: hydrogen flowrate 30 mL/min, air flow
300 mL/min, temperature: 250 ◦C. The abundance composition was obtained by using
relative response factors, calculated on the basis of the combustion enthalpy [71] and taking
isopropyl caproate as a calibration standard. Isopropyl caproate was obtained by synthesis
in one of the authors’ laboratory (G.G.) and its purity was 97% by GC. Furthermore, a
calibration curve was constructed for each column. Six calibration standard dilutions were
taken to build-up the calibration curves, corresponding to 0.6, 1.8, 4.3, 8.3, 16.8 and 34.3 mg
of isopropyl caproate in 10 mL of cyclohexane, respectively. Nonane (7.0 mg) was used as
internal standard. The calibration curves generated a correlation coefficient of 0.999 for
both columns.

4.6. Enantioselective GC Analysis

The enantioselective GC-MS analysis was performed with a temperature program
from 50 ◦C (5 min) to 220 ◦C (5 min) at 2 ◦C/min. The elution order was established by
injecting, in the same instrumental conditions, mixtures of enantiomerically pure standards,
available in one of the authors’ laboratory (C.B.).

4.7. Cholinesterase Inhibition Test

The activities against cholinesterase (ChE) were evaluated by a colorimetric protocol,
adapted from Ellman et al. [72]. The catalyst efficiently hydrolyzes acetylthiocholine (ATCh),
the sulphur analogue of the natural substrate of these enzymes. After hydrolysis, this
substrate analogue produces acetate ion and thiocoline. Thiocoline, in the presence of the
highly reactive dithiobisnitrobenzoate ion (DTNB), produces a yellow color, which can be
monitored quantitatively by its spectrophotometric absorption at 412 nm. The inhibition
assay volume contained 200 µL of phosphate buffered saline (pH 7.4), DNTB (1.5 mM) and
test sample in DMSO (1% v/v). Both Electrophorus electricus acetylcholinesterase and equine
serum butyrylcholinesterase were dissolved in PBS pH 7.4 and were used at 25 mU/mL for
the assay. After 10 min of preincubation, the substrate acetylthiocholine iodide (1.5 mM)
was added to start the reaction. During the incubation at 30 ◦C for 30 min, multiple 96-well
microliter sites were read in a Varioskan Flash detection system. All measurements were
run in triplicate. When possible, the IC50 values were calculated using the GNUPLOT
package online (www.ic50.tk, www.gnuplot.info). Donepezil was used as reference ChE
inhibitor, with an IC50 = 100 nM for AChE and 8500 nM for BChE. In this assay, the
possibility of false positive inhibition results, previously described for high concentration
(>100 µg/mL) of amine or aldehyde compounds, cannot be excluded [73].

5. Conclusions

The aerial parts of the native Andean species Clinopodium taxifolium (Kunth) Govaerts
(Lamiaceae) give an EO mainly consisting of sesquiterpenes and sesquiterpenoids. Al-
though rather uncommon, the composition based on sesquiterpenoids has already been
described for other species belonging to Clinopodium genus. In this case, it indicates the
existence of at least two chemical profiles for C. taxifolium. This EO is characterized by a
selective inhibition activity versus the enzyme BChE. The interest in a selective inhibitor is
justified by the relative overexpression of this enzyme in the advanced progression of the
AD. The search for this kind of inhibitor, over the last 20 years, testifies to the importance
of this matter in pharmaceutical research. However, in our case, the relatively small size

www.ic50.tk
www.gnuplot.info
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and the aliphatic structure of the molecules suggest a possible synergic mechanism instead
of the presence of a single inhibitor in the mixture. This problem is possibly the main item
to be investigated for this EO in future research.
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