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Immunotherapy has been demonstrated as a promising strategy in controlling head and neck squamous cell carcinoma (HNSC).
The AID/APOBEC family is well characterized as DNA mutator and considered to play critical roles in immune responses in
HNSC. However, the expression pattern and deamination-dependent demethylation roles of AID/APOBECs in HNSC are
unclear. In this study, the RNA-seq and DNA methylation profiles of HNSC from TCGA database and cell-based experiments
were applied to analyze the relationships between AID/APOBEC expression levels, patients’ clinical outcomes, methylation
alterations, and immune responses. Here, we found that APOBEC3H was abnormally upregulated in HNSC patients. HPV+
patients tended to have higher APOBEC3H levels than HPV- patients. Remarkably, patients with high APOBEC3H levels
showed a favorable overall survival. Furthermore, tumors with high APOBEC3H levels exhibited a genome-wide DNA
hypomethylation pattern. APOBEC3H was identified to demethylate and upregulate CXCL10 and improve CD8+ T cell tumor
infiltration in the tumor microenvironment. Collectively, APOBEC3H plays critical roles in CD8+ T cell immune infiltration

and activation in HNSC, which may be a potential biomarker for oncoimmunotherapy in HNSC.

1. Introduction

Head and neck cancer (HNC), which encompasses a group of
malignancies arising from the upper digestive tract, salivary
glands, and thyroid, is the sixth most common cancer in
the world. Over 830,000 individuals are diagnosed and
430,000 individuals are dead with HNSC per year [1]. The
strongest risk factors for HNSC are cigarette smoking and
alcohol drinking [2-4]. Human papillomavirus (HPV) infec-
tion is associated with the increasing incidence of HNSC [5].
Although surgery and/or chemoradiotherapy have been rou-
tinely applied in the clinical management of HNSC patients,
the 5-year overall survival rate is still below 60% [6]. HNSC is
reported to be immunologically “hot” tumor with high
immune cell infiltration, indicating that immune therapy
may provide a promising strategy for HNSC patient treat-
ment [7]. However, there are only 15-20% of HNSC patients

with a moderate-high mutational burden who respond to
PD-1/PD-L1 checkpoint blockade (ICB) immunotherapy
[8, 9]. Thus, it is essential to explore the potential molecules
that influence the HNSC immune microenvironment, which
may provide biomarkers and therapeutic targets for HNSC
patients.

The activation-induced cytidine deaminase/apolipopro-
tein B mRNA editing catalytic polypeptide-like (AID/APO-
BEC) family, which shares the homologous structural and
catalytic backbone of zinc-dependent deaminases, is well
established for its cytidine deaminase activity in RNA or
single-strand DNA (ssDNA) and is essential for genome
modulation, antibody diversity, and retroviral restriction
[10-12]. In humans, there are 11 family members that have
been identified, including AID, APOBECI1, APOBEC2, APO-
BEC3A-H, and APOBECA4. In a large number of cell-based
experiments and biochemical assays, the AID, APOBECI,
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and APOBEC3 proteins have been identified to deaminate
cytosine to uracil (C-to-U) on RNA and DNA. DNA cytosine
deamination is established as the hallmark activity of APO-
BECs due to the catalyzed deamination of HIV-1 cDNA rep-
lication intermediates during reverse transcription. APOBEC
deaminating cytosine to uracil (C-to-U) in ssDNA is consid-
ered to be the most common event [13, 14]. DNA repair
intermediates, such as DNA breaks and abasic sites, can also
lead to cytosine to guanine (C-to-G) transversion and other
mutational outcomes [15]. Thus, all the AID/APOBEC
family members except for APOBEC2 and APOBEC4 were
identified as DNA mutators [16]. In the last decades, a novel
role of genomic cytosine demethylation activity has been
reported in several AID/APOBEC family members [16].
Despite the role of genomic cytosine demethylation by AID
remains controversial, APOBEC3A, APOBEC3B, and APO-
BEC3H have been demonstrated to have actual activity in
cytosine demethylation in vitro. AID/APOBEC-mediated
demethylation might be induced via deaminating 5mC and
generating a T-G mismatch, which subsequently repaired
by the base excision repair (BER) enzyme-thymidine DNA
glycosylase [17]. However, the role of deamination-
dependent demethylation of AID/APOBECs is poorly under-
stood and remains to be further elucidated.

AID/APOBEC enzymes play critical roles in several cel-
lular biological processes and pathological progression. They
could initiate viral genome mutations, antibody somatic
hypermutation, or class switching through targeting host
genome immunoglobulin loci, which are essential for both
adaptive and innate immune responses such as antiviral, B
cell affinity maturation, or B cell class switch recombination
[11, 12]. AID/APOBEC-mediated mutagenesis has been
found to fuel for cancer heterogeneity and evolution.
Although all the AID/APOBEC members mutate C to U,
individual preferences are different. For example, AID pre-
fers to deaminate the hotspot WRC (W corresponds to
A/T, R means A/G, and C is the mutated cytosine), APO-
BEC3A and APOBEC3B exhibit preference for TC, while
APOBEC3G prefers to mutate CCC. On the other hand,
APOBEC3C, APOBEC3F, and APOBEC3H preferentially
deaminate TTC [18, 19]. These patterns are reported to be
related to the biological mechanisms underlying carcinogen-
esis [20, 21]. Thus, the abnormal expression pattern of
AID/APOBECs has become a rising concern in human can-
cers. APOBEC3B is found to be upregulated in various can-
cer types and acts as a leading candidate for cancer
mutator, such as breast cancer, non-small-cell lung cancer,
and serous ovarian carcinoma [20, 22-24]. Another possible
mutator-APOBEC3A can activate the DNA damage
response, cause cell cycle arrest, and lead to cell death [25].
In HNSC, APOBEC mutagenesis was also found to trigger
immune cell infiltration and activation, especially in HPV-
mediated HNSC [26]. However, besides the mutagenesis
activity, the biological functions and mechanisms of AID/A-
POBEC deaminases in HNSC progression remain largely
unclear and need to be further elucidated.

In this study, the expression patterns, distinct prognostic
values, methylation regulation activity, potential biological
functions, and mechanisms of AID/APOBEC deaminases in
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HNSC were explored. We identified that APOBEC3H
was obviously upregulated in HNSC, especially in those
with positive HPV infection, and was a prognosis predic-
tor. High APOBEC3H level was linked to the genome-
wide aberrant hypomethylation in HNSC. APOBEC3H-
mediated CXCL10 demethylation and expression might
be responsible for CD8+ T cell infiltration and activation
in HNSC, demonstrating a potential role of APOBEC3H
in HNSC immunotherapy.

2. Materials and Methods

2.1. Clinical Cohorts. The HNSC dataset from the TCGA
database (The Cancer Genome Atlas, Provisional) including
530 patients and 74 normal people was applied for this study.
DNA methylation profiling based on Illumina Human Meth-
ylation 450 BeadChip, RNA-seq data based on IlluminaHi-
Seq RNASeq, and respective clinical information were
obtained from the TCGA data portal.

2.2. Bioinformatics Analysis. Students’ t-test was used to
compare the expression levels of AID/APOBECs in HNSC
and normal epithelial tissues. Fold change > 1.2 and p value
< 0.05 were considered significantly differently expressed.
The UALCAN dataset (http://ualcan.path.uab.edu/) was
applied to analyze the expression levels of AID/APOBECs
in HPV+ and HPV- samples [27]. R language was used for
the Kaplan-Meier curves with log-rank test analysis. The best
cutoft values for high and low AID/APOBEC expressions
were selected from the receiver operating characteristic
(ROC) curve. APOBECI and APOBEC4 were excluded from
this study for more than 50% patients’ mRNA data were not
available in TCGA dataset.

The cBioportal (http://www.cbioportal.org) was applied
to analyze the coexpression pattern of CXCL10 and APO-
BEC3H. TIMER dataset (https://cistrome.shinyapps.io/
timer/) [28] was employed to perform enrichment analysis
of genes that were correlated with APOBEC3H. The LinkIn-
terpreter module was used for analyzing the genes which
were positively correlated with APOBEC3H. The LinkFinder
module was applied to analyze the correlation between APO-
BEC3H mRNA levels and CXCL10 methylation levels. The
Kaplan-Meier survival module was performed to analyze
the predictive value of CD8+ T cell infiltration on patients’
overall survival. Furthermore, the immune cell infiltration
data downloaded from the CIBERSORT (https://cibersort
.stanford.edu/) [29, 30] was used to confirm the correlation
between APOBEC3H or CXCL10 gene expression and CD8
+ T cell infiltrations, as well as the prognostic value of the
CD8+ T cell infiltrations in HNSC.

2.3. Methylation Analysis. To identify the potential role of
APOBEC3H in HNSC, the patients were classified into three
groups based on APOBEC3H mRNA levels: the top 30%
were divided into high expression group, while those with
bottom 30% expression levels were divided into low
expression group. The differentially methylated CpG genes
(DMGs) were identified by the ChAMP package in R
language: deltabeta > 0.15, adjusted p value < 0.05. The
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FiGure 1: Continued.
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FiGure 1: The AID/APOBEC expressions in HNSC. (a-i) The AID/APOBEC mRNA levels in HNSC primary tumor tissues (n = 530) and
normal tissue control (n=74). The values of mRNA expression are log2-based normalized count. Mean +SD. *p <0.05. ns: not

significant. Student’s ¢-tests.

differentially expressed genes (DEGs) were identified by
DEseq2 package in R language: log 2FC > 1, adjusted p value
<0.05. The Spearman correlation analysis was employed to
seek the genes that were associated with APOBEC3H. Abso-
lute correlation coefficient and p value < 0.05 were used as
cutoff criteria.

Gene Ontology (GO) enrichment analysis and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways
were performed using the clusterProfiler package and a
q value < 0.05 as considered to represent statistical
significance.

2.4. Cell Culture. The primary normal oral epithelium cell line
HOK, the oral epithelium dysplasia cell line DOK, and HNSC
cell lines (UM1, SCC1, HSC3, HSC6, CAL27, CAL33, and
HNG6) were maintained in our laboratory and had been autho-
rized before use. SCC1, HSC3, HSC6, CAL27, and CAL33
were cultured in Dulbecco’s modified Eagle medium (Gibco)
supplemented with 10% fetal bovine serum (FBS, Gibco).
UMI1 and HN6 were grown in DMEM/F-12 (Gibco) supple-
mented with 10% FBS. DOK was cultured in DMEM added
10% FBS and 5 pug/mL hydrocortisone (Sigma). HOK was cul-
tured in Oral Keratinocyte Medium (Sciencell). All cells were
cultured in humidified 5% CO, at 37°C.

2.5. Plasmid Transfection. The pENTER-vector and
pENTER-APOBEC3H were purchased from Vigene Biosci-
ences. Both plasmids had been verified by DNA sequencing
before use. The plasmids were transiently transfected into
HSC3 and HSC6 cells using Lipofectamine 3000 reagent
(Invitrogen) for 4-6 h. After 36 h incubation, the transfected
cells were harvested for use.

2.6. RNA Extraction. For total RNA extraction, TRIzol
reagent (Invitrogen) was used to lysis cells. Then, chloroform
was added to the mixture. After centrifuging, the RNA was
precipitated by isopropanol, washed by ethanol, and resolved
into RNase-free H,O. NanoDrop One spectrophotometer
(Thermo Scientific) was used to quantify and qualify the
RNA. RNA was stored at -20°C for use.

2.7. Quantitative Real-Time RT-PCR. The quantification of
gene expression was performed by quantitative real-time
RT-PCR using the LightCycler 96 system (Roche) and
ChamQ™ SYBR® qPCR Master Mix (Vazyme) as previously
described. The following primers were used: human
APOBEC3H: F: 5'-AAGGCCCTCTTGTGTTACCAG-3',
R: 5'-CACTGCGTTTCGTCCAGTC-3'; human CXCL10:
F: 5'-GTGGCATTCAAGGAGTACCTC-3', R: 5-TGAT
GGCCTTCGATTCTGGATT-3'; and human GAPDH: F:
5'-GAGTCAACGGATTTGGTCGT-3', R: 5'-TTGATT
TTGGAGGGATCTCG-3'. GAPDH was considered as an
endogenous control.

2.8. Statistical Analysis. Data between the two groups were
compared using a two-tailed unpaired Student t-test or
Wilcoxon rank-sum test depending on the normality of data
distribution. The correlations and estimated statistical signif-
icances were calculated by Spearman correlation analysis.
Data were presented as the mean + SD. p < 0.05 was consid-
ered significant.

3. Results

3.1. The Expression Pattern of AID/APOBECs in HNSC. The
AID/APOBEC enzymes, including 9 family members
(AICDA, APOBEC2, APOBEC3A, APOBEC3B, APO-
BEC3C, APOBEC3D, APOBEC3E, APOBEC3G, and APO-
BEC3H), were analyzed in this study. The mRNA
expression levels of AID/APOBEC family members in
the HNSC tumor tissues and normal epithelium tissues
were calculated. The results showed that 2 out of 9
AID/APOBECs (APOBEC3A, APOBEC3B, APOBEC3D,
APOBEC3G, and APOBEC3H) were upregulated, and 2
out of 9 AID/APOBECs (APOBEC2 and AID) were down-
regulated (Figure 1).

HPV+ HNSCs were reported to possess the highest bur-
den of AID/APOBEC mutagenesis [31], leading us to
hypothesize that HPV infection may be associated with
AID/APOBEC abnormal expression patterns in HNSC.
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Figure 2: Continued.
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F1GURE 2: Correlations between AID/APOBEC expressions and HPV status in HNSC. (a-i) The AID/APOBEC mRNA levels in HPV+
(n=22) and HPV- (n=67) primary tumor tissues. The values of mRNA expression are log2-based normalized count. Mean + SD.

*p <0.05. ns: not significant. Student’s t-tests.

Hence, the expression levels of AID/APOBECs in different
HPV infection statuses in HNSC were examined. We found
that the expression levels of 7 out of the 9 (APOBEC3B,
APOBEC3C, APOBEC3D, APOBEC3F, APOBEC3G, APO-
BEC3H, and AID) genes were significantly higher in the
HPV-positive HNSC tissues than those in the HPV-
negative HNSC tissues (Figure 2), which was similar with
Henderson’s findings [31]. Here, these results implied that
HPYV infection might be responsible for the abnormal expres-
sions of AID/APOBEC enzymes in HNSC.

3.2. Relationships between AIDJAPOBEC Expression Patterns
and Patients’ Clinical Outcomes in HNSC. To explore the rela-
tionships between the AID/APOBEC mRNA levels and
patients’ clinical outcomes in HNSC, the Kaplan-Meier sur-
vival analysis was performed. The best cutoff values for the
high and low groups of AID/APOBECs were selected accord-
ing to the ROC analysis. The results revealed that APOBEC2,
APOBEC3A, APOBEC3H, and AID showed predictive value
in HNSC patients’ overall survival (OS). Patients with high
APOBEC3A, APOBEC3H, and AID mRNA levels had better
OS than those with low mRNA levels (Figure 3). Interestingly,
only APOBEC3H was upregulated and correlated with good
clinical outcomes in HNSC, which attracted our attention.

Then, the univariate and multivariate cox regression anal-
yses after correcting for age, alcohol, gender, HPV, stage, and
smoking were performed to confirm the prognostic value of
APOBEC3H in HNSC patients. APOBEC3H was confirmed
to be an independent prognostic factor for HNSC patients
(Supplementary Table 1). In addition, the prognostic values
of APOBEC3H levels in HPV- and HPV+ HNSC patients,
respectively, were also analyzed. The results revealed that
HPV- patients with high APOBEC3H levels had better
clinical outcomes than those with low APOBEC3H levels,
while the two groups showed no survival differences in HPV
+ patients (Supplementary Figure 1). Therefore, these data
demonstrated that APOBEC3H might be a prognosis
biomarker for HNSC patients.

3.3. Identification of APOBEC3H-Associated Methylation
Pattern in HNSC. To explore the role of APOBEC3H in the

genome-wide methylation regulation in HNSC, we com-
pared the differently methylated genes in the high APO-
BEC3H expression group to the low expression group. The
heatmap of APOBEC3H-associated CG sites is shown in
Figure 4(a). Differential methylation analysis identified
1537 APOBEC3H-associated CG sites in HNSC samples,
of which 934 (61%) were hypomethylated and 603 (39%)
sites were hypermethylated (Figure 4(b)). Then, we
explored the location-wise distributions of APOBEC3H-
associated CG sites relative to the genomes and CpG
islands. We identified that 32% APOBEC3H-associated
CpG sites were located in the promoter regions, including
7% in TSS200, 13% in TSS1500, and 12% in 5'-UTR. Fur-
thermore, 53% APOBEC3H-associated CpG sites were
found to be located in or near the CpG islands, including
18% in the CpG islands, 26% in the shore, and 9% in the
shelf of the CpG islands (Figures 4(c) and 4(d)).

Next, the biological process (BP), cell composition (CC),
and molecular function (MF) of GO enrichment analysis
were employed to explore the underlying roles of differen-
tially methylated genes (DMGs). Terms were arranged in
ascending order according to the adjusted p values and listed
the top 10 ones. The results showed that the DMGs were
enriched in biological processes, such as T cell activation
and lymphocyte differentiation (Figure 4(e)); in cell composi-
tion, such as external side of plasma membrane and receptor
complex (Figure 4(f)); and in molecular functions, such as
receptor ligand activity and cytokine activity (Figure 4(g)).
Considering that APOBEC3H preferred to deaminate TTC
sequence [19], the different methylation levels of TCG
between the APOBEC3H-high and APOBEC3H-low groups
were also identified. The results were similar with the find-
ings in Figure 5 (Supplementary Figure 2). Therefore, those
data  indicated that the deamination-dependent
demethylation activity of APOBEC3H might play critical
roles in regulating HNSC immune responses.

3.4. Biological Functions of APOBEC3H in HNSC. To explore
the correlations between the methylation levels of
APOBEC3H-mediated DMGs and the gene expression levels,
we also analyzed the differently expressed genes (DEGs)
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employed to determine the OS according to the mRNA levels of AID/APOBECs (high vs. low).

between the APOBEC3H-high expression group and low
expression group. A total of 2331 DEGs were identified,
including 1942 upregulated and 389 downregulated mRNAs.
189 genes were identified to be differently methylated and
expressed in the APOBEC3H-high group (Figures 5(a) and
5(b)). The KEGG analysis showed that these 189 genes were
mainly enriched in antigen processing and presentation, and
Th1 and Th2 cell differentiations (Figure 5(c)).

Next, we examined genes whose expression levels were
correlated with APOBEC3H expression levels using TIMER.
As the results showed that a total of 4812 genes were con-
firmed to be positively related to APOBEC3H. Among which,
169 genes were hypomethylated, upregulated, and positively
correlated with APOBEC3H expression (Figures 5(d) and
5(e)). The KEGG analysis also implied that these genes were
mainly concentrated in antigen processing and presentation,
and Thl and Th2 cell differentiations (Figure 5(f)). Hence,
these findings demonstrated that APOBEC3H might regulate
the immune activity through its deamination-dependent
demethylation activity in HNSC.

3.5. The Relationship among APOBEC3H, CXCLI0, and CD8
+ T Cell Infiltration. CXCL10, which plays essential roles in
helping CD8+ T cell trafficking and infiltration into the
tumor microenvironment [32], was substantially hypo-
methylated in the promoter region and upregulated in the

APOBEC3H-high group (Figures 6(a) and 6(b)). The pro-
moter methylation level of CXCL10 was negatively correlated
with APOBEC3H mRNA levels, and the mRNA level of
CXCL10 was positively correlated with APOBEC3H mRNA
levels (Figures 6(c) and 6(d)). Furthermore, CXCL10 and
APOBEC3H expression levels were both positively correlated
with CD8+ T cell infiltration in HNSC tumors (Figures 6(e)
and 6(f)). Higher CD8+ T cell infiltration exhibited better
prognosis in HNSC patients (Figure 6(g)).

To further validate those findings, we assessed the
expression levels of APOBEC3H in HNSC cell lines. The
qPCR results showed that APOBEC3H was upregulated in
all HNSC cell lines and dysplasia cell line DOK compared
to the normal epithelial cell line HOK (Figure 6(h)).
Transiently transferring APOBEC3H plasmid to HNSC cell
lines (HSC3 and HSC6) could obviously upregulate CXCL10
mRNA levels in contrast to transferring vector plasmid
(Figures 6(i) and 6(j)). Collectively, those data implied that
APOBEC3H might regulate the immune activity through
upregulating CXCL10 in HNSC.

4. Discussion

Given the encouraging results archived in the clinical trials of
anticancer immunotherapy, HNSC represents one of the
most promising malignancies of immunotherapy research
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FIGURE 4: The genome-wide methylation pattern of APOBEC3H in HNSC. (a) The heatmap of APOBEC3H-associated methylation genes
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and molecular function of the GO annotations (g) of APOBEC3H-associated methylation genes.

due to its immunosuppressive character [33]. However, the
low response rate of the current immunotherapy strategy
limits its application in HNSC. Identifying the underlying
mechanisms of immune response activity may provide a
novel insight into HNSC immunotherapy. In consideration
of the essential roles of AID/APOBEC cytidine deaminase
in cancer evolution and immune activation, we focused our

insights on the AID/APOBECs in HNSC. Here, we compre-
hensively analyzed the roles of AID/APOBECs in HNSC and
found that APOBEC3H was substantially upregulated in
HNSC. HPV+ tumors showed higher APOBEC3H expression
than HPV- ones. Patients with high APOBEC3H levels had bet-
ter overall survival. In comparison with the methylation pattern
with low APOBEC3H expression tumors, tumors with high
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APOBEC3H levels exhibited genome-wide DNA hypomethyla-
tion. Furthermore, APOBEC3H was found to be negatively
associated with CXCL10 methylation and positively associated
with CXCL10 expression. Both APOBEC3H and CXCL10
expressions were linked to CD8+ T cell infiltration in tumors.
Our cell-based experiments confirmed that APOBEC3H could
upregulate CXCL10 expression in vitro. Taken together, APO-
BEC3H might increase CD8+ T cell infiltration into HNSC tis-
sues through CXCL10 demethylation and upregulation, which
might provide a potential biomarker for HNSC
immunotherapy.

APOBEC mutations, especially APOBEC3 mutations,
have been reported to be tightly linked to immune activation
and infiltration via induction of IFN-y in HNSC [9]. In addi-
tion to the mutagenic roles, several AID/APOBECs could
also play critical roles in DNA demethylation [17, 34]. The
AID-mediated DNA demethylation was the most intensely
studied among all the family members [35-37]. AID could
initiate mismatch repair (MMR) and base excision repair
(BER) by deamination of 5-methylcytosine, causing dmC to
be replaced by dC, and eventually demethylated the target
genes [38], which was considered to be required for stem cell
pluripotency reprogramming and mouse primordial germ
cell development. In addition, APOBEC1 and APOBEC2
were also postulated to implicate in DNA demethylation
[39, 40]. The demethylation activity on oncogenes or tumor
suppressor genes mediated by AID/APOBEC was thought
to affect tumor occurrence, development, and metastasis.
However, the expression pattern and deamination-
dependent demethylation roles of AID/APOBEC cytidine
deaminases in HNSC remain unknown. Here, through a
comprehensively analysis of the AID/APOBEC expression
patterns and clinical characteristics, we identified that APO-
BEC3H was aberrantly upregulated. Surprisingly, higher

APOBEC3H expression was associated with good clinical
outcomes in HNSC. APOBEC3H is the most polymorphic
one of seven APOBEC3 family members, which has been
identified seven haplotypes (hap I-VII) and four mRNA
splicing variants and demonstrated playing a potential func-
tion of genomic mC modification [41]. Thus, we focused our
insight on the demethylation activity of APOBEC3H in this
study. In tumors with high APOBEC3H expression levels, a
genome-wide DNA hypomethylation pattern was observed.
Notably, the APOBEC3H-associated methylated genes were
enriched in immune activity, such as antigen processing
and presentation, and T cell differentiation and activation,
implying that APOBEC3H might regulate the immune
response via its demethylation activity in HNSC.

Chimeric antigen receptor (CAR) T cell immunotherapy,
which is genetically engineered T cells to express a certain
receptor that recognizes a specific antigen, has given rise to
breakthrough in anticancer clinical trials, like hematological
malignancies [42]. Given that CAR-T cells are difficult to
traffic into solid tumors, more efforts are need to be made
in increasing CAR-T treatment effects in solid tumors [43].
Recently, CAR-T cells were used to treat HNSC in a phase I
clinical trial (NCT01818323). The EGFR-target CAR-T cells
targeted to hypopharyngeal squamous cell carcinoma have
been reported to acquire an encouraging effect [44]. The
CD70-specific CAR-T cells could specifically recognize and
efficiently eliminate CD70-positive HNSC cells [45]. Given
the critical roles of CXCL10 in regulating immune responses
through activating and recruiting leukocytes such as T
cells, eosinophils, monocytes, and NK cells, several groups
indicated that increasing CXCL10 production of tumor
cells might facilitate CAR-T cell treatment efficiency in
solid tumors [46, 47]. In this manuscript, we revealed that
HNSC patients with high APOBEC3H levels were linked
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to high CXCL10 expression and CD8+ T cell infiltration
into HNSC tissues. Therefore, we assumed that APO-
BEC3H expression could be a biomarker for predicting
CD8+ CAR-T treatment efficiency in HNSC, and append-
ing exogenous APOBEC3H might be a potential strategy
for HNSC immunotherapy.

HPYV infection has a rapidly increasing incidence and is
established to be a cause of HNSC tumorigenesis. The
response to the current treatment of HPV+ HNSC is sharply
different from that of HPV— HNSC [5]. HNSC patients with
HPV+ are also associated with more favorable clinical out-
comes than those with HPV-. More importantly, the prog-
nostic role of HPV infection has been defined by the eighth
version of the American Joint Committee on Cancer (AJCC).
However, the exact reason for the role of HPV in improving
patients’ prognostication is less well known, and treatment
decision based on this guideline used to select patients has
not been recommended. Thus, to understand the mecha-
nisms of HPV infection in improving HNSC patients’ sur-
vival is a major interest of several research teams,
including us. Recently, HPV infection-induced immune
activation has been demonstrated to be responsible for
its good effects on anticancer therapy [48]. Virus, includ-
ing HPV infection, has been reported that it could upreg-
ulate AID/APOBEC gene expression. HPV infection
normal breast epithelial cells could cause APOBEC3B
mRNA upregulation along with y-H2AX foci formation
and DNA damage increase [48]. Henderson and colleagues
also found that compared to HPV- cases in HNSC, HPV+
ones exhibited elevated APOBEC3B levels and displayed
PIK3CA helical domain mutations [31]. HPV infection
in HNSC and cervical cancers increased the expression
level of APOBEC3B through the viral oncoprotein E6
[49]. However, the effects of HPV infection on other
AID/APOBECH enzyme expressions remain uncertain. In
this study, we performed a comprehensive analysis of the
relationships between AID/APOBEC expression and HPV
infection status, and found that eight out of eleven AID/A-
POBEC genes were upregulated in HPV+ HNSC tumors.
Considering the potential role of APOBEC3H in improv-
ing CD8+ T cell infiltration, we partially provide an expla-
nation for the good prognosis of HPV+ HNSC patients
based on their high APOBEC3H expression.

To our knowledge, this is the first study on the compre-
hensive analysis of APOBE3H in HNSC. APOBEC3H was
identified to be a potential prognostic predictor and
therapeutic target for oncoimmunotherapy in HNSC, in con-
sideration of its essential role in regulating CXCL10-
mediated immune activation and CD8+ T cell infiltration
into the tumor microenvironment. Our findings broadened
the knowledge that AID/APOBECs might regulate the
immune activity not only through its mutagenic activity but
also through its demethylation activity in HNSC.
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