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Triplet p-wave pairing correlation 
in low-doped zigzag graphene 
nanoribbons
Tianxing Ma1,2, Fan Yang3, Zhongbing Huang2,4 & Hai-Qing Lin2

We reveal an edge spin triplet p-wave superconducting pairing correlation in slightly doped zigzag 
graphene nanoribbons. By employing a method that combines random-phase approximation, the 
finite-temperature determinant quantum Monte Carlo approach, and the ground-state constrained-
path quantum Monte Carlo method, it is shown that such a spin-triplet pairing is mediated by the 
ferromagnetic fluctuations caused by the flat band at the edge. The spin susceptibility and effective 
pairing interactions at the edge strongly increase as the on-site Coulomb interaction increases, 
indicating the importance of electron-electron correlations. It is also found that the doping-dependent 
ground-state p-wave pairing correlation bears some similarity to the famous superconducting dome 
in the phase diagram of a high-temperature superconductor, while the spin correlation at the edge is 
weakened as the system is doped away from half filling.

Triplet superconductivity (SC) has been a focus of modern condensed matter physics because of its possible con-
nection to topological quantum information and computation1–10. It has been proposed that a gapless Majorana 
bound state would localize at the end of the one-dimensional spinless p–wave superconductor1, which could be 
used to practically realize topological quantum computation11,12. To realize such a Majorana bound state in real 
material, the superconducting proximity effect was proposed13–15, and experimental evidence of its existence was 
recently reported16. Here, we explore the possibility of intrinsic triplet SC, which is generated by an electronic 
correlation.

In this paper, we reveal a possible edge-spin triplet p-wave superconducting pairing correlation in slightly 
doped zigzag graphene nanoribbons with appropriate interactions. Graphene, a single layer of carbon, has gen-
erated immense interest ever since its experimental discovery17,18. Recently, experimental advances in doping 
methods have made it possible to change the type of carriers (electrons or holes)19,20, opening the doors for exotic 
phases, such as SC and magnetism induced by repulsive interactions. For instance, it was shown by the two-stage 
renormalization-group calculation that unconventional SC is induced by weak repulsive interactions in honey-
comb Hubbard models that are away from half-filling21, and that a topological d + id SC is induced in a heavily 
doped system22–28. At graphene edges the density of states may be peaked due to the presence of edge-localized 
states close to the Fermi level29. Especially at extended zigzag edges this leads to a phenomenon called edge 
magnetism, for which various theories30–32 predict ferromagnetic (FM) intraedge and antiferromagnetic (AFM) 
interedge correlations. The proposed magnetism is similar to the flat-band ferromagnetism appearing in the 
orbital-active optical honeycomb lattice33, where the band flatness dramatically amplifies the interaction effect, 
driving the ferromagnetic transition even with a relatively weak repulsive interaction. From these discoveries, a 
question which naturally arises: is there is triplet SC mediated by the FM spin correlations on each edge in the 
doped zigzag graphene nanoribbons?

In the present work, we establish the p-wave superconducting pairing correlation at the edges of zigzag 
graphene nanoribbons by using combined random-phase approximation (RPA)34–41, the finite-temperature 
determinant quantum Monte Carlo (DQMC)42–46 and the ground-state constrained-path quantum Monte Carlo 
(CPQMC)27,47–50 methods. Our unbiased results show that both the ferromagnetic spin correlation and the effec-
tive p-wave superconducting pairing correlation are greatly enhanced as the interaction increases.
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Results
The ribbon geometry considered here is depicted in Fig. 1, in which the blue and white circles represent sublat-
tices A and B, respectively, and the transverse integer index 1, 2, …, Ly defines the width of the ribbon while 1, 
2, …, Lx at the zigzag edge defines the length. Assuming the ribbon to be infinite in the x direction but finite in 
the y direction, we produce a graphene nanoribbon with zigzag edges. In the following studies, the interaction 
U is introduced through the standard Hubbard model. In Fig. 2, the carrier distribution (a) as a function of the 
site index at U = 2.0t and (b) from edge → bulk → edge with different interactions is shown. It is clear to see that 
most charge carriers distribute along the edge, and the increasing interaction pushes many more charge carriers 
to the edges.

The band structure of a six-chain nanoribbon system is shown in Fig. 3(a). Here, as the system is periodic in 
the x-direction, the momentum kx is a good quantum number. From Fig. 3(a), one finds a flat band bottom with 
energies located near the Fermi level (≈−0.2t) of the half-filled system. Physically, such a flat band bottom is 
caused by the edge states, which leads to the DOS peak at approximately −0.2t shown in Fig. 3(b).

RPA study
Guided by the idea that triplet SC may be mediated by the strong FM spin fluctuations in the system, we 
performed an RPA-based study on the possible pairing symmetries of the system. The multi-orbital RPA 
approach34–41, which is a standard and effective approach for the case of the weak coupling limit, is applied in our 
study for small U(<0.01t). Various bare susceptibilities of this system are defined as
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where li (i = 1, 2Ly) denote orbital (sublattice) indices.
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(0) ,  as function of qx is 
shown in Fig. 4(a) for three different dopings near half-filling. As a result, the susceptibility for the doping δ = 3% 
with chemical potential μ = −0.2t peaks at zero momentum, which suggests strong FM intra-sublattice spin 

π

π

Figure 1. A piece of a honeycomb lattice displaying zigzag edges with Ly = 4 which defines the width of the 
ribbon in the transverse direction and Lx = 12, which defines the length in the longitudinal direction. The lattice 
sites at zigzag edge are much larger than the sites in the bulk, indicating that the charge carriers are moving 
along the edge.

Figure 2. The carrier distribution (a) as a function of the site index at U = 2.0t and (b) from edge → bulk → edge 
with different U. It is clear to see that most charge carriers are distributed along the edge.
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fluctuations in the system. Further more, from the eigenvector of the susceptibility matrix, one can obtain the 
pattern of the dominating spin fluctuation in the system, which is shown in Fig. 4(b). Obviously, the dominating 
spin fluctuation, which is mainly located on the two edges, is FM on each edge and AFM between the two edges. 
When μ deviates from −0.2t, the susceptibility peaks deviate from zero, as shown in Fig. 4(a), suggesting weaker 
FM spin fluctuations in the system.

With weak-Hubbard U, the spin (χs) and charge (χc) susceptibilities in the RPA level are given by

χ ν χ ν χ ν=
−

i I i U iq q q( , ) [ ( , ) ] ( , ), (2)s c( ) (0) 1 (0)

where μ ν
μν
′ ′U  (μ, ν = 1, …, 2Ly) is a ×L L4 4y y

2 2 matrix, whose nonzero elements are =μμ
μμU U  (μ = 1, …, 2Ly). 

Clearly, the repulsive U suppresses χc but enhances χs. Thus, the spin fluctuations take the main role of mediating 
the Cooper pairing in the system. In the RPA level, via exchanging the spin fluctuations represented by the spin 
susceptibilities, the Cooper pairs near the FS acquire an effective interaction Veff

34,40, from which one solves the 
linearized gap equation to obtain the leading pairing symmetry and its critical temperature Tc.

Focusing on the low-doping regime in which the chemical potential μ is located within the flat band bottom, 
we obtained the largest pairing eigenvalues λ for the singlet and triplet pairings as functions of μ for a 6-chain 
ribbon with weak interaction U = 0.001t, as shown in Fig. 5(a). Interestingly, while both pairings attain their 
largest eigenvalues at μ = −0.2t (3% doping) due to the DOS peak there (as shown in Fig. 3(b)), the triplet pairing 
wins over the singlet one in the low doping regime at the flat band bottom. Physically, the triplet pairing in this 
regime is mediated by the FM spin fluctuations shown in Fig. 4. In Fig. 5(b), the results for U = 0.005t are shown. 
Comparing (a) and (b), it’s obvious that stronger interaction leads to pairing correlations that are qualitatively the 
same as but quantitatively stronger than weak interaction. In Fig. 5(c) and (d), the results for a 4-chain ribbon and 
8-chain ribbon are shown with U = 0.001t. The results for all these cases are qualitatively similar.

Figure 3. Band structure (a) and DOS (b) of a six-chain nanoribbon system. Note that the flat band bottom, 
located at approximately −0.2t in (a), leads to the DOS peak in (b). The Fermi level of the half-filled system is 
marked by the red dashed lines in both figures.

Figure 4. (a) The largest eigenvalue χ(qx) of the susceptibility matrix χ q( )l m x,
(0)  as a function of qx for three 

different dopings, i.e., μ = −0.195t (δ = 3.6%), μ = −0.2t (δ = 3.0%) and μ = −0.205t (δ = 0.8%) for the 6-chain 
system near half-filling. (b) Sketch of the pattern of the dominating spin fluctuations for μ = −0.2t, as 
determined by the eigenvector of χ =q( 0)l m x,

(0)  corresponding to its largest eigenvalue.
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Note that we have chosen a very weak U in our RPA calculations, since for U > Uc ≈ 0.007t (for μ = −0.2t), the 
divergence of the spin-susceptibility invalidates our calculations. Physically, such a spin susceptibility divergence 
will not lead to a magnetically ordered state since the Mermin and Wagner’s theorem prohibits a one-dimensional 
system from forming long-range order. Instead, short-ranged FM spin correlations here might mediate triplet 
superconducting pairing correlations. We leave the study of the case of U > Uc to the following DQMC and 
CPQMC approaches, which are suitable for strong coupling problems.

QMC Result
As FM fluctuations play an essential role, we first study the magnetic correlations. In Fig. 6(a), the edge spin 
susceptibility χ is shown as a function of temperature with different U at δ = 0.02. The edge χ is calculated 
by summing over the sites on the edge, such as those marked as larger circles in Fig. 1. It is interesting to see 
that χ increases as the temperature decreases, which indicates a dominant FM fluctuations on the zigzag edge. 
Additionally, χ increases as U increases, indicating that the electronic correlation is important for the mag-
netic excitation in such a system. The uniform spin susceptibility χB for the whole system is also shown, which 
decreases slightly as the temperature decreases. To further reveal the FM correlation on the zigzag edge, the 
spin-spin correlation along the edge is shown in Fig. 6(b). One can see that the spin correlation Sli(i = 2, 3, …) 
along the edge is always positive, suggesting FM correlation. One may also see that the spin correlation is weak-
ened as the system is doped away from half filling, which is in agreement with the results indicated by RPA shown 
in Fig. 4(a).

In Fig. 7, we plot the effective pairing interaction Pα as a function of temperature for different U and elec-
tron fillings on a lattice with 2 × 4 × 12 sites. Clearly in Fig. 7, the intrinsic pairing interaction Pα is positive 
and increases with the lowering of temperature. Such a temperature dependence of Pα suggests that effective 
attractions are generated between electrons and that there is instability towards SC in the system at low temper-
atures. Moreover, Fig. 7 shows that the intrinsic pairing interaction for p-wave symmetry is enhanced for larger 
U, indicating that the pairing strength increases with the enhancement of the electron correlations. For another 
extensive-s pairing symmetry, our DQMC results yield negative intrinsic pairing interactions (not shown here).

Numerical approaches, such as DQMC, however, have their own difficulties as follows: they are typically being 
limited to small sizes and high temperatures, and experience the infamous fermion sign problem, which cause 
exponential growth in the variance of the computed results and hence an exponential growth in computational 
time as the lattice size is increased and the temperature is lowered42. In general, to determine the superconducting 
pairing symmetry by numerical calculation for models of finite size, we have to look at the distance-dependent 
pair-correlation function at zero temperature. To shed light on this critical issue, it is important to discuss the 
results obtained by using the CPQMC method47,48 on a larger lattice. In a variety of benchmarking calculations, 
the CPQMC method has yielded very accurate results on the ground-state energy and many other ground-state 
observables for large systems48.

Figure 5. Doping dependence of the largest eigenvalues λ of singlet and triplet pairings for (a) U = 0.001t, and 
(b) U = 0.005t for the 6-chain system, (c) U = 0.005t for the 4-chain system and (d) U = 0.001t for the 8-chain 
system.
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In Fig. 8, we compare the pairing correlations on lattices with 2 × 6 × 24 sites for different electron fillings at 
U = 2.0t. Here, the simulations are performed for the closed-shell cases. The distance-dependent pairing correla-
tions for δ = .3/144 0 021 (dark triangle), δ = .5/144 0 035 (red circles), and δ = .7/144 0 049 (blue 
square) are shown. One can readily see that Cp(r) decreases as the distance increases, and the decay of the 
distance-dependent pairing correlations is different for different dopings. In the inset of Fig. 8, the pairing corre-
lation Cp(r = 12) at the largest distance is shown as a function of the doping. In the filling range that we investi-
gated, Cp(r = 12) is not a monotonic function of the doping and there exists an “optimal” doping (approximately 
0.035 electron/site) at which the magnitudes of Cp(r = 12) are maximized. This result is consistent with that of 
RPA, where the doping-dependent pairing correlation bears some similarity to the famous superconducting 
“dome” in the phase diagram of high-temperature superconductors51, while the spin correlation at the edge is 
weakened as the system is doped away from half filling.

Discussion
We performed a combined RPA and quantum Monte Carlo study of the magnetic and pairing correlations at the 
edges in low-doped zigzag graphene nanoribbons. Our studies show that the triplet edge p-wave SC occurs as 
the ground state of our model system. The optimal doping is approximately 0.03, which can be easily understood 
as the DOS peaks at this doping level, and this doping level is currently achievable experimentally capability for 

Figure 6. (a) The edge χ as a function of temperature at δ = 0.02 for different U, and the uniform χB for U = 2.0t 
is also present. (b) The spin correlation as a function of the site index along the edge for U = 2.0t at δ = 0.02 and 
δ = 0.04, and U = 1.0t at δ = 0.02.

Figure 7. The effective p-type pairing interaction as a function of temperature on a lattice with 2 × 4 × 12 sites 
for different U at δ = 0.03.
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graphene-based material. Our accurate numerical results establish the properties of the p-wave superconduct-
ing correlation in zigzag graphene nanoribbons, and will be important for any experimental scheme aimed at 
detecting the p-type superconducting state, as such a scheme will likely be based on the distinctive properties of 
the edge.

Methods
The electronic and magnetic properties of the studied system can be well described by the following Hubbard 
model18

∑ ∑ ∑ ∑μ= − − ′ + +σ σ σ σ
σ

σ↑ ↓
† †H t c c t c c U n n n

(3)i j
i j

i j
i j

i
i i

i
i

, ,

where σ
†ci  is the electron-creation operator at site i with spin polarization σ = ↑, ↓, U denotes the on-site repulsive 

interaction, and μ is the chemical potential. Here, the t and t′ terms describe the nearest-neighbor (NN) and next 
nearest-neighbor (NNN) hoppings, respectively. In the following study, we adopted t′ = −0.1t, which is consistent 
with experiments52. In our calculation, we employ periodic boundary conditions in the x direction and open 
boundary conditions at the zigzag edge.

Specifically, we compute the spin correlation Si,j = 〈Si · Sj〉 in the z direction, and define the uniform spin sus-
ceptibility at zero frequency,

∫ ∑ ∑χ τ τ= ⋅
β

′=
′N

d m m1 ( ) (0)
(4)s d d a b i j

i j
0 , , ,

d d

To investigate the SC property, we compute the effective pairing interaction and study the distance dependent 
pairing correlation. The effective pairing interaction is extracted from the pairing susceptibility,

∫∑ τ τ= ∆ ∆α

β

α α
†p

N
d i j1 ( , ) ( , 0) ,

(5)s i j, 0

with

∑ δ∆ = − .α α δ δ↑ + ↓ ↓ + ↑
† † †i f c c c c( ) ( )( )

(6)l
l i i i il l

Here, α stands for the pairing symmetry, fα(δl) is the form factor of the pairing function, and the vectors δl (l = 1, 
2) denote the NNN sites along the edge. To extract the effective pairing interaction, the bubble contribution 
α
p i j( , ) indicating 〈 〉δ δ↓ ↓ + ↑ + ↑′

† †c c c ci j i jl l
 in Eq. (5) is being replaced by 〈 〉〈 〉δ δ↓ ↓ + ↑ + ↑′

† †c c c ci j i jl l
. Thus we have obtained an 

effective pairing interaction = −α α α
P p p . The corresponding pairing correlation is defined as

= − = 〈∆ ∆ 〉.α α α
†C i jr R R( ) ( ) ( ) (7)i j

Considering the special structure of graphene zigzag nanoribbons shown in Fig. 1, the interesting pairing cor-
relation in such a system is the pairing between sites on the same sublattice, and two form factors shall be studied

δ = =‐ES f lwave: ( ) 1, 1, 2 (8)ES l

δ = =π−‐p f e lwave: ( ) , 1, 2 (9)p l
i l( 1)

Figure 8. The p-wave superconducting pairing correlation as a function of the distance r on a lattice with 
2 × 6 × 24 sites. Inset: the doping-dependent pairing correlation at r = 12.
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