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Abstract: 
The identification of MHC restricted epitopes is an important goal in peptide based vaccine and diagnostic development. As wet lab 
experiments for identification of MHC binding peptide are expensive and time consuming, in silico tools have been developed as 
fast alternatives, however with low performance. In the present study, we used IEDB training and blind validation datasets for the 
prediction of peptide binding to fourteen human MHC class I and II molecules using Gibbs motif sampler, weight matrix and 
artificial neural network methods. As compare to MHC class I predictor based on sequence weighting (Aroc=0.95 and CC=0.56) 
and artificial neural network (Aroc=0.73 and CC=0.25), MHC class II predictor based on Gibbs sampler did not perform well 
(Aroc=0.62 and CC=0.19). The predictive accuracy of Gibbs motif sampler in identifying the 9-mer cores of a binding peptide to 
DRB1 alleles are also limited (40%), however above the random prediction (14%). Therefore, the size of dataset (training and 
validation) and the correct identification of the binding core are the two main factors limiting the performance of MHC class-II 
binding peptide prediction. Overall, these data suggest that there is substantial room to improve the quality of the core predictions 
using novel approaches that capture distinct features of MHC-peptide interactions than the current approaches.   
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Background: 
A major task of the immune system is to identify cells that 
have been infected by pathogens and discriminate them 
from healthy cells. This is realized by the MHC class-I and 
II antigen processing and presentation pathway and the 
duty is assigned to helper T-lymphocytes (HTL) and 
cytotoxic T-lymphocytes (CTL). The activation of CD8+ 
cytotoxic T-cells in the immune system requires 

presentation of endogenous antigenic peptides by MHC 
class-I molecules [1]. The activation of CD4+ helper T-
cells is also essential for the development of adaptive 
immunity against pathogens. A critical step in CD4+ T cell 
activation is the recognition of exogeneous peptides 
presented by MHC class-II molecules [2]. The peptides 
bound to MHC molecules that trigger an immune response 
are referred as T-cell epitopes. Identifying T-cells epitopes 
is of high importance to immunologists, because it allows 
the development of diagnostics, peptide based vaccine and 
immunotherapy [3]. Therefore, the computational 
prediction of MHC class-I and II binding epitopes is of 
immense importance as their experimental identification is 
costly and time consuming [4, 5].  

A number of prediction methods for MHC binding peptides have 
been developed using peptide binding data from different 
databases such as SYFPEITHI [6], MHCBN [7], AntiJen [8] and 
IEDB [9]. The first method was based on the identification of 
allele-specific anchor residues [10]. This simple motif-based 

method was later replaced by various weight matrix-based 

methods [11, 12]. Similarly, other methods were based on scoring 
matrices derived from multiple peptide alignments such as 
RANKPEP [13] and the contribution of different residues in a 
peptide binding based on quantitative binding data such as ARB 
[14] and SMM-align [15]. The accumulation of more epitope data 
resulted into the development of different types of machine 
learning algorithms for prediction, including support vector 
machines [16] and artificial neural networks [17]. The other 
methods are also available based on structural template 
information for the prediction of MHC binding peptides [18, 19]. 
In order to assess the current state of the MHC class-I and II 
binding peptide predictions, a number of research groups have 
established a systematic and quantitative benchmarks [20, 21].  
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Despite, the large number of available computational 
methods, prediction of MHC class-I and II restricted 
epitopes remains a challenging problem even today. An 
essential step in developing accurate prediction tool is to 
gather a set of experimentally consistent training and 
validation dataset. In present study, we compiled a large 
IEDB dataset for training and blind datasets for validation 
to the fourteen MHC class- I and II molecules (seven for 
each class) that were experimentally determined under 
uniform conditions collected from Dana-Farber Repository 
(http://bio.dfci.harvard.edu/DFRMLI/). The computational 
methods like, Gibbs motif sampler [22], sequence 
weighting schemes [23, 24] and feed-forward 
backpropagation ANN [25] were used to predict the 
peptide binding to MHC molecules. The Gibbs sampler 
and weight matrix approaches are well suited to describe 
sequence motifs of fixed length. For MHC class I and II, 
the peptide binding motif is in most situations assumed to 
be of a fixed length of 9 amino acids. The weight-matrix 
approach is only suitable for prediction of a binding event 
in situations where the binding specificity can be 
represented independently at each position in the motif and 
this assumption can only be considered to be an 
approximation. In the binding of a peptide to the MHC 
molecule the amino acids might for instance compete for 
the space available in the binding grove. The neural 
networks with a hidden layer are designed to describe 
sequence patterns with such a higher order correlations. 
The superiority of these sequence based approaches to the 
structure are believed to be the consequence of two main 
features, i.e. the flexibility in optimizing the Gibbs motif 
sampling parameter and sequence weighting schemes and 
also in optimizing the ANN training parameter according 
to the dataset. Finally, the developed prediction models 
would predict the HTL and CTL epitopes, which shall 
provide better insight into further research of peptide based 
vaccine and diagnostics against diseases ranging from 
malaria to cancer. 
 
Methodology: 
Data collection  
We assembled dataset of peptide binding and nonbinding 
affinities for fourteen MHC class-I and II molecules (seven 
for each class) from DRFMLI repository 
(http://bio.dfci.harvard.edu/DFRMLI/). These dataset of 
high quality MHC binding and nonbinding peptides were 
taken from IEDB database [9] (Table 1 and 2, see 
supplementary material). The binding affinities (IC50) of 
these peptides were quantitatively measured by 
immunological experiments. They were then scaled to 
binding scores ranging from 0 to 100 using linear 
transformation [21], where score >=99 are strong binders, 
90-98 are moderate binders, 33-89 are border cases and 
<33 are non-binders. These dataset were used as the 
training data to develop computational models based on 
Gibbs sampler, sequence weighting and ANN to predict 
MHC binding peptides. 
 

Three sets of validation data were used to evaluate the prediction 
performance of MHC class-I binding peptides. First, referred as 
survivin dataset derived from a full overlapping study of 134 
nonamer peptides spanning the full length of the tumor antigen 
survivin, second, CMV dataset contains 42 peptides spanning a 50 
amino acids long construct containing cytomegalovirus (CMV) 
internal matrix protein pp65 peptides and third, combination of 
survivin and CMV dataset referred as combined-I dataset contains 
176 peptides for each seven human MHC class-I molecules. One 
hundred three binding and nonbinding peptides were derived from 
four protein antigens, i.e. bee venom allergen, LAGE-1, dog 
allergen Can f1 and Nef protein for each seven MHC class-II 
molecules, referred as combined-II dataset for the validation of 
predictions. The original binding scores were measured by 
iTopiaTM Epitope Discovery System and then scaled to scores 
ranging from 0 to100 (Table 1 and 2, see supplementary material). 
In an attempt to check the ability of Gibbs sampler method to 
predict the 9-mer peptide cores revealed in crystal structures of 
MHC-peptide complexes, a total of 10 structures  were compiled 
from Protein Data Bank for DRB1 alleles (Table 3 in 
supplementary material).  
 
Algorithms used for the prediction of MHC binding peptides  
Gibbs motif sampler  
MHC class-II binding peptides have a broad length distribution 
complicating the development of prediction methods. Identifying 
the correct alignment of a set of peptides known to bind the MHC 
class-II molecule using Gibbs motif sampler is a crucial part of the 
algorithm to identify the core of an MHC class-II binding peptide 
[22]. Here, we used the default Gibbs sampling parameters to find 
the 9-mer motif in a set of MHC class-II binding peptide data 
using the web-server EasyGibbs available at 
http://www.cbs.dtu.dk/biotools/EasyGibbs/.  
 
Sequence weighting  
Three different sequence weighting methods i.e. Henikoff and 
Henikoff 1/nr [23], clustering at 62% identity [24] and no 
clustering are available, which can be used to weight 9-mer 
peptide sequences. The Henikoff method is fast as the 
computation time only increases linearly with the number of 
sequences, whereas in the Hobohm clustering algorithm, 
computation time increases as the square of the number of 
sequences. Here, we used the web-server EasyPred available at 
http://www.cbs.dtu.dk/biotools/EasyPred/ to generated the weight 
matrix for the prediction of MHC binding peptides by applying all 
three sequence weighting schemes with weight on pseudo counts 
is 200. 
 
Artificial neural network  
Here, we used a conventional feed-forward neural network [25] 
with an input layer (180 neurons), one hidden layer (2 neurons) 
and a single neuron output layer using the web server Easypred 
available at http://www.cbs.dtu.dk/biotools/EasyPred/. The default 
setting parameters (one bin for balanced training, running upto 
300 training epochs and top 80% of the training set) were used to 
train the neural network.  
 
 

http://www.cbs.dtu.dk/biotools/EasyPred/.In
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Evaluation parameters 
Based on these datasets and algorithms, we have developed 
computational models which could predict the binding 
affinity between MHC molecules and peptides. The 
efficiency of algorithms was determined by discrimination 
between binders and nonbinders. A predicted peptide 
belongs to one of the four categories, i.e. True Positive 
(TP); an experimentally binding peptide predicted as a 
binder, False Positive (FP); an experimentally nonbinding 
peptide predicted as a binder, True Negative (TN); an 
experimentally nonbinding peptide predicted as a 
nonbinder and False Negative (FN); an experimentally 
binding peptide predicted as nonbinder. Here, we used non-
parametric performance measures, area under receiver 
operator characteristic (Aroc) curve and Pearson 
correlation coefficient (CC) to evaluate the predictive 
performance of the applied algorithms. The ROC curve is a 
plot of the true positive rate TP/(TP+FN) on the vertical 
axis vs false positive rate FP/(TN+FP) on the horizontal 
axis for the complete range of the decision thresholds and 
the Pearson correlation coefficient (CC) is used to measure 
the association between pairs of values i.e. predicted and 
experimental [26].  
 
Discussion: 
We assembled a dataset of peptide binding and nonbinding 
affinities for fourteen MHC class-I and II molecules (seven 
for each class) from DRFMLI repository 
(http://bio.dfci.harvard.edu/DFRMLI/). The Table 1 and 2 
(shown under supplementary material) gives an overview 
of the training and validation dataset, encompassing a total 
of 16,771 peptide training data determined experimentally 
including 10,303 MHC class-I and 6,468 MHC class-II 
binding affinities [21]. Compared to the training datasets 
publicly available on the IEDB database [9], our evaluation 
dataset expands the number of measured peptide-MHC 
interactions, 1,232 for MHC class-I from Survivin and 
CMV whereas, 712 for MHC class-II molecules from four 
protein antigens bee venom allergen, LAGE-1, dog 
allergen Can f1 and Nef protein. As the validation dataset 
not included in IEDB database, it is equivalent to a blind 
test. From the experimental data, peptides were classified 
into binders (IC50<1000 nM) and nonbinders (IC50≥1000 
nM) based on measured affinities. From these dataset, the 
performance of the prediction methods were then measured 
by area under ROC curves (Aroc) and Pearson correlation 
coefficient (CC). The calculation of Aroc provides a highly 
useful measure of prediction quality, which is 0.5 for 
random predictions and 1.0 for perfect predictions and 
correlation coefficient value of one corresponds to a perfect 

correlation, a value of zero corresponds to a random prediction 
and a value of minus one to a perfect anti-correlation. 
 
The prediction performances of the weight matrix are better than 
the non-linear predictor (ANN) for the MHC class-I molecules 
using all the validation datasets measured in terms of Aroc and CC 
(Figure 1). The weight matrix performance in term of Aroc and 
CC is maximum (1.0, 0.69) using CMV validation dataset and the 
minimum (0.85, 0.51) using combined-I validation dataset for 
allele HLA-A*1101 (Figure 1). The prediction performance of the 
Gibbs motif sampler for the DRB1*1301(MHC class-II) molecule 
is maximum (Aroc=0.71, CC=0.32) using Henikoff and Henikoff 
1/nr weighting scheme (Figure 2) which is lower than the 
minimum performance of MHC class I binding prediction (Figure 
1). The average performance of MHC class-II predictor based on 
Gibbs sampler (Aroc=0.62, CC=0.19) is also lower than the MHC 
class-I predictor based on sequence weighting (Aroc=0.95, 
CC=0.56) and artificial neural network (Aroc=0.73, CC=0.25).  
 
From the above results it is clear that the size of training dataset 
may be an important factor contributing to better performance of 
sequence weighting and artificial neural network methods for the 
prediction of MHC class-I binding peptides. A key difference 
between MHC class-I and MHC class-II molecule is that the 
binding groove of class-II molecules is open at both ends. As a 
result, the length of peptide binding to class-II molecules can vary 
considerably, typically ranges 13-25 amino acids long. Therefore, 
a requisite for all MHC class-II binding prediction approaches is 
the capacity to identify the correct 9-mer core residues within 
longer peptide sequences that mediate the binding interaction. For 
Gibbs sampler method, we compared the predicted cores with the 
true cores extracted from crystal structures (Table 3 under 
supplementary material). Gibbs sampler methods had limited 
success (40%) as shown in the Table 4 (see supplementary 
material), although they still perform above random prediction 
(the probability to randomly guess the right core for a 15-mer 
peptide is 1 out of 7 or 14%). Thus the Gibbs sampler and weight 
matrix approaches are only suited to describe sequence motifs of 
fixed length e.g. 9-mer amino acids and suitable for prediction of a 
binding event in situations, where the binding specificity can be 
represented independently at each position in the motif This 
assumption can only be considered to be an approximation and in 
the binding of a peptide to the MHC molecule the amino acids 
might for instance compete for the space available in the binding 
grove where artificial neural networks with a hidden layer are 
generally used to describe sequence patterns. Overall, these data 
suggest that there is a substantial room to improve the quality of 
the core predictions using novel approaches that capture distinct 
features of MHC-peptide interactions.
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Figure 1: Performance of the MHC class I binding peptide predictor based on sequence weighting schemes and ANN using the 
validation datasets Survivin, CMV and Combined-I. Vertical axes shows the values of Aroc (a for weight marix, b for ANN) and 
CC (c for weight matrix, d for ANN) while horizontal axes shows HLA class I alleles and validation datasets.  
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Figure 2: Performance of the MHC class II binding peptide predictor based on Gibbs motif sampler and sequence weighting 
schemes using the validation dataset combined-II. Vertical axes shows the values of Aroc (e) and CC (f) while horizontal axes 
shows HLA class II alleles and sequence weighting schemes.  
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Conclusion: 
As, the identification of MHC class-I and II restricted 
epitopes using wet lab experiments are expensive and time 
consuming, the computational methods can be used as a 
fast alternatives. Although the prediction of peptide that 
bind to MHC class-II did not perform well as the MHC 
class-I molecules, however, it is able to identify the 9-mer 
cores of a binding peptide with limited accuracy (40%) 
above the random prediction (14%). Therefore, the size of 
dataset (training and validation) and the correct 
identification of the binding core are the two main factors 
limiting the performance of MHC binding prediction and 
thus, there is a substantial room to improve the quality of 
the core predictions. Finally, we hope that novel 
approaches that capture distinct features of MHC class-I 
and II peptide interactions could lead to more useful 
predictions than the current approaches. 
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Supplementary material 
 
Tables: 

Total no. of validation dataset S.No MHC allele Total no. of  IEDB 
training dataset 

Total no. of positive  
IEDB training set # Survivin CMV Combined-I 

1 HLA-A*0201 3087 1641 134 42 176 
2 HLA-A*0301 2093 838 134 42 176 
3 HLA-A*1101 1983 953 134 42 176 
4 HLA-A*2402 195 138 134 42 176 
5 HLA-B*0702 1261 319 134 42 176 
6 HLA-B*0801 708 92 134 42 176 
7 HLA-B*1501 976 299 134 42 176 
Table 1:  MHC class-I binding peptides used in the study. # Number of binding peptides scaled score>33. 
 
S.No MHC allele Total no. of IEDB 

training dataset 
Total no. of positive 
IEDB training set** 

Total no. of validation 
dataset (combined-II) 

1 DRB1*0401 512 423 103
2 DRB1*1101 520 440 103
3 DRB1*0301 502 400 103
4 DRB1*0701 502 400 103
5 DRB1*1501 520 396 103
6 DRB1*1301 30 30 103
7 DRB1*0101 1974 # 1974 103
Table 2: MHC class-II binding peptides used in the study. # Number of strong binders, i.e. scaled binding score<99; **Number 
of peptides binding scaled score>33. 
 
9-mer Core Binding Peptide Chain PDB ID MHC class-II allele 
FKGEQGPKG AGFKGEQGPKGEPG E 2FSE DRB1*0101 
IGILNAAKV GELIGILNAAKVPAD C 1KLG DRB1*0101 
VIPMFSALS PEVIPMFSALSEGATP C 1SJE DRB1*0101 
WRFLRGYHQ GSDWRFLRGYHQYA C 1AQD DRB1*0101 
YSDQATPLL AAYSDQATPLLLSPR C 1T5W DRB1*0101 
YVKQNTLKL PKYVKQNTLKLAT C 2G9H DRB1*0101 
MRMATPLLM PVSKMRMATPLLMQA C 1A6A DRB1*0301 
MRADAAAGG AYMRADAAAGGA E 2SEB DRB1*0401 
YVKQNTLKL PKYVKQNTLKLAT C 1J8H DRB1*0401 
VHFFKNIVT ENPVVHFFKNIVTPR C 1BX2 DRB1*1501 
Table 3: MHC class II-peptide complex structures used to evaluate the performance of Gibbs sampler method. 
 
S.No. MHC class-II allele PDB ID Known core Number of core regions identified correctly 

using Gibbs sampling 
1 DRB1*0101 2FSE,1T5W,2G9H,KLG,

1SJE, 1AQD 
6 2 

 
2 DRB1*0301 1A6A 1 0 
3 DRB1*0401 2SEB,1J8H 2 1 
4 DRB1*1501 1BX2 1 1 
Accuracy (Correct/Total) Total=10 4/10=0.40 
Table 4: Accuracy of the Gibbs sampler for identifying 9-mer epitope core region in a binding peptide. 


