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Copy number variants (CNVs) are a major cause of several genetic disorders, making their detection an essential compo-

nent of genetic analysis pipelines. Current methods for detecting CNVs from exome-sequencing data are limited by high

false-positive rates and low concordance because of inherent biases of individual algorithms. To overcome these issues, calls

generated by two or more algorithms are often intersected using Venn diagram approaches to identify “high-confidence”

CNVs. However, this approach is inadequate, because it misses potentially true calls that do not have consensus from mul-

tiple callers. Here, we present CN-Learn, a machine-learning framework that integrates calls from multiple CNV detection

algorithms and learns to accurately identify true CNVs using caller-specific and genomic features from a small subset of

validated CNVs. Using CNVs predicted by four exome-based CNV callers (CANOES, CODEX, XHMM, and CLAMMS)

from 503 samples, we demonstrate that CN-Learn identifies true CNVs at higher precision (∼90%) and recall (∼85%) rates

while maintaining robust performance even when trained with minimal data (∼30 samples). CN-Learn recovers twice as

many CNVs compared to individual callers or Venn diagram–based approaches, with features such as exome capture probe

count, caller concordance, and GC content providing the most discriminatory power. In fact, ∼58% of all true CNVs re-

covered by CN-Learn were either singletons or calls that lacked support from at least one caller. Our study underscores the

limitations of current approaches for CNV identification and provides an effective method that yields high-quality CNVs

for application in clinical diagnostics.

[Supplemental material is available for this article.]

Copy number variants (CNVs) are a major source for genomic var-
iation, evolution, and disease (Sebat et al. 2004; Redon et al. 2006;
Perry et al. 2008; Girirajan et al. 2011). About 15% of affected indi-
viduals referred for clinical genetic testing carry a disease-associat-
ed CNV (Miller et al. 2010), making CNV detection an essential
aspect of genetic analysis pipelines (Sathirapongsasuti et al.
2011; Krumm et al. 2012). Although the clinical utility of microar-
rays has not diminished (Coughlin et al. 2012), exome sequencing
is becoming a prevalent technology for genetic testing (de Ligt
et al. 2013; Yang et al. 2013; Retterer et al. 2016; Stark et al.
2016; Tan et al. 2017). Several algorithms are available to call
CNVs from exome-sequencing data in both clinical (Retterer
et al. 2016) and disease-specific cohorts, including autism
(Krumm et al. 2012), schizophrenia (Fromer et al. 2012), epilepsy
(Epilepsy Phenome/Genome Project Epi4K Consortium 2015),
and cancer (Koboldt et al. 2012). A common strategy used by these
CNV callers is to apply various statistical distributions tomodel the
aggregate read depth of the exons and use read-depth fluctuations
between adjacent exons to identify duplication or deletion events
(Fromer et al. 2012; Krumm et al. 2012; Backenroth et al. 2014;
Jiang et al. 2015; Packer et al. 2015).

Several themes have emerged because of variations in the ap-
proaches used by different CNV callers to model read-depth distri-

butions. First, the distributions and algorithms chosen to
model read depth depend on the expertise of the researchers and
their subjective assumptions about the underlying data. For exam-
ple, callers such as XHMM (Fromer et al. 2012) assume the read-
depth distribution to be Gaussian, whereas CANOES (Backenroth
et al. 2014) assumes a negative binomial distribution, CODEX
(Jiang et al. 2015) assumes a Poisson distribution, and CoNIFER
(Krumm et al. 2012) makes no assumptions about the read-depth
distribution. Second, although every method normalizes data to
eliminate noise and outliers resulting fromGC and repeat content
biases, the number of samples required for normalization and the
definition of outliers are inconsistent among the callers. For exam-
ple, a principal component analysis (PCA) based method such as
XHMM requires at least 50 unrelated samples for effective normal-
ization, whereas CANOES only requires as few as 15 samples
(Backenroth et al. 2014). Similarly, the annotations for “extreme”
GC content differ among XHMM (<0.1 or >0.9), CODEX (<0.2 or
>0.8), and CLAMMS (<0.3 or >0.7) (Packer et al. 2015). Further,
XHMM only considers exome capture targets between the size
range of 10 bp and 10 kbp and with average coverage >10× across
all samples, whereas CODEX uses targets that are >20 bp long and
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with median coverage >20×. CODEX eliminates targets with
mappability scores <0.9, whereas CLAMMS eliminates regions
with scores <0.75 along with a custom list of “blacklisted” regions
(Packer et al. 2015). Third, the validation methods and the sub-
sets of CNV calls used to estimate sensitivity and specificity mea-
sures vary widely among the callers. For example, large CNVs
(>100 kbp) validated with microarrays and analyzed with
PennCNV (Wang et al. 2007) were used to estimate the perfor-
mance of CANOES (Backenroth et al. 2014), but only a subset of
CLAMMS calls withminor allele frequency <0.1 were validated us-
ing polymerase chain reaction (PCR). Also, not all callers report
confidence scores for the CNVs they identify. Even when they
do, their confidence scales are not directly comparable. These is-
sues influence the number and type of CNVs detected by each cal-
ler in a given sample, resulting in pronounced differences in
accuracy, false-positive rates, and concordance among the callers
(Hong et al. 2016; Yao et al. 2017). Finally, studies using exome-
sequencing data to detect CNVs either use predictions made by a
single caller (Krumm et al. 2013; Poultney et al. 2013) or use a
Venn diagram approach to identify calls with concordance among
multiple callers as “high-confidence” CNVs (Krumm et al. 2015;
Bademci et al. 2016; Kataoka et al. 2016; Priest et al. 2016).
Although using data frommultiple callersminimizes false-positive
rates, this approach discards a large subset of nonconcordant
CNVs, thereby reducing the overall CNV yield (Hong et al.
2016). In addition to a low CNV yield, the reported breakpoints
of the concordant calls do not necessarily agree between callers.
These limitations associated with individual CNV callers as well
as the methods used to integrate predictions from different CNV
callers necessitate a better approach to identify and prioritize clin-
ically relevant CNVs.

Here, we propose a machine-learning method called CN-
Learn that overcomes the limitations of high false-positive and
low concordance rates among calls generated by different CNV
algorithms to identify high-confidence CNVs. Our method lever-
ages several attributes intrinsic to each CNV call, such as GC con-
tent, mappability of the genomic region, and CNV size, in
addition to concordance among the callers. CN-Learn learns
the associations between these attributes and the presence or ab-
sence of CNVs using a small subset of validated CNVs in the co-
hort (known truth), and then segregates true CNVs from false
positives in the test samples with high precision. Using exome-
sequencing data and validations from 503 samples, we demon-
strate CN-Learn’s ability to recover more than twice as many
potentially true variants compared to a Venn diagram approach.
Our study reiterates the limitations of existing CNV detection
and integration methods, and offers a better alternative that
yields a set of high-quality CNVs for application in clinical
diagnostics.

Results

We developed CN-Learn as a binary Random Forest classifier that
can be trained to differentiate true CNVpredictions from false pos-
itives using a small subset of validated CNVs (Fig. 1).We identified
12 features that represented the extent of support from individual
algorithms and the genomic context for each CNV (Methods). We
detected statistically significant correlations for several pairs of the
quantitative features (Fig. 2; Supplemental Table 1). Based on a col-
lection of decision trees built using the 12 features extracted from
CNVs in the training samples, CN-Learn estimates the probability
of each CNV in the test sample to be true (Fig. 2). In addition to a

Random Forest classifier, CN-Learn can also be built as a Logistic
Regression (LR) or Support Vector Machine (SVM) based classifier
(Supplemental Methods and Results).

CN-Learn detects high-confidence CNVs with high precision

and recall rates

Tobuild theCN-Learn classifier,we first identified41,791CNVpre-
dictions from 503 samples using four exome-based CNV callers
(CANOES, CODEX, CLAMMS, and XHMM). Using a read depth–
based method (Supplemental Fig. S1) to resolve breakpoint con-
flicts of overlapping CNV predictions obtained from different call-
ers, we identified 29,101 unique CNV events among the 503
samples (Supplemental Methods and Results). An alternate ap-
proach to resolve breakpoint conflicts (Supplemental Fig. S2) also
provided the same number of unique CNV events. We selected
2506 of these CNVs from 291 samples withmicroarray validations
that were between 50 kbp and 5Mbp and spanned regions covered
bymicroarray probes (Supplemental Fig. S3). After determining the
proportion of CNVs that overlappedwithmicroarray validations at
different thresholds (Supplemental Table 2), we labeled each of the
selectedCNVs as either “True” or “False” based on a 10% reciprocal
overlap threshold. We next used CNVs from 70% of the 291 sam-
ples to trainCN-Learn as aRandomForest classifier and the remain-
ing 30% of samples to test its performance. Given the uneven
distribution of the labels between the two CNV classes (11% true
vs. 89% false), we chose precision and recall as themeasures of clas-
sifier performance (Supplemental Table 2). We captured the aggre-
gate performance of CN-Learn using 10 random draws of training
data (10-fold cross-validation), stratified by sample. CN-Learn
used the 12 predictors supplied with each CNV in the test set
(Methods) and classified the calls as either true or false at 91% pre-
cision and 86% recall rates. The overall diagnostic ability of the bi-
nary classifier, measured as the area under the receiver operating
characteristic (ROC) curve,was 95%(Fig. 3A).Despite samplingdif-
ferent sets of training data for each iteration during cross-valida-
tion, the performance of CN-Learn was consistent across all 10
iterations for both precision (91± 5%) and recall rates (86± 5%)
(Fig. 3B).

We also assessed the relative importance of each feature to-
ward making accurate CNV predictions by calculating the Gini in-
dex (defined as the total decrease in improvements to the node
purity for all splits on each feature averaged over all trees in the for-
est) (Breiman 2001).We found that features such as the number of
exome capture probes spanning a given call, the extent to which
CANOES agreed with a CNV prediction, concordance among the
callers, and GC content provided the most discriminatory power
to the classifier (Fig. 3C). Postclassification analysis of the concor-
dance profile indicated that only 34% of all CNVs classified as true
had support from all four callers, whereas the remaining 66%
lacked support from at least one caller (Supplemental Fig. S4).
We further assessed the performance of CN-Learn on an indepen-
dent set of 90 samples from the 1000 Genomes Project (Jiang et al.
2015) and observed a precision rate of 93% and recall rate of 86%
when using 70% training data (Supplemental Figs. S5, S6). When
we generated precision/recall rates that are directly comparable
with the concordance-based methods, we observed a consistently
superior performance for CN-Learn (Supplemental Fig. S7;
Supplemental Tables 3, 4; Supplemental Methods and Results).
Overall, these results highlight the ability of CN-Learn to look be-
yond the single measure of concordance typically used in a Venn
diagram–based approach and to use the discriminatory power of
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additional variables to identify high-confidence CNVs in a system-
atic manner.

Performance of CN-Learn is robust across varying CNV sizes,

frequencies, and training sets

We independently trained CN-Learn using varying proportions of
training data (between 10% and 70% in increments of 10%) and
observed steady performance gains with increase in the number
of training samples (Fig. 3A). Evenwhen the classifier was built us-
ing just 10% of the total samples (n=29 samples), we obtained
90% precision and a recall rate of 75%, indicating the robustness
of the classifier when learning fromminimal training data.We fur-
ther trained CN-Learn independently at four size ranges of CNVs
and observed a modest increase in precision with increase in
CNV size (90% for 50–100 kbp CNV to 97% for 0.5–5 Mbp CNV)
(Fig. 3D). In fact, the precision achieved by CN-Learn at each size
interval was substantially higher than the precision achieved by
the individual CNVcallers.We also observed comparable precision
and recall rates when CN-Learn was run on breakpoint-resolved
CNVs obtained by merging overlapping predictions (Supplemen-
tal Fig. S8).We then tested the performance of CN-Learn for differ-

ent classes of CNVs based on their frequency in the cohort (very
rare, rare, common, very common) and found precision (>90%)
and recall (>80%) rates that were consistent across the CNV fre-
quency spectrum (Supplemental Fig. S9; Supplemental Methods
and Results). In fact, when added as an additional predictor to
CN-Learn, CNV frequency showed the highest discriminatory
power (16%) of any predictor but did not contribute to significant
improvements in the performance of the classifier (Supplemental
Figs. S10, S11). Although the performance of the Random Forest
classifier was robust, Logistic Regression and SVM classifiers failed
to match its performance (Supplemental Figs. S12, S13; Supple-
mental Methods and Results).

We next assessed the performance of CN-Learn by consider-
ing callsmade byCLAMMS as the truth set and classified CNVs ob-
tained from predictions made by the other three callers (CANOES,
CODEX, and XHMM).We categorized 25,019 breakpoint-resolved
CNVs (Supplemental Fig. S3) from all 503 samples as either “True”
or “False” based on their intersection (10% reciprocal overlap)with
CNVs predicted byCLAMMS.Given the higher resolution ofCNVs
detected from exome data relative to SNP microarrays, we used a
total of 16,497 CNVs between 5 kbp and 5 Mbp in size to build
CN-Learn (Supplemental Fig. S3). CN-Learn achieved an aggregate

Figure 1. Overview of the CN-Learn pipeline. The CN-Learn pipeline consists of preprocessing steps (Stages 1 and 2), followed by building the classifier
using training data and discriminatory features, and finally running the classifier on the test data. The complete pipeline is outlined as follows. Stage 1: CNV
predictions weremade using four exome-based CNV callers. Although CANOES, CODEX, CLAMMS, and XHMMwere used in this study, a generic pipeline
can be constructed with a different set or number of callers. Breakpoints of overlapping calls frommultiple callers were then resolved. Stage 2: Breakpoint-
resolved CNVs were labeled as “True” or “False” based on the overlap with “gold standard” calls and subsequently used to train CN-Learn. Stage 3: Caller-
specific and genomic features were extracted for the labeled CNVs in the training and testing sets. Stage 4: CN-Learn was trained as a Random Forest
classifier using the extracted features of the CNVs in the training set to make predictions on the CNVs from the testing set.
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precision rate of 94% with an overall recall rate of 85% during the
10-fold cross-validation and achieved comparable performance
when independently trained with CNVs at different training sam-
ple proportions (Supplemental Fig. S14A). The performance vari-
ability observed both during cross-validation and across the size
ranges was comparable to the variability observed when microar-
ray was used as the truth set (Supplemental Fig. S14B,C). Among
the features used byCN-Learn to classify the CNVs, the relative im-
portance of the mappability score was the highest, with GC con-
tent being the next important feature (Supplemental Fig. S14C).
Although caller-specific features contributed to the discriminatory
power of CNV classification when microarrays were used for vali-
dation, genomic features played a more prominent role when a se-
quence-based method was used for validation (Supplemental Fig.
S15). These results show that the performance of CN-Learn is ro-
bust with minimal training data, at different size ranges, and
even when orthogonal validations are not available.

CN-Learn recovers true CNVs that lack complete concordance

among callers

To assess the ability of CN-Learn to correctly identify true CNVs
that lack support from multiple callers, we analyzed the concor-
dance profile of all CNVs classified by CN-Learn as true, based
on microarray validations, before and after CN-Learn classifica-
tion. Using a single random draw of 29 samples (10%) to train
CN-Learn and 262 samples as the test set, we obtained predictions
for 2245 CNVs withmicroarray validations (Fig. 4A). Among these
predictions, only 122/2245 CNVs (5.4%) were supported by all
four CNV callers prior to classification by CN-Learn. The strong
concordance of the four methods for these CNV predictions was
corroborated by a high microarray validation rate (116/122,
95%) (Fig. 4A). In contrast, CNVs that lacked support from one
or more callers were less likely to intersect with microarray data.
For example, only 41% (11/27) of the CNVs with support from

B

C

A

OV_CANOES

Figure 2. Illustration of the Random Forestmodel used to build CN-Learn. (A) The inner workings of the Random Forestmodel used for trainingCN-Learn
is shown. Twelve features were used to grow 100 trees with different subsamples of predictors and training data to classify each CNV in the test set as either
true or false. If the predicted probability score was >0.5, the CNV call was classified as true. Calls with predicted probability score <0.5 were labeled as false.
(B) A Spearman’s rank correlation between pairs of quantitative predictors used by the CN-Learn classifier is shown. The color of the circles indicates the
direction of the correlation, and the size of the circles indicates the strength of the correlation. The correlation scores are provided in Supplemental Table 1.
(C) The frequency of microarray-validated and -invalidated CNVs, distributed across 20 bins of increasing predicted probability scores, is shown. For the
probability bins <0.5, the proportion of CNVs that were validated was higher than the proportion of CNVs that were not validated. This indicated that the
classification score of 0.5 is an appropriate threshold for distinguishing true and false CNVs.
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XHMM, CODEX, and CLAMMS intersected with microarray data.
After classification by CN-Learn, 84% (266/315) of all CNVs la-
beled as “True” intersected with microarray calls, indicating the
high classification accuracy achieved by the classifier (Fig. 4A).
All CNVs classified as true and false from this analysis are provided
in Supplemental Tables 5, 6. Of the 266 CNVs validated by micro-
arrays and correctly identified as true by the classifier, only 42%
(112/266) were supported by all four CNV callers. The remaining
58% (154/266) were either singletons or calls that lacked support
fromat least one caller, and theywould have been excluded if com-
plete concordance was used as the only determinant for selecting
high-confidence CNVs. For example, 13% of all true CNVs (35/
266) recovered by CN-Learn were missed by CLAMMS but were
identified by one or more of the other callers, reiterating the limi-
tations of using a single exome-basedCNVcaller for variant predic-
tions. Furthermore, CN-Learn managed to recover 97% (112/116)

of the true CNVs validated by microarrays that were supported by
all of the four callers. Although these 112 CNVs could have been
identified by a simple caller intersection approach, CN-Learn was
uniquely able to recover CNVs that lacked support from at least
one other caller. For example, CN-Learn classified 66 CNVs sup-
ported by CANOES, CODEX, and XHMM as true, of which 51%
(34/66) were also validated by microarrays. This result is notable
because, without using CN-Learn for classification, only 31%
(46/148) of CNVs supported by CANOES, CODEX, and XHMM
would intersect with the microarray calls, indicating the inherent-
ly high false-positive rate associated with simply intersecting calls
from individual callers using a Venn diagram. Our results indicate
that in addition to correctly identifying almost every true CNV re-
ported by the four callers, CN-Learn overcame the limitations of
the Venn diagram–based approach and recovered 154 additional
high-confidence CNVs with suboptimal concordance, thereby

A B

C D

Figure 3. Characteristics of the CN-Learn binary Random Forest classifier. (A) Receiver operating characteristic (ROC) curves indicating the trade-off be-
tween the precision and recall rates when CN-Learn was trained as a Random Forest classifier are shown. Each curve represents the performance achieved
when using different proportions of samples to train CN-Learn, starting from 10% up to 70% in increments of 10%. The results shown were from exper-
iments aggregated across 10-fold cross-validation. (B) Variability observed in the precision and recall measures during the 10-fold cross-validation at various
proportions of training data is shown. Bothmeasures varied within ± 5%of their corresponding averages. (C) The relative importance of each genomic and
caller-specific feature supplemented to CN-Learn is shown. Data shown here are the averages of the values obtained across 10-fold cross-validation after
using 70% of the samples for training. (D) Precision rates for CNVs when CN-Learn was trained at four different size ranges compared to the precision rates
of CNVs from individual callers are shown. Precision rates for CN-Learn were estimated as its classification accuracy (true positives/[true positives + false
positives]), whereas the precision rates for the individual callers were calculated as the proportion of CNVs at each size range that were validated by the
microarray calls.
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improving theCNVyield by 2.37-fold (266/112). Furthermore, the
true positive calls recovered by CN-Learn spanned the entire spec-
trum of CNV size range (Fig. 4B).We also obtained comparable im-
provements in CNV yield whenCNVs predicted by CLAMMSwere
used as the truth set (Supplemental Figs. S16, S17; Supplemental
Tables 5, 6; Supplemental Methods and Results).

Discussion

Exome sequencing is a cost-effective assay to accurately identify
single base pairmutations and small insertions or deletions within
protein-coding genes, which are more likely to cause disease than
mutations in other regions of the genome (Bamshad et al. 2011).
Even with the emergence of whole-genome sequencing (WGS)
techniques, exome sequencing has continued to flourish, result-
ing in an increase in the availability of data sets for analysis. This
widespread data availability has allowed for repurposing data gen-
erated for single-nucleotide variant detection to identify CNVs as
well (Koboldt et al. 2013). Given the high false-positive rates
among calls reported by individual exome-based callers and plat-
form-specific biases (Tan et al. 2014), existing CNV identification
pipelines that leverage more than one calling algorithm have de-
pended on naive Venn diagram–based integration approaches to
identify high-confidence CNVs. One reason for the overwhelming
trust in such approaches could be that the self-reported perfor-
mance measures of each individual algorithm are typically high.
Therefore, there is little reason to doubt that performance varia-
tions among the callers could affect the precision of Venn dia-
gram–based integration approaches. Although we found that the
likelihood of a CNV prediction to be true increased with an in-
crease in the number of callers supporting it (Supplemental Fig.

S18), there are two key limitations of this approach. First, even
among completely concordant predictions, the observed false-pos-
itive rates were not zero. Inflated false positives pose a large hurdle
for researchers interested in identifying clinically relevant CNVs,
because it is time consuming to validate a large number of false-
positive CNVs using orthogonal methods. Second, the Venn dia-
gram approach failed to identify a large subset of nonconcordant
or singletonCNVs supported bymicroarray validations. In fact, ap-
proximately one true CNV (>50 kbp) per individual in our cohort
would have been discarded under a Venn diagram–based ap-
proach. This evidence reiterates that Venn diagram–based
approaches do not have the required precision for usage in both
clinical and research settings.

Theutilityof alternatemethods forCNVdetectionhence rests
on the ability to both eliminate false positives among completely
concordant predictions and recover true CNVs that lack adequate
support from multiple callers. Therefore, instead of addressing
the shortcomings of existing methods by developing yet another
CNV detection tool, our study focused on offering a reliable inte-
grative approach. In this study, we demonstrate a machine-learn-
ing approach that leverages caller-specific and genomic contexts
from a subset of validated calls to identify high-confidence CNVs
more thoroughly than individual callers on their own or Venn di-
agram–based approaches. CN-Learn achieved precision as high as
94% while doubling the CNV yield, showing its ability to capture
singletons that would have been missed by other approaches.
Moreover, the precision of CN-Learn is robust to variation in
CNV size, ratio of training to testing samples, and validationmeth-
od/type, indicating the utility of CN-Learn in a variety of clinical or
research contexts. The use ofmultiple variables that capture the ge-
nomic context of each CNV in addition to caller concordance is a

BA

Figure 4. Concordance profiles of CNVs before and after classification by CN-Learn usingmicroarray calls as the “gold standard” validation set. (A) Venn
diagrams are shown for CNVs (≥50 kbp) identified from a random draw of 262 samples out of the total 291 samples before (top) and after (bottom) clas-
sification by CN-Learn. The Venn diagrams show the overlap of calls among the four callers (top left) versus those that were validated by microarrays (top
right). Venn diagrams depicting the overlap of all true calls among the four callers after classification by CN-Learn (bottom left) and true calls that were also
validated by microarrays are shown (bottom right). (B) The distribution of all calls within the 262 samples based on the probability scores (y-axis) predicted
by CN-Learn across four size ranges (x-axis) is shown. The number of overlaps of each CNVwith exome-based CNV callers is represented by different colors.
CNVs that validated with microarrays are indicated by filled circles, and CNVs that did not validate with microarrays are represented by hollow circles.
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major reason for the high recovery and precision rates achieved by
CN-Learn. In fact,GCcontent andmappability scoreswere someof
the most useful features in predicting true CNVs.

One of the limitations of CN-Learn is its dependency on a
small set of biologically validated CNVs. Our study leverages mi-
croarray validations to evaluate the predictions of each caller and
to label the breakpoint-resolved CNV predictions as either true
or false. Although microarrays may not be considered as a “gold
standard” for CNV detection, we were able to use microarray
calls as an orthogonal validation to demonstrate the utility of CN-
Learn.Our study also serves as a proof-of-principle for future studies
that could utilize CN-Learn with “gold standard” CNVs curated
from multiple genomic technologies, such as Pacific Biosciences
(PacBio) SMRT sequencing (John et al. 2009), Illumina long-read se-
quencing (Voskoboynik et al. 2013), 10x Genomics linked-read se-
quencing (Zheng et al. 2016), BioNano Genomics genome
mapping (Lam et al. 2012; Mak et al. 2016), or PCR. Another lim-
itation of our study is the time and computational capacity re-
quired to run four different CNV callers. Each CNV calling
algorithm extracts read-depth information for each sample using
tools such as SAMtools (Li et al. 2009), BEDTools (Quinlan and
Hall 2010) or Genome Analysis Toolkit (GATK) (McKenna et al.
2010), which are often the rate-limiting steps for each pipeline.
Future studies could simplify this data extraction layer by using a
single read-depth tool without adversely impacting the results of
the individual callers. Finally, we also acknowledge the complexity
associated with resolving breakpoint conflicts from multiple call-
ers that arise during data integration. Although we presented
two strategies to resolve breakpoints of concordant CNVs
(Methods), future studies could explore more effective strategies
before using CN-Learn. Because population-scale projects contin-
ue to generate large exome-sequencing data sets, the need and im-
portance of robust CNV integration approaches such as CN-Learn
is apparent.

Overall, CN-Learn integrates predictions from multiple CNV
callers and overcomes the limitations of existing integration ap-
proaches, even when the availability of samples with biological
validations is limited. Although we chose a set of four CNV call-
ing algorithms with microarray validations, CN-Learn framework
can be extended to use different sets of CNV callers or validation
types to identify high-confidence CNVs, making our framework
easy to adopt and customize. This can allow clinicians and re-
searchers to use their preferred callers and validation methods
to detect CNVs from exomes. Our results suggest that a small
set of high-quality validated CNVs and an objective machine-
learning method can help alleviate several shortcomings of exist-
ing integration approaches to generate an informed set of clinical-
ly relevant CNVs.

Methods

Samples

Weobtained exome-sequencing data (BAM files) from503 individ-
uals in the Simons Variation in Individual Project (Simons VIP)
from the Simons Foundation Autism Research Initiative (SFARI)
via SFARI Base following appropriate approvals (https://www
.sfari.org/resource/sfari-base/). Exome-sequencing reads were gen-
erated using the Agilent SureSelect Human All Exon v2.0 capture
kit containing 182,430 autosomal probes (Simons VIP
Consortium 2012) and were aligned to the hg19 reference ge-
nome. Overall, 187 individuals within this cohort carry the

16p11.2 deletion, and 143 individuals carry the reciprocal duplica-
tion. Single-nucleotide polymorphism (SNP)-based microarray
data were available for 291 samples, and CNVs >100 kbp were con-
firmed experimentally using array CGH (Duyzend et al. 2016). We
also obtained 90 samples from the ftp site of the 1000 Genomes
Project (The 1000 Genomes Project Consortium 2010) data collec-
tion (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data), of
which 46 samples were sequenced at the Washington University
Genome Sequencing Center using the Agilent SureSelect All
Exon v2.0 capture kit, and 44 samples were sequenced at Baylor
College of Medicine using the Roche HGSC VCRome capture kit.
We used 186,065 autosomal probes from the consensus probe
set (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/refer-
ence/exome_pull_down_targets/20130108.exome.targets.bed) to
make CNV predictions. Realigning the reads to hg38 (GRCh38)
would not significantly affect the conclusions of the paper,
because the CNV predictions are restricted to sequences captured
by the exome capture probes.

Exome CNV callers

We chose four exome CNV callers to obtain the initial sets of CNV
calls: CANOES, CLAMMS (v1.1), CODEX (v0.2.2), and XHMM
(Fromer et al. 2012; Backenroth et al. 2014; Jiang et al. 2015;
Packer et al. 2015). As the Simons VIP samples were sequenced
in two sets (312 and 191 samples), each set of samples was treated
as individual batches for running the CNV calling pipelines.
XHMM, CANOES, and CODEX were run using the default param-
eters. CLAMMS models were built with the assumption that the
samples were independent without accounting for batch effects.
All of the parameters used to make CNV calls using the four callers
for this study can be found in the pipelines provided as part of
the CN-Learn distribution (https://github.com/girirajanlab/CN_
Learn) (Supplemental_Code.zip). Running the four CNV callers
yielded 41,791 calls of varying sizes (Supplemental Fig. S19).
These original CNV calls (deletions and duplications) were then
characterized based on their level of concordance among the
four callers (Supplemental Methods and Results).

Resolving breakpoint conflicts for overlapping predictions

Multiple CNV callers can make predictions that overlap with each
other in a given genomic region. Treating such overlapping predic-
tions with different breakpoints as separate CNVs would result in
double counting the calls for the same CNV event. Therefore, it
is important to merge concordant predictions and represent
them as a single event for downstream analyses. We developed a
five-step procedure that uses fluctuations in local read depth to re-
solve breakpoint conflicts among overlapping predictions by iden-
tifying the most likely start and end coordinates of the underlying
event. A detailed explanation of this strategy is presented in the
Supplemental Methods and Results (Supplemental Figs. S1, S20).
As an alternate strategy, we resolved breakpoint conflicts by simply
selecting the smallest and largest coordinates among the overlap-
ping predictions as the start and end coordinates of the underlying
CNV event. This strategy is also described in the Supplemental
Methods and Results (Supplemental Fig. S2). Applying bothmeth-
ods to the 41,791 CNVs detected in the Simons VIP samples yield-
ed 8382 unique breakpoint-resolved CNV events, in addition to
the 20,719 singleton calls (Supplemental Fig. S3).

CNV validations

SNP microarray data were generated by the Simons VIP
Consortium (Duyzend et al. 2016) using Illumina OmniExpress-
12 microarrays for 272 samples and OmniExpress-14 for 19
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samples. PennCNV (v.1.0.3) was used to identify CNVs from mi-
croarray data for all 291 individuals using standard parameters
(Wang et al. 2007). Individual and family-based (trios and quads)
CNV calls were combined for autosomal chromosomes, whereas
CNVs on Chromosome X were called only at the individual level.
CNV calls with ≥1 bp overlap or gaps <20% of the total CNV
length and <50 kbp were merged. CNVs ≥50 kbp in length and
containing ≥5 SNP target probes were subsequently considered
for further analyses.

For the 1000 Genomes samples, we pooled the validated calls
from three sources (McCarroll et al. 2008; The International
HapMap 3 Consortium 2010; Conrad et al. 2010) that were used
to measure the performance of CODEX (Jiang et al. 2015).
Merging the overlaps among the 10,235 CNVs resulted in 7302
CNVs (Supplemental Table 4) that were used to label theCNVs pre-
dicted for the 90 samples from the 1000 Genomes Project.

Feature selection for CN-Learn classifier

We identified 12 features that represent the extent of support
provided by the four individual callers and genomic context as
predictors of true CNVs to the CN-Learn Random Forest classifier.
Because we used four callers in our study, the extent of overlap
calculated during the breakpoint-resolution process (Supplemen-
tal Fig. S1; Supplemental Methods and Results) served as individ-
ual predictors. Concordance count and read-depth ratio (RDratio)
for both breakpoint-resolved concordant calls and singletons
were also supplied as features. Because individual algorithms
use different GC and repeat content (mappability) thresholds to
classify CNV predictions as outliers, CNVs with extreme GC con-
tent or low mappability could be predicted by one caller but dis-
carded as an outlier by the other callers. To take this into
account, we extracted GC content data using the “nuc” option
in BEDTools (Quinlan and Hall 2010) and mappability scores
(Derrien et al. 2012) using the “bigWigAverageOverBed” option
in kentUtils (Kent et al. 2010) for use as predictors. Similarly,
the efficacy of CNV detection can vary across chromosomes,
size ranges, and CNV type (duplication/deletion). To take these
variations into account, we used chromosome number, CNV
size, CNV type, and the number of exome capture probes as
the final set of CN-Learn features.

Probability estimation and classification using CN-Learn

CN-Learn leverages the features extracted for the CNVs in the
training samples to build a Random Forest (Breiman 2001) classifi-
er with hundreds of decision trees and estimates the probability of
each CNV in the test samples to be true (Fig. 2A). Decision trees
have been shown to perform well when the distribution of obser-
vations is unbalanced between the classes of interest (Cieslak and
Chawla 2008). Given the high false-positive rates of CNV callers,
an uneven split between the number of true and false predictions
is likely to occur in clinical samples. In the samples we analyzed,
10% of the CNVs overlapped with the truth sets derived from mi-
croarray calls at a 10% reciprocal overlap threshold (Supplemental
Table 2). To address the imbalance between the number of true and
false CNVs, we stratified the training data by sample to accurately
reflect the clinical setting as follows: CNVs in p% of the samples
were used for training, and the remaining (1−p)% were used as
the testing set. For a random forest built with “N” trees, “M” pre-
dictors, and “C” classes, the probability of an observation “o”
belonging to the class “c” (true or false) can be expressed as po,c=
Pr(Y= c | X =xi), where xi is a vector that captures the values
for each of the 12 predictors, and Y is the outcome variable. The
probability po,true of the CNV “o” being true in the test set was

thenmeasured as the proportion of trees in the forest that assigned
it to the true class.

Specifically, the probability of a CNV prediction can be repre-
sented as

Po,true = Pr(Y = True|X = xi)

= number of trees that identify the CNV as true
number of trees in the forest

,

where X represents the values of the following features for the ob-
servation “o”: x1 = overlap proportion with CANOES; x2 =overlap
proportion with CODEX; x3 =overlap proportion with CLAMMS;
x4 =overlap proportion with XHMM; x5 = concordance among
callers; x6 = read-depth ratio; x7 = chromosome number; x8 =CNV
type (duplication/deletion); x9 =CNV size; x10 = target probe
count; x11 =GC content; and x12 =mappability.

CNV calls with predicted probability scores >0.5 were then
classified as true. We selected this cutoff based on the distribution
of validated (true) and invalidated (false) CNVs across the predict-
ed probability scores (ranging between 0 and 1). For both duplica-
tions and deletions, the proportion of true calls compared to false
calls was higher for CNVs with probability scores >0.5 (Fig. 2C).
This indicated that at a 0.5 threshold, the classifier recovers as
many true CNVs (recall) as possible without compromising on
the false-positive rate (precision).

Statistical analysis

All statistical analyses, including the calculation of precision-recall
rates, feature importance, and ROC areas, were performed using
the Python library scikit-learn (v 0.18.1) (Pedregosa et al. 2012).
Plots were generated using the R package ggplot2 (Wickham
2016) and the Python library Matplotlib (Hunter 2007).

Software availability

CN-Learn is available as an open-source software at https://github
.com/girirajanlab/CN_Learn and provided as Supplemental_Code
.zip. In addition to the scripts necessary to run CN-Learn, we also
provided simplified and easily parallelizable pipelines for each of
the original CNV calling algorithms (CANOES, CLAMMS,
CODEX, and XHMM) used in this study. Furthermore, in order
to simplify installation and avoid software version incompatibili-
ties, we provide a Docker imagewith all the required tools and soft-
ware packages preinstalled to run CN-Learn. Users can download
the image using the command “docker pull girirajanlab/cnlearn”
on any Linux platform to run CN-Learn. Detailed instructions to
install and use Docker and CN-Learn are provided in the
README.md file in Supplemental_Code.zip and at the landing
page for the software on GitHub. The script used to generate the
plots is also provided in Supplemental_Code.zip and in the “re-
search” directory of the CN-Learn GitHub repository.
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