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Abstract

Motivation: Methods based on summary statistics obtained from genome-wide association studies

have gained considerable interest in genetics due to the computational cost and privacy advan-

tages they present. Imputing missing summary statistics has therefore become a key procedure in

many bioinformatics pipelines, but available solutions may rely on additional knowledge about the

populations used in the original study and, as a result, may not always ensure feasibility or high ac-

curacy of the imputation procedure.

Results: We present ARDISS, a method to impute missing summary statistics in mixed-ethnicity

cohorts through Gaussian Process Regression and automatic relevance determination. ARDISS is

trained on an external reference panel and does not require information about allele frequencies of

genotypes from the original study. Our method approximates the original GWAS population by a

combination of samples from a reference panel relying exclusively on the summary statistics and

without any external information. ARDISS successfully reconstructs the original composition of

mixed-ethnicity cohorts and outperforms alternative solutions in terms of speed and imputation

accuracy both for heterogeneous and homogeneous datasets.

Availability and implementation: The proposed method is available at https://github.com/

BorgwardtLab/ARDISS.

Contact: matteo.togninalli@bsse.ethz.ch or karsten.borgwardt@bsse.ethz.ch

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The genome-wide association study (GWAS) is an invaluable tool to

detect associations between a trait and genetic variants in individuals.

For over a decade, GWASs have been conducted in a variety of organ-

isms that span different plants and crops (Lin et al., 2014; Meijon

et al., 2014; Zhao et al., 2011), animal species (Kirby et al., 2010;

Mackay et al., 2012) and humans (Freilinger et al., 2012). Public

databases and web services have been developed to provide easy ac-

cess to the results of many of these association studies, e.g. for the

model organism Arabidopsis thaliana (Togninalli et al., 2018) and for

humans (Welter et al., 2014). Of the results generated by a GWAS,

the association summary statistics, normally in the form of Z-scores,

have recently gained considerable attention. They are being increas-

ingly used for meta-analyses, conditional association methods, gene-

based association tests, fine-mapping and to investigate the polygenic

nature of complex traits (Pasaniuc and Price, 2017).

The growing popularity of methods that analyze summary statis-

tics can be attributed to (i) their advantageous computational cost,

especially when compared to genotype-based methods, and to (ii)

the relative absence of privacy concerns when manipulating and

exchanging the data. However, researchers working with summary

statistics often encounter disparate datasets obtained from studies

that were performed with different genotyping platforms and/or fil-

tering criteria. This limits the types of analyses that can be con-

ducted because of the incomplete overlap of the genetic variants—in

the form of single-nucleotide polymorphisms, or SNPs. Early strat-

egies to tackle said limitation relied on finding proxy SNP values

(Meesters et al., 2012), but the ubiquity of the problem justifies the

development of reliable methods to impute missing summary statis-

tics. In the last few years, several methods have been proposed as

software solutions to the problem of imputing summary statistics in

association studies.

Here, it is important to draw a distinction between Z-scores and

other summary statistics like genotype counts and allele frequencies.

Association summary statistics such as Z-scores or P-values

identify genomic regions that have a strong association to a trait.
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The imputation of Z-scores is the main focus of our work and of

other state-of-the-art summary statistics imputation methods.

However, the theoretical foundations of these solutions are valid

for other summary statistics such as allele frequencies (Wen and

Stephens, 2010) and b values.

Imputation methods based on Z-scores, depending on their data

needs with respect to the samples in the original study, can be broad-

ly categorized as (i) requiring no additional data, just the Z-scores

and (ii) requiring some additional data (in addition to the Z-scores).

For the latter, the additional information can be in the form of

covariates, other summary statistics like allele frequencies, or the

ethnic composition of individuals in the original study. This is

shown in more detail in Figure 1. The flowchart highlights the most

common use cases for the imputation of summary statistics and indi-

cates which state-of-the-art algorithm can be used for each scenario.

The first distinction between the current methods is based on having

access to the original genotypes. The attentive reader may wonder

about the need to impute summary statistics when one has access to

the original genotype data. After all, if the genotypes of each sample

are available, one can rely on well-established imputation methods

such as IMPUTE2 (Howie et al., 2009), MaCH (Li et al., 2010) and

others (Browning and Browning, 2007; Servin and Stephens, 2007)

to impute missing SNPs. Once the genotypes of the missing SNPs

have been imputed, the association Z-scores can be computed for all

SNPs (original and imputed). Nevertheless, the reason why one may

pursue the imputation of summary statistics despite having access to

the genotypes is due to the heavy computational cost involved in

imputing genotype data. The SNPs to be imputed can be in the order

of 106 and in a study with thousands of samples, the imputation

task may require weeks of dedicated cluster computing. As shown in

Figure 1, this is a plausible use case for methods like DISSCO (Xu

et al., 2015) or ImpG-SummaryLD (Pasaniuc et al., 2014), which re-

quire access to the original genotype data.

If the genotypes are not available, one has to assess if the

Z-scores to be imputed arise from a study with a cohort of mixed-

ethnicities. Depending on the organism on which the GWAS was

conducted, this may or may not be an issue. As an example, in

humans, GWASs tend to be conducted on homogeneous cohorts–or

at least as homogeneous as the designers of the study envisioned it–

to avoid spurious associations due to population stratification.

Nevertheless, ethnicity in these studies is self-reported and individu-

als may not be aware of their true genetic background when

recruited for the study. This often creates a mixed-ethnicity cohort

and the Z-scores of association reflect that. This problem is

exacerbated in other organisms such as plants. In these cases, it is al-

most guaranteed that the Z-scores were derived from a non-

homogeneous cohort and the imputation of missing Z-scores should

take this into consideration to avoid reporting false positives.

DISTMIX (Lee et al., 2015) addresses the issue of mixed-ethnicities,

but in order to perform the proper adjustment of imputed Z-scores,

it requires the allele frequencies in the original study to estimate the

different compositions of ethnic groups in that study. We cannot

take lightly the fact that DISTMIX requires the allele frequencies to

perform an accurate imputation, especially because these additional

data may be simply unavailable or hard to obtain.

Therefore, there is no unique and adaptive method that ideally

fits all scenarios. Hence, we here propose a new imputation method

named ARDISS that is able to approximate the ethnic composition

of the samples in an association study by simply relying on (i) the

Z-scores obtained from such study and (ii) a reference panel.

ARDISS does not require neither additional summary statistics nor

any information of the samples in the study, thus preserving the ano-

nymity of the original samples. Our method relies on Automatic

Relevance Determination (ARD), a common strategy used in the

Gaussian Process Regression literature for feature selection in high-

dimensional spaces (MacKay, 1994). ARDISS uses automatic rele-

vance determination to weigh the contribution of single samples to

the observed Z-scores. Moreover, our method is highly paralleliz-

able and this results in considerable speed improvements with re-

spect to current solutions. The remainder of the document is

organized as follows: Section 2 presents background information

about the imputation of summary statistics and introduces our new

method ARDISS. Section 3 describes the datasets and the experi-

mental setup we used. Section 4 compares our method with state-of-

the-art tools and provides an interpretation of the results. Section 5

discusses the applicability scenarios of the state-of-the-art methods

and how these relate to ARDISS. Section 6 concludes the paper.

2 Materials and methods

2.1 Existing methods
Several methods have been proposed for the task of imputing sum-

mary statistics in association studies. In particular, DIST (Lee et al.,

2013), ImpG-Summary (Pasaniuc et al., 2014), DISSCO (Xu et al.,

2015) and DISTMIX (Lee et al., 2015) are considered state-of-the-

art for this task. Despite their differences in terms of additional data

requirements, all methods share a commonality: in order to impute

Fig. 1. Usage mapping of available methods for Summary Statistics imputation depending on data availability and computational resources. Accounting for cova-

riates is not necessary if the covariates were taken into account during the original study (Section 4.1.2)
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missing Z-scores for specific SNPs, they rely on a reference panel of

genotyped individuals. For example, these reference panels are nor-

mally obtained from the 1000 Genomes Project (Abecasis et al.,

2012), for humans, or from the 1001 Genomes Project (Alonso-

Blanco et al., 2016) for the plant A. thaliana. These methods impute

missing Z-scores by approximating them with a multi-variate

Gaussian distribution over neighboring SNPs’ values. They differen-

tiate between typed (Zt) and untyped (Zu) values and use the under-

lying linkage disequilibrium (LD) structure to approximate the

distribution of the Z-scores Z according to variations of the follow-

ing formula:

Zujt ¼ RutR
�1
tt Zt (1)

Where Rut is the matrix of correlations between untyped and

typed SNPs and Rtt is the matrix of correlations between typed

SNPs. The correlations are obtained by looking at the SNP genotype

values of samples from a reference panel (e.g. the 1000 Genomes

samples) and measuring their Pearson’s correlation coefficient. This

approach can be translated in a naı̈ve Gaussian Process Regression

(Rasmussen and Williams, 2006) that uses a simple linear kernel k

and 0 mean:

f ðxÞ � GPð0; kðx;x0ÞÞ (2)

kðx; x0Þ ¼
Xd

i¼1

xix
0
i (3)

Where x and x0 are the standardized feature vectors of two SNPs

(i.e. the standardized genotype values for the d individuals in the ref-

erence panel). The Gaussian Process then generates predicted means

and variances of the missing points according to the following

formulas:

f ujXi;Xt; f t � N lK;rKð Þ

lK ¼ K Xu;Xtð ÞK Xt;Xtð Þ�1f t

rK ¼ K Xu;Xuð Þ � K Xu;Xtð ÞK Xt;Xtð Þ�1K Xt;Xuð Þ

(4)

Where f u and f t are equivalent to Zu and Zt, respectively; Xu

and Xt are the matrices of features for the untyped and typed SNPs

and KðX;X0Þ is the n� n0 matrix of the covariance values evaluated

at all pairs of points using Equation (3). To simplify notation, we

will refer to KðXt;XtÞ; KðXu;XuÞ; KðXu;XtÞ and KðXt;XuÞ as Ktt,

Kuu, Kut and K>ut, respectively.

To account for the noise observed in the typed data, it is com-

mon to add a noise component in the covariance between typed data

as follow:

Ky ¼ Ktt þ r2
noiseI (5)

and replace Ktt by Ky. Notice that this step is often related as Radj
tt ¼

Rtt þ kI in the summary statistics imputation literature.

Other variations of the formulas presented here have been used

to account for mixed-ethnicity cohorts. While ImpG-Summary does

not account at all for mixed populations during imputation, other

methods that do so (DISSCO and DISTMIX) require extra informa-

tion about the study population: the user should either report the

original study genotypes, the allele frequencies of the study geno-

types or an estimate of the population structure under the form of

fractions that sum up to one. This information is then used to com-

pute adjusted partial correlations between SNPs. Such requirements

are not ideal in a realistic setting: when access to the original

genotypes is possible, genotype imputation should be preferred

(Pasaniuc et al., 2014) and allele frequencies are not often shared

due to privacy concerns (Erlich and Narayanan, 2014; Homer et al.,

2008), see Section 5 for a more detailed discussion.

2.2 Automatic relevance determination
In order to account for mixed ethnicity cohorts without relying on

other sources of information, we introduce ARDISS (ARD for

Imputation of Summary Statistics), a new summary statistics imput-

ation method that only relies on the typed statistics and a reference

panel of genotypes [e.g. for humans, the panel from the 1000

Genomes Project (Abecasis et al., 2012)]. In order to do so, we bor-

row elements from the Gaussian Process field, with a focus on ARD.

A Gaussian Process is characterized by its mean function m(x),

kernel k and hyperparameters h. Moreover, if the mean is zero, one

can compute the marginal likelihood (or evidence) to evaluate how

the parameters fit the observed data according to:

log pðyjX ; hÞ ¼ �1

2
y>K�1

y y� 1

2
log jKyj �

n

2
log ð2pÞ (6)

To have an optimal fit of the Gaussian Process, we want to maxi-

mize the likelihood. Hence, we can set the optimal hyperparameters

by computing the partial derivatives of the marginal likelihood with

respect to the hyperparameters [See Chapter 5 of (Rasmussen and

Williams, 2006)]:

@

@hj
log pðyjXÞ ¼ 1

2
tr

 �
aa> � K�1

y

� @Ky

@hj

!
where a ¼ K�1

y y (7)

and using the partial derivatives in a gradient based optimizer.

The idea of ARD is to add weights to every feature used to con-

struct the kernel and to fit those weights so as to optimally represent

the observed values with a Gaussian Process. In our case, this would

mean to weigh the contribution of the individual genotypes in the

reference panel so as to ideally match the reported Z-scores. This

can be seen as a proxy to represent the original population of the

GWAS as closely as possible. The new linear kernel function simply

becomes (MacKay, 1994):

kARDðx;x0Þ ¼
Xd

i¼1

r2
i xix

0
i (8)

And, we fit the ri values by using a gradient descent optimizer on

the negative of the likelihood in Equation (6). The partial derivative

of Ky with respect to rj is a simple outer product of the genotype val-

ues for sample j across the SNPs of interest multiplied by 2rj.

2.3 ARDISS: implementation
ARDISS combines ARD with a moving-window imputation of miss-

ing GWAS Z-scores. The algorithm consists of two steps. We first it-

erate over the available Z-scores across one chromosome to obtain

the consensus weight for every sample in the reference panel. Then,

we apply the obtained weights to the genotype values and run the

imputation with a moving window across the chromosome.

We rely on an external library GPflow (Matthews et al., 2017)

for the optimization of the weights. Since deriving the weights on a

single large window enclosing all the SNPs for which Z-scores are

available is computationally very expensive due to the many matrix

inversions required (Oðn3Þ), the optimization procedure is carried

out on subsets of SNPs in a window-based approach, as shown in

lines 1–7 of Algorithm 1. This implementation can benefit from par-

allel computing on graphics processing units (GPUs) and allows very

fast runtimes. Any optimizer object can be used for the optimization
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of the weights (line 15) and we observed that the RMSProp optimizer

implementation of GPflow with a learning rate of 0.1 and momen-

tum of 0.001 yields satisfactory results. Once the ARD weights have

been optimized, we average them across the chromosome (line 17)

and we use the following formula to compute the untyped values:

Zijt ¼ KARD
it ½KARD

tt þ r2
noiseI�

�1Zt (9)

Where the entries of KARD
tt are given by Equation (8). To acceler-

ate execution, all the genotypes are multiplied element-wise with the

ARD weights and standardized as seen in line 4 of Algorithm 2. The

imputation procedure is then run using a moving-window with a

window size given by the number of neighboring SNPs (a window

size of 100 SNPs guarantees excellent results under various scen-

arios) rather than the commonly used approach of splitting the data

in fixed-size blocks. This enables faster matrix operations which fur-

ther speed up the execution. In particular, we can update the inverse

of the correlation matrix in Oðn2Þ by using the Sherman–Morrison

formula. Furthermore, the imputation procedure always centers the

window around the SNPs of interest, ensuring to find the strongest

LD structures. A total of N loops are performed (where N is the

number of typed SNPs). The covariance matrix Ktt, its inverse and

the typed Z-score vector Zt are all initialized before iterating

through all typed SNPs (Lines 5–9). Boundary SNPs are treated

slightly differently and are imputed with all the window-size SNPs

at the boundary. Every iteration then updates the necessary entries

(Lines 11–14), quickly retrieves Xu for the missing SNPs located

between the two central typed SNPs (e.g. between the 50th and

the 51st typed SNPs for a window size of 100) using specific

Python data structures (line 15) and imputes their Z-score values

(lines 16–17).

The overall complexity of ARDISS is OðNkw �maxðw; dÞÞ for

the weight learning step and OðNðw2 þ nuwdÞÞ for the imputation

step, where N is the number of typed SNPs, k is the maximum num-

ber of iterations of the optimizer, w is the window size, d is the num-

ber of samples in the reference panel and nu is the number of

untyped SNPs in a single window. We can furthermore assume that,

on average, nu ¼ Nu

N , where Nu is the overall number of untyped

SNPs and have a final runtime complexity of OðNw2 þNuwdÞ
for the imputation step. Due to the simple inner products needed

to compute the covariance matrix, the method scales linearly for

the number of samples in the reference panel—with fixed number

of SNPs and a fixed window size. Please, refer to Supplementary

Figure S1 for an empirical validation.

3 Experiments

In this section we describe the experiments we conducted to evaluate

the performance of ARDISS in different use cases. All experiments

were conducted on real datasets in which we highlight the strengths

of the method and compare its performance to that of comparison

partners.

3.1 COPDGene
We obtained genotype data from participants in the COPDGene

study (Regan et al., 2011). The goal of this study is to identify gen-

etic risk factors associated to chronic obstructive pulmonary dis-

ease (COPD). The study was conducted on two different ethnic

groups: African Americans (AA) and non-Hispanic whites (NHW).

We combined the samples of the two populations and kept

615 906 SNPs that overlapped in both datasets. Of these SNPs,

those that did not fulfill the following criteria were removed from

the study:

i. Minor allele frequency <0.01.

ii. Hardy–Weinberg equilibrium <1.0e–6.

Additionally, due to genotyping errors, some combinations of

samples and SNPs had missing genotypes. In these cases, the missing

genotypes were imputed as described in (Cho et al., 2014). Of the

7993 samples in the combined dataset, 3633 are individuals diag-

nosed with COPD (cases) and 4360 are controls. Table 1 provides

Algorithm 1 ARDISS_get_weights

Input: Standardized genotypes for typed SNPs Xt 2 R
N�d,

typed Z-scores Zt 2 R
N, window size w, optimizer Opt

Output: Average ARD weights across chromosome

1: W  blength of X=wc;weights Ø

2: for k in {1. . .W} do

3 . Slice the array to get batch samples

4: Xbatch  Xt;i• i 2 fðk� 1Þ �w:::k �wg
5: Zbatch  Zt;i i 2 fðk� 1Þ �w:::k �wg
6: . Initialize the ARD weights to a vector of d ones

7: r2
ARD  11�d

8: for i in {1. . .Opt.maxiter} do:

9 . Compute the kernel matrix

10: Ky  Xbatch diagðr2
ARDÞX>batch þ rnoiseI

11: a K�1
y Zbatch

12 . Compute the rARD gradients with Equation (7)

13: grads 1
2 trððaa> � K�1

y Þ
@Ky

@hj
Þj¼f1:::dg

14: . Update the ARD weights with the optimizer of choice

15: rARD  Opt:updateðgradsÞ
16: Append rARD to weights

17: Return average of weights along second axis

Algorithm 2 ARDISS

Input: Standardized genotypes from reference sample X 2 R
M�d,

typed Z-scores Zt 2 R
N, window size w, optimizer Opt

Output: Imputed Z-scores

1: Split genotypes in typed and untyped Xt;Xu  X

2: rARD  ARDISS get weightsðXt;Zt;w;OptÞ
3: . Element-wise multiplication followed by standardization

is a way to further speed up the computations afterwards

4: Xi•  Standardize Xi• � rARD i 2 f1:::Mg
5: Xt;window  Xt;i• i 2 f0:::wg
6: Zt;window  Zt;i i 2 f0:::wg;Zu  Ø

7: N  length of Xt

8: Ktt  Xt;windowX>t;window þ r2
noiseI

9: Compute K�1
tt

10: . Boundary conditions are treated differently

11: for i in w
2 þ 1:::N � w

2

� �
do

12: Update Xt;window; Zt;window and Ktt

13: . Use Sherman-Morrison formulas

14: K�1
tt  update inverseðK�1

tt ;KttÞ
15: Xu  get untyped snps for windowðÞ
16: Kut  XuX>t;window

17: Zu;window  KutK
�1
tt Zt;window

18: Append Zu;window to Zu

19: Return Zu
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additional details of the sample sizes. This combined dataset was

then subsampled to create cohorts of mixed ethnicities as described

below.

3.1.1 Randomized cohorts of mixed-ethnicity

In order to simulate cohorts of mixed ethnicities, we created 11

randomized partitions of the combined COPDGene dataset. On the

two ends of the spectrum, we have homogeneous populations of

100% AA and 100% NHW samples, respectively. In between, we

created cohorts with mixed ethnicities by increments of 10%, i.e.

90% AA with 10% NHW; 80% AA with 20% NHW, all the way

to 10% AA with 90% NHW. Additionally, we randomly selected

samples from the two populations in a stratified manner to guaran-

tee the same ratio of cases/controls per population. We set all

randomized partitions to contain the same number of samples:

2313.

3.1.2 Association analysis

For each of the randomized partitions previously described, we con-

ducted a GWAS using a linear mixed model to account and to cor-

rect for population structure in the mixed cohort (Price et al., 2010).

In particular, the analyses were performed with the tool FaST-LMM

(Lippert et al., 2011) and for each of the 615 906 SNPs we obtained

a Z-score of association. It is important to note that, when imputing

summary statistics in a real setting, the genotypes of the individuals

in the study will, most likely, not be available. Having access to the

original genotypes in COPDGene allowed us to create randomized

cohorts of varying ethnic composition and to perform the corre-

sponding association tests. The Z-scores were the starting point to

the execution of ARDISS and of the other comparison partners.

3.1.3 Randomized SNPs (typed and untyped)

To contrast the performance of ARDISS versus that of its compari-

son partners, we assumed that for certain SNPs the Z-scores of asso-

ciation were missing. Of the 615 950 SNPs across the whole genome

we randomly chose 10% and flagged them as missing (these are the

ones we want to impute and we refer to them as untyped SNPs).

The remaining 90% are the typed SNPs, i.e. the ones for which we

know the Z-score and that are used to infer the untyped ones. This

randomization was repeated 10 times in order to get a good

genome-wide coverage. The genomic locations of the SNPs are

based on the hg19 version of the human genome. All methods were

asked to impute SNPs not present in the typed set, for a total of

11 671 761 imputed SNPs.

3.2 Insomnia complaints
We obtained summary statistics from the Genome-Wide Repository

of Associations Between SNPs and Phenotypes (GRASP; Leslie

et al., 2014). The full GRASP catalog currently contains publicly-

available association scores of more than 2000 GWASs. Of these,

we analyzed the results of a study aimed at identifying the genetic

risk factors associated with insomnia complaints (Hammerschlag

et al., 2017). The original study was conducted on 113 006 individu-

als of self-reported European descent. The samples were obtained

from the May 2015 release of the UK Biobank (Sudlow et al., 2015).

We downloaded from GRASP the results file #2 with full sum-

mary statistics on males and females. Among the many columns

with summary statistics, we used BETA: the b of the logistic

regression and SE: the standard error of the logistic regression b.

The Z-score for each SNP was computed as BETA
SE .

Our analysis was limited to one chromosome. Of the original

430 235 Z-scores in chromosome 12, we randomly masked 10%

and imputed them. Similarly to COPDGene, this process of random

masking was performed 10 times.

3.3 Evaluation of imputation performance
To assess the performance of each method, we compared the

imputed Z-scores with the original Z-scores, only on the untyped

SNPs. The evaluation metrics commonly found in the literature are

the Pearson’s correlation coefficient, the R2 score and the root-

mean-square-error (RMSE) between the imputed and original val-

ues. We computed all these metrics for the three methods but only

report the correlations. Supplementary Table S1 has additional

details on R2 scores and RMSE.

3.4 Reference panel
As mentioned in Section 1, all methods used as comparison partners

rely on a reference panel to perform the imputation. For our analy-

ses we used the reference panel from the 1000 Genomes Project,

Ref. 1, release 3 (Abecasis et al., 2012). This panel is based on the

hg19 version of the human genome and contains 14 populations

grouped in 4 superpopulations (Table 2).

3.5 Implementation and speed measurements
All our runtime analyses were performed on a dedicated server

running Ubuntu 14.04.5 LTS, with 2 CPUs (IntelV
R

XeonVR E5-2620

v4 @ 2.10 GHz), 8 GPUs (NVIDIAVR GeForceVR GTX 1080) and 128

GB of RAM. The code was implemented in Python 3.

In order to assess the runtime required by each of the methods, we

ran them independently on our server, with no other concurrent proc-

esses. We measured the imputation runtime for every chromosome

separately as these processes are highly parallelizable, depending on

the computing capabilities available to the users. Speed measurements

were taken for the imputation of all the missing SNPs described in

Section 3.1.3 when using ARDISS and ImpG-Summary. Due to the

considerably slower nature of DISTMIX, we could only run it on five

chromosomes (chromosomes 18 through 22). Note that this only

refers to the comparison of runtimes. We used the same setup to run

the speed tests for varying reference panel sizes and window sizes.

4 Results

This section presents the results on the COPDGene dataset and on

the insomnia complaints study. As described in Section 3.1.1, the

two COPDGene populations were used to create cohorts of mixed

ethnicities. These cohorts, in turn, allowed us to do a thorough ana-

lysis of the weights computed by ARDISS and to assess the accuracy

of the imputation methods under different conditions. The insomnia

study provided a very realistic scenario for the imputation of

Table 1. Details of the samples in the original populations of

COPDGene

Population Disease status Gender

Case Control Total Male Female

African–Americans 821 1826 2647 1498 1149

Non-Hispanic whites 2812 2534 5346 2816 2530

Total 3633 4360 7993 4314 3679

Note: The column ‘Case’ refers to individuals who were diagnosed with

COPD. The number of SNPs in the intersection of both populations is

615 906 and this is the starting point of our analysis.
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summary statistics: one in which the data are publicly available and

the imputation task has limited knowledge of the samples in the ori-

ginal study.

4.1 COPDGene
We applied ARDISS, ImpG-Summary and DISTMIX to the Z-scores

obtained from the GWASs performed on the 11 mixed-ethnicity

cohorts detailed in Section 3.1.1. Although we had access to the ori-

ginal genotypes and covariates, we did not run DISSCO because we

wanted a more realistic imputation scenario in which the compari-

son partners do not require knowledge of the covariates from the

original samples.

4.1.1 Weights optimization

Prior to performing imputation, ARDISS optimizes and outputs the

specific weights derived for every sample in the reference panel. The

individual weights were pooled according to the ethnic background

of the sample with which they were associated, and used to recon-

struct the population composition as depicted in Supplementary

Figure S2.

As expected, ARD also detects some residual signal from the other

populations and their contribution is kept in the imputation proced-

ure. This can be seen in Figures 2 and 3. The nature of the window-

based optimization causes this weak noise contamination: since full

chromosome optimization of the weights is computationally unrealis-

tic, smaller windows (100�100 SNPs) are used for optimization and

the final weights are obtained by averaging over the chromosome.

The weights obtained by ARD were also pooled by individual

populations and compared to the weights derived by DISTMIX

from the allele frequencies of the original study samples. The overall

correlation obtained by the weights is 0.839. The correlation be-

tween the populations of interest, however, is 0.936, as seen in

Figure 4. Therefore, ARDISS correctly reconstructs the study popu-

lation weights by using only the typed Z-scores and without the

need for allele frequencies.

4.1.2 Imputation performance

Once the weights are optimized, ARDISS proceeds with the imput-

ation of the missing Z-scores. We compared our method with

ImpG-Summary and DISTMIX. When running ImpG-Summary, we

used all the available samples in the reference panel to mimic a real-

istic setting where little is known about the original population.

Using only a subset (AFR and EUR samples) did not yield better

results for ImpG-Summary, as shown in Supplementary Figure S3.

ARDISS reports better performance than ImpG-Summary and

DISTMIX for all mixtures of population. All the methods perform

better on the homogeneous cohort of 100% non-Hispanic whites

than on the cohort of 100% African American samples. There are

two main possible reasons for this: (i) the imputation works better

on samples of European descent because there are more European

genotypes in the reference panel (379 EUR versus 246 AFR), and (ii)

populations of African-descent have higher genetic diversity and less

LD (Campbell and Tishkoff, 2008), making it more challenging to

Table 2. Details of the samples in the 1000 Genomes Project that

were used in our analyses as reference panel

Super population Population Name Samples

AFR ASW African–American SW 61

LWK Luhya 97

YRI Yoruba 88

AMR CLM Colombian 60

MXL Mexican–American 66

PUR Puerto Rican 55

EAS CHB Han Chinese 97

CHS Southern Han Chinese 100

JPT Japanese 89

EUR CEU CEPH (Utah residents) 85

FIN Finnish 93

GBR British 89

IBS Spanish 14

TSI Tuscan 98

The four superpopulations are: AFR (African), AMR (ad-mixed

American), EAS (East Asian), EUR (European).

Fig. 2. Scaled contribution of weights from individual samples detected by

ARD for the 100% AA j 0% NHW mix of population. Some residual weights

for non-African populations are picked up. Super-populations codes are

reported in Table 2. The boxplots are generated by taking the weights output

by ARDISS, i.e. one per sample in the reference panel and grouping them by

their super-population code

Fig. 3. Population-level individual samples’ weights scaled contribution

detected by ARD for the 100% AA j 0% NHW ethnicity mixture. Some residual

weights for non-African populations are picked up. Population codes are

reported in Table 2
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cover all the haplotype diversity with few reference panels. Another

surprising aspect is that DISTMIX, after optimizing the weights

with allele frequencies of the original study, still performs worse

than ImpG-Summary. While no proper comparison of the two meth-

ods was reported before, this could imply that the cohort genotype

correlation matrix derived by DISTMIX is not taking advantage of

the weights.

When comparing with ImpG-Summary, the performance im-

provement is more noticeable with non-mixed cohorts. The 0% AA

j 100% NHW, 90% AA j 10% NHW and 100% AA j 0% NHW

are the mixtures for which ARDISS is better able to spot the com-

position with 2.08%, 2.55% and 3.20% improvements over ImpG-

Summary, respectively (Fig. 5). Once the mixture approaches

50%j50%, the gain in weighting individual contributions decreases

(1.34% improvement over ImpG-Summary), as the weight distribu-

tion gets closer to having all equivalent weights (this is the case for

ImpG-Summary with all samples in the reference panel). The im-

provement on the African–American population is considerably

higher. This can be explained by the ability ARDISS has to draw in-

formation from other individual samples that might not be in the

same super population group. Similarly, ARDISS does considerably

better than DISTMIX, with an improvement ranging from 4.03%

for 0% AA j 100% NHW to 11.85% for 100% AA j 0% NHW.

Supplementary Figure S4 provides more details on this. We also

evaluated the performance of ImpG-Summary using (i) only EUR

samples, (ii) only AFR samples and (iii) a combination of both on

chromosome 12. Additionally, we computed the performance of

DISTMIX when manually fed with ‘best-guess’ weights, an ap-

proach that is somewhat realistic in a setting for which no informa-

tion about the original population is known. For each ethnicity

mixture, we attributed the effective percentage of weights to the

ASW (Americans of African Ancestry in Southwest USA) and to the

CEU [Utah Residents (CEPH) with Northern and Western European

Ancestry]. None of these approaches yielded better results than

the results reported in Figure 6 and the ‘best-guess’ weights resulted

in the worst performance (data now shown). For a thorough exam-

ination of alternative scenarios, please refer to Supplementary

Figure S3.

Additionally, we considered the effect of the window size on

the imputation accuracy. Performance initially increases with

increasing window size, but starts deteriorating for larger win-

dows. This is due to the non-overlapping nature of the ARD step:

with larger window sizes, that are potentially overlapping multiple

LD regions, the obtained weights are more evenly distributed and

no sample is clearly selected. Moreover, during the imputation

step, long-distance, low-LD SNPs covered by large windows add

noise to the imputed values, decreasing the quality of the imput-

ation. An overview of the performance of ARDISS for various win-

dow sizes can be found in Supplementary Figures S5 and S6. We

observed optimal performance with a window size of 100 and

while this value might depend on the GWAS in use and its avail-

able typed Z-scores, the general behavior is similar in other

studies.

Fig. 4. Weights obtained by ARDISS (x axis) and by DISTMIX using the allele

frequencies of the original study (y axis) for a selection of populations. The

color code indicates the population to which the weight belongs and the dif-

ferent points were obtained from the different mixture of ethnicity sets.

Population codes are reported in Table 2

Fig. 5. Relative improvement of ARDISS over ImpG-Summary for different

randomized mixed-ethnicity cohorts. ARDISS outperforms ImpG-Summary in

all mixture scenarios, with both methods being equally accurate in cases of

very heterogeneous cohorts (with practically 50% of AA and NHW). The

shaded area represents the SD interval

Fig. 6. Pearson’s correlation coefficients obtained during full genome imput-

ation imputation across different mixtures of ethnicity sets using ARDISS and

available methods. ImpG-Summary was run using all the samples in the ref-

erence panel and DISTMIX computed the optimal weights from the allele fre-

quencies. Replications of 10 were performed. The shaded areas represent the

SD interval
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In order to evaluate whether ARDISS is adversely affected from

not accounting for covariates, we decided to analyze the percentage

of recovered top hits. As important as the correlation between

imputed and original Z-scores is, it may overlook the ranks of

Z-scores. By this we mean it is also very relevant that, if the original

Z-score of a SNP ranks high when compared to the rest, then the

imputed Z-score should also rank high. To validate this, we selected

the top 100 SNPs from the untyped SNPs, i.e. the highest absolute

value of the Z-scores marked as missing and compared them with

the top 100 imputed Z-scores. Table 3 shows how ARDISS recovers

a comparable number of top hits when the original association test

is conducted with or without covariates. In the case of COPD, the

covariates used as confounders where (i) age and (ii) pack-years of

smoking.

4.2 Insomnia complaints
For the insomnia study, we only compared ARDISS to ImpG-

Summary due to its wider adoption and ease of use. As mentioned in

Section 3.2, the GWAS on insomnia complaints conducted by

Hammerschlag et al. used samples from the UK Biobank, a large

dataset of self-reported traits and genotypes. The participants’ eth-

nicities were also self-reported, making them subject to uncertainty

and, thus, a perfect use case for our method. Table 4 reports the

results obtained by the two methods. ARDISS clearly outperforms

ImpG-Summary on the imputation task, suggesting that it success-

fully evaluates the study population’s structure and ideally imputes

values for it. This result highlights the advantage of using an adap-

tive method such as ARDISS in a setting where the ethnic back-

ground of the participants in a study is not clearly defined.

As mentioned in Section 1, a method like ARDISS can be easily

extended to perform imputation of b values. In this study, the correl-

ation between the imputed and masked values is 0.804 6 0.008 for

b values on chromosome 12. The imputation accuracy is lower than

for Z-scores because the Z-score—defined as the ratio of b over its

standard error—contains more information about the association

between the SNP and the phenotype.

4.3 Speed performance
ARDISS leverages state-of-the art scientific computing libraries and

can be deployed on GPU architectures to speed up the ARD compu-

tation. When compared with available solutions, ARDISS showed

large improvements in runtime performance. The total runtime

required to impute the missing SNPs described in Section 3.1.3 using

ImpG-Summary was of �22 h (79 205.53 s) compared to �4h15

min (15 287.61 s) for ARDISS and �2h20 (8530.12 s) when using

ARDISS on a GPU. Alternatively, users with large time constraints

also have the option to omit ARD and get even faster imputation:

�35 min (2118.95 s) for the whole genome, at a cost of slightly less

accurate imputation. On the other end of the spectrum, DISTMIX

was too slow for full sequential imputation and could only be meas-

ured for a subset of chromosomes. In order to impute 1 131 674

SNPs on chromosomes 18 to 22, DISTMIX took �5 h (17 947.63 s),

compared to the �15 min (907.50 s) of ARDISS on a GPU. Figure 7

shows the sequential run times of ARDISS, ImpG-Summary and

DISTMIX on a subset of chromosomes. Since these methods are

usually ran in parallel to impute multiple chromosomes separately,

we computed the average ratio of run times of ARDISS and com-

parison partners across chromosomes: when using GPUs the user

can expect, on average, a method that is 9.38 times faster than

ImpG-Summary and 19.88 times faster than DISTMIX. When drop-

ping the ARD step, the fold change increases to 38.35 and 83.10,

respectively.

5 Discussion

The growing interest for genomics methods based on GWAS sum-

mary statistics has brought a panoply of tools for imputing missing

values. However, as we highlighted in our analysis, some of the

available methods suffer from usability issues. DISTMIX relies en-

tirely on allele frequencies for accurate imputation results. While

these data might be accessible in certain cases, their exchange has

been severely reduced after they were proven to be an effective mean

to identify participants in a GWAS (Homer et al., 2008). Moreover,

as privacy concerns constantly grow, access to sensitive information

will not become easier in the future. On the contrary, with more

informed study participants, research groups will likely tighten their

access policies for external collaborators. Furthermore, large public

repositories of SNP-trait association data, such as the GWAS

Table 3. Example percentage of recovered top 100 SNPs after im-

putation on chromosome 12 for the 10% AA j 90% NHW cohort

Typed ARDISS ImpG-summary

With covariates 100 70 55

Without covariates 100 64 61

Table 4. Imputation performance on the publicly available sum-

mary statistics for Insomnia GWAS reported in correlation between

imputed and typed SNPs

Method Insomnia

Correlation RMSE

ARDISS 0.956 6 0.001 0.093 6 0.002

ImpG-summary 0.889 6 0.003 0.218 6 0.005

Note: Bold characters indicate the best performances.

Fig. 7. Breakdown of the run times for sequential imputation of summary sta-

tistics across chromosomes 18 to 22
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Catalog (Welter et al., 2014), provide summary statistics from

which Z-scores can be derived, i.e. SNP effect and its standard error,

but seldom report allele frequencies and never provide covariates

from the original samples. On the one hand, a method like DISTMIX

is severely handicapped in the case of missing allele frequencies. On

the other hand, a method that requires covariates on the original data,

like DISSCO, cannot simply be executed when these are not present

(this is a documented limitation of the tool). In fact, due to its require-

ments, it can be argued that the usability of DISSCO is circumscribed

to a small niche of users. These users have access to the original geno-

type data in a study (and its covariates) but prefer to impute summary

statistics on the missing SNPs rather than perform the more accurate

(yet more computationally intensive) task of imputing the missing

genotypes with IMPUTE2, MaCH or others.

Because of its own merits, ImpG-Summary offers excellent per-

formance on certain well-defined datasets, but may lack the flexibility

necessary to impute missing values in slightly more complex studies.

In our experiments, the GWAS study on insomnia shows that an easily

adaptable method such as ARDISS has the potential to yield much

better imputation performance, even for a self-reported homogeneous

cohort. Our motivation to develop ARDISS was to simplify the task

of imputing summary statistics by providing a unique and robust solu-

tion that encompasses all scenarios described in Figure 1, while at the

same time, providing superior imputation accuracy and better run-

times. In fact, another aspect that was central in the development of

ARDISS was to improve the runtime efficiency by exploiting parallel

computing methods and highly-efficient open-source libraries.

Finally, the ever increasing body of publicly available results

from association studies in plants, humans and other model organ-

isms, enables researchers that use GWAS results to ask questions

that go beyond the SNP-trait association. The integration of

Z-scores from different studies makes the imputation of missing val-

ues a necessity which, coupled with the limited time a researcher has

to gather additional sample information from a study publication,

creates opportunities for software tools that minimize the need for

additional data. Therefore, a method like the one we propose here,

which accurately imputes Z-scores for ethnically-mixed populations

without requirements for additional input from the user, is bound to

be successful and widely adopted by the community.

6 Conclusion

We presented ARDISS, a fast, accurate and adaptable method to im-

pute missing Z-scores while inferring the underlying population

composition without the need for any extra information such as al-

lele frequencies or covariates of the original study population. Our

method matches typical use-case scenarios betten than other avail-

able solutions. It outperforms other methods, not only in imputation

performance but also in speed as it is highly parallelizable on plat-

forms with available GPUs. It entirely relies on open-source libraries

and the code is publicly available online.
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