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Abstract
Introduction: Metabolic	syndrome	(MetS)	is	a	clustering	of	three	or	more	cardiovas‐
cular	 risk	 factors	 (RF),	 including	 hypertension,	 obesity,	 high	 cholesterol,	 or	 hyper‐
glycemia.	MetS	and	its	component	RFs	are	more	prevalent	in	older	age,	and	can	be	
accompanied by alterations in brain structure. Studies have shown altered functional 
connectivity	(FC)	in	samples	with	individual	RFs	as	well	as	in	clinical	populations	that	
are	 at	 higher	 risk	 to	 develop	MetS.	 These	 studies	 have	 indicated	 that	 the	 default	
mode	network	(DMN)	may	be	particularly	vulnerable,	yet	little	is	known	about	the	
overall	impact	of	MetS	on	FC	in	this	network.
Methods: In	 this	 study,	 we	 evaluated	 the	 integrity	 of	 FC	 to	 the	 DMN	 in	 partici‐
pants	with	MetS	relative	to	non‐MetS	individuals.	Using	a	seed‐based	connectivity	
analysis	approach,	resting‐state	functional	MRI	(fMRI)	data	were	analyzed,	and	the	
FC	measures	among	the	DMN	seed	(isthmus	of	the	cingulate)	and	rest	of	the	brain	
voxels were estimated.
Results: Participants	 with	 MetS	 demonstrated	 reduced	 positive	 connectivity	 be‐
tween	the	DMN	seed	and	left	superior	frontal	regions,	and	reduced	negative	con‐
nectivity	between	 the	DMN	seed	and	 left	 superior	parietal,	 left	postcentral,	 right	
precentral,	right	superior	temporal	and	right	superior	parietal	regions,	after	account‐
ing for age‐ and sex‐effects.
Conclusions: Our	results	suggest	that	MetS	is	associated	with	alterations	in	FC	be‐
tween	the	DMN	and	other	regions	of	the	brain.	Furthermore,	these	results	indicate	
that	the	overall	burden	of	vascular	RFs	associated	with	MetS	may,	in	part,	contribute	
to	the	pathophysiology	underlying	aberrant	FC	in	the	DMN.
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1  | INTRODUC TION

Metabolic	syndrome	(MetS)	 is	defined	as	a	clustering	of	three	or	
more	 cardiovascular	 risk	 factors	 (RF)	 that	 includes	hypertension,	
abdominal	 obesity,	 high	 levels	 of	 fasting	 glucose	 (i.e.,	 hypergly‐
cemia),	 and	 low	 levels	 of	 high	 density	 lipoprotein	 cholesterol	
(HDL‐C)	and	high	levels	of	triglycerides	(i.e.,	dyslipidemia)	(Grundy,	
2005). With overall prevalence continuing to increase every year 
(Beltrán‐Sánchez,	 Harhay,	 Harhay,	 &	 McElligott,	 2013),	 MetS	 is	
now considered as a substantial threat for the development of vas‐
cular‐related	cognitive	impairment	(Van	den	Berg,	Biessels,	Craen,	
Gussekloo,	 &	 Westendorp,	 2007;	 Kim	 &	 Feldman,	 2015;	 Yaffe,	
Weston,	Blackwell,	&	Krueger,	2009)	and	neurodegenerative	con‐
ditions	such	as	vascular	dementia	(Panza	et	al.,	2011;	Solfrizzi	et	al.,	
2011)	and	Alzheimer's	disease	(AD)	(Misiak,	Leszek,	&	Kiejna,	2012;	
Raffaitin	et	al.,	2009).	Prevalence	rates	have	been	estimated	to	ap‐
proach 35% of the general U.S. population and increase to 54.7% 
of	older	adults	over	the	age	of	60,	suggesting	that	older	adults	are	
disproportionally	affected	by	the	syndrome	(Shin,	Kongpakpaisarn,	
&	Bohra,	2018).	Moreover,	given	the	fact	that	MetS	is	highly	prev‐
alent	 in	middle	 age	 (Aguilar,	 Bhuket,	 Torres,	 Liu,	&	Wong,	 2015;	
Arai	et	al.,	2010;	Grundy,	2008),	there	is	a	great	need	for	early	de‐
tection and intervention in order to prevent or delay cognitive and 
functional	decline.	Thus,	it	is	critical	to	understand	the	relationship	
between	the	factors	of	MetS	and	the	risk	of	brain	degeneration.

The shared underlying pathophysiological mechanisms of the 
co‐occurring	RFs	in	MetS	interrupt	the	cerebrovascular	mechanism,	
which may result in disrupted structural and functional integrity in 
the brain. While researchers have utilized advanced neuroimaging 
techniques	to	measure	effects	of	MetS	on	brain	structure	(Schwarz	
et	al.,	2018)	and	 function	 (Haight	et	al.,	2015;	Kenna	et	al.,	2013),	
the specific functional domains across the brain and their regional 
functional	 connectivity	 (FC)	 (Greicius,	 Krasnow,	 Reiss,	 &	 Menon,	
2003;	Van	Den	Heuvel	&	Pol,	2010)	targeted	by	MetS	are	still	poorly	
explored.	Moreover,	 while	 investigators	 have	 examined	 individual	
RF's	contribution	to	disrupted	brain	functions	and	their	connectivity	
within	 isolation	 (Chen	 et	 al.,	 2014;	 Cui	 et	 al.,	 2015;	Garcia‐Garcia	
et	al.,	2013;	Hoogenboom	et	al.,	2014;	Musen	et	al.,	2012;	Son	et	al.,	
2015;	Xia	et	al.,	2015),	the	shared	contribution	of	RFs	in	MetS	needs	
to be further studied in order to comprehensively understand the 
“comorbidity” impact.

Resting	state	fMRI	provides	important	measures	of	brain	func‐
tion	 and	 can	 increase	 our	 knowledge	 of	 how	 MetS	 affects	 the	
brain.	Exploring	the	default	mode	network	(DMN)	is	important	due	
to prior evidence suggesting its role as a biomarker of cognitive 
function	 and	 age‐related	 decline	 (Greicius,	 Srivastava,	 Reiss,	 &	
Menon,	2004;	Sorg	et	al.,	2007;	Zhou	et	al.,	2010).	 Indeed,	Zhou	
and	colleagues	have	presented	substantial	evidence	that	the	DMN	
is	a	robust	correlate	of	pathological	brain	aging	(Zhou	et	al.,	2010).	
The	DMN	 is	 comprised	of	 anatomically	distinct	brain	 regions,	 in‐
cluding	 the	 posterior	 cingulate	 cortex	 (PCC),	 medial	 prefrontal	
cortex	(mPFC),	and	lateral	parietal	cortices	(Fox	et	al.,	2005),	that	
co‐activate	 during	mental	 rest,	 and	 deactivate	 during	 tasks	with	

moderate	 or	 higher	 cognitive	 demand	 (e.g.,	 episodic	 memory;	
Buckner,	 Andrews‐Hanna,	 &	 Schacter,	 2008,	 Daselaar,	 Prince,	 &	
Cabeza,	2004,	Fox	et	al.,	2005,	Miller	et	al.,	2008,	Raichle	et	al.,	
2001).

Several studies have linked vascular diseases to disruption in 
DMN	 (Damoiseaux	 &	 Greicius,	 2009;	 Mayda,	Westphal,	 Carter,	
&	DeCarli,	2011;	Papma	et	al.,	2013).	While	greater	DMN	activ‐
ity	 is	commonly	associated	with	being	off‐task	or	 resting,	 recent	
studies	have	shown	associations	between	DMN	activity	and	cog‐
nition	 (Spreng,	 2012;	 Vatansever,	Menon,	Manktelow,	 Sahakian,	
&	 Stamatakis,	 2015),	 including	 the	 ability	 to	 maintain	 sustained	
attention	 over	 time	 (Esterman,	 Noonan,	 Rosenberg,	 &	 DeGutis,	
2012;	Fortenbaugh,	DeGutis,	&	Esterman,	2017;	Kucyi,	Esterman,	
Riley,	&	Valera,	2016).	Studies	have	also	observed	reduced	cere‐
brovascular	function	(i.e.,	Cerebral	Blood	Flow)	in	DMN	regions	in	
AD	(Alsop,	Detre,	&	Grossman,	2000;	Jagust	&	D'Esposito,	2009;	
Johnson	et	 al.,	 2005),	mild	 cognitive	 impairment	 (MCI)	 (Duschek	
&	Schandry,	2007;	Johnson	et	al.,	2005),	and	in	older	adults	with‐
out	cognitive	impairment	(Claus	et	al.,	1998;	Jagust	&	D'Esposito,	
2009;	 Wu	 et	 al.,	 2008).	 Given	 the	 associations	 between	 DMN	
connectivity	and	cerebrovascular	 integrity	of	DMN	regions,	par‐
ticularly	in	aging,	it	is	critical	to	investigate	the	effects	of	MetS	on	
functional	connectivity	of	the	DMN.	Studies	have	suggested	that	
the	possession	of	just	one	individual	RF	increases	risk	of	develop‐
ing vascular‐related cognitive impairment and neurodegenerative 
conditions,	 such	vascular‐related	cognitive	 impairment	 (Antoniak	
et	al.,	2003;	Kivipelto	et	al.,	2005;	Viswanathan,	Rocca,	&	Tzourio,	
2009)	and	Alzheimer's	disease	(AD)	(Kivipelto	et	al.,	2001,	2005;	
Luchsinger	et	al.,	2005).	Of	note,	these	diseases	have	also	been	as‐
sociated	with	alterations	in	DMN	functional	connectivity	(Dennis	
&	 Thompson,	 2014;	 Kim	 et	 al.,	 2016).	 Importantly,	 risk	 factors	
rarely	 occur	 in	 isolation,	 further	 highlighting	 the	 importance	 of	
examining	brain	 integrity	 in	conditions	of	 comorbid	 risk,	 such	as	
MetS.	We	propose	that	there	may	be	a	shared	underlying	patho‐
physiological mechanism between the development of neurode‐
generative	disorders	and	the	component	RFs	of	MetS,	and	that	the	
presence	 of	MetS	 increases	 vulnerability	 to	 neural	 compromise,	
over and above what has been associated with individual vascular 
RFs	alone.

Recently,	 functional	 connectivity	 (FC)	 analysis	 of	 the	 resting	
state	blood	oxygenation	level	dependent,	or	BOLD,	fMRI	signal	has	
become a powerful neuroimaging tool for identifying disease‐re‐
lated	biomarker	(Biswal,	Zerrin	Yetkin,	Haughton,	&	Hyde,	1995).	FC	
refers	 to	the	temporal	covariance/correlation	of	BOLD	time	series	
among two or more spatially distinct brain regions. Resting state 
FC	analysis	offers	the	ability	to	study	functional	networks	without	
confounding	effects	of	cognitive	ability	to	perform	a	particular	task,	
making its application appealing to clinical population with cogni‐
tive	 impairment	 (Auer,	2008;	Fox	&	Raichle,	2007;	Greicius,	2008;	
Rogers,	Morgan,	Newton,	&	Gore,	2007).	Indeed,	disruption	in	rest‐
ing	state	FC	patterns	have	been	identified	in	a	wide	range	of	psychi‐
atric	and	neurodegenerative	disorders,	including	Alzheimer's	disease	
(Greicius	et	al.,	2004;	Sorg,	Riedl,	Perneczky,	Kurz,	&	Wohlschlager,	
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2009),	Parkinson's	disease	 (Helmich	et	al.,	2009;	Wu	et	al.,	2009),	
mild	cognitive	impairment	(Bai	et	al.,	2009;	Pihlajamaki,	Jauhiainen,	
&	Soininen,	2009;	Sorg	et	al.,	2007),	schizophrenia	(Jafri,	Pearlson,	
Stevens,	&	Calhoun,	2008;	Rashid,	Damaraju,	Pearlson,	&	Calhoun,	
2014;	Repovs,	Csernansky,	&	Barch,	2011),	bipolar	disorder	(Nguyen	
et	al.,	2017),	and	depression	(Greicius,	2008).	Thus,	FC	of	the	DMN	
may also prove to be a useful marker to elucidate the impact of 
MetS,	 as	well	 as	 comorbid	 vascular	 RFs	 on	 brain	 functioning	 and	
connectivity.

While	 there	 have	been	 a	 number	 of	 studies	 examining	FC	 in	
association	with	individual	risk	factors,	to	the	best	of	our	knowl‐
edge,	no	studies	have	exclusively	 investigated	differences	 in	 the	
DMN	functional	connectivity	in	those	with	and	without	MetS.	In	
this	work,	we	explored	the	combined	effect	of	the	RFs	that	is	caus‐
ing	the	altered	FC	more	so	than	just	an	individual	RF	in	isolation.	
The present cross‐sectional study therefore aimed to examine the 
FC	between	DMN	and	other	brain	networks,	in	participants	with	
MetS.	 We	 hypothesized	 that	 compared	 to	 individuals	 with	 less	
than	three	RFs	(i.e.,	non‐MetS),	individuals	with	MetS	will	demon‐
strate	 disrupted	 resting	 state	 connectivity	 between	 DMN	 and	
whole‐brain functional networks. Results from our analyses will 
provide valuable information on the mechanisms by which comor‐
bid	vascular	risk,	a	strikingly	common	problem	facing	middle	and	
older	aged	adults,	influence	the	integrity	of	default‐mode	network	
and its functional connectivity.

2  | MATERIAL S AND METHODS

2.1 | Participants

Seventy‐eight participants agreeing to undergo structural and func‐
tional	MRI	participated	in	this	study.	Twenty‐seven	participants	were	
identified	with	metabolic	syndrome	(i.e.,	having	three	or	more	RFs;	
see section 2.41) (MetS,	age	(mean	±	SD):	65.70	±	7.87,	3	females),	25	
participants	without	any	RFs	were	identified	as	healthy	controls	(HC,	
age	(mean	±	SD):	59.24	±	8.83,	11	females),	and	26	participants	with	
one	or	two	RFs	were	identified	as	premetabolic	syndrome	individu‐
als	(	i.e.,	0<RF<3)	(pre‐MetS,	age	(mean	±	SD):	60.	±	8.52,	8	females).	
Furthermore,	jointly	the	HC	and	pre‐MetS	individuals	are	referred	to	
as	the	non‐MetS	group	in	the	context	of	the	group	analyses.

Table 1 displays group‐wise demographics and characteristics of 
the participants. Individuals were enrolled from direct clinic recruit‐
ment	 in	VA	Boston	clinics	to	target	those	at	high	risk	for	MetS,	as	
well	as	through	advertisement	in	the	greater	Boston,	Massachusetts	
(USA)	metropolitan	area.	 Inclusion	criteria	 required	participants	 to	
be English speakers and between the ages of 30–90. Participants 
were excluded for the following reasons: a history of head trauma of 
moderate	to	severe	severity	(e.g.,	loss	of	consciousness	greater	than	
30	min,	diagnosis	of	any	form	of	dementia,	past	or	current	history	
of	severe	psychiatric	illness,	history	of	major	surgery	(e.g.,	brain	or	
cardiac),	significant	neurologic	illness,	history	or	current	diagnosis	of	

TA B L E  1   Group‐wise participant characteristics

A HC (N = 25) MetS (N = 27) Significance tests

Age	(years) 59.24	±	8.83 65.70	±	7.87 Student's	t(50)	=	−2.79,	p = 0.007*

Sex (female/male) 11/14 3/24 Fisher's	exact	test:	p = 0.011*

Waist circumference (cm) 81.96	±	9.16 105.26	±	15.92 Student's	t(50)	=	−6.40,	
p	=	5.215e−08**

Triglycerides	(mg/dL) 72.12	±	25.87 105.70	±	43.96 Welch's	t(42.62)	=	−3.39,	p = 0.001*

HDL‐C	(mg/dL) 67.52	±	16.41 51.04	±	14.84 Student's	t(50)	=	3.80,	p = 0.0003**

Systolic BP (mm Hg) 111.12	±	9.66 131.52	±	14.71 Student's	t(50)	=	−5.86,	
p	=	3.623e−07**

Diastolic BP (mm Hg) 65.80	±	9.35 76.19	±	8.34 Student's	t(50)	=	−4.23,	
p	=	9.803e−05**

Fasting	blood	glucose	(mg/dL) 86.68	±	10.02 104.59	±	14.42 Welch's	t(46.49)	=	−5.23,	p	=	3.9e−06**

B Pre‐MetS (N = 26) MetS (N = 27) Significance tests

Age	(years) 60	±	8.52 65.70	±	7.87 Student's	t(51)	=	−2.53,	p = 0.014*

Sex (female/male) 8/18 3/24 Fisher's	exact	test:	p = 0.1

Waist circumference (cm) 97.18	±	13.69 105.26	±	15.92 Student's	t(51)	=	−1.9776,	p = 0.053

Triglycerides (mg/dl) 109.58	±	56.13 105.70	±	43.96 Welch's	t(47.365)	=	0.279,	p = 0.7815

HDL‐C	(mg/dl) 56.54	±	16.15 51.04	±	14.84 Student's	t(51)	=	1.29,	p = 0.20

Systolic BP (mm Hg) 133.19	±	16.76 131.52	±	14.71 Student's	t(51)	=	0.39,	p = 0.70

Diastolic BP (mm Hg) 79.81	±	8.04 76.19	±	8.34 Student's	t(51)	=	1.609,	p = 0. 0.11

Fasting	blood	glucose	(mg/dl) 96.92	±	16.73 104.59	±	14.42 Welch's	t(49.30)	=	−1.78,	p = 0.08

Note:	Continuous	variables	are	presented	as	mean	±	standard	deviation.	cm	=	centimeter;	mg/dL	=	milligrams	per	deciliter;	HDL‐C	=	high‐density	
lipoprotein cholesterol; mm Hg = millimeters of mercury.
*p	<	0.05;	
**p	<	0.001.	
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drug abuse or dependence. Exclusion criteria also included any con‐
traindication	to	magnetic	resonance	imaging	(MRI),	such	as	a	pace‐
maker or other metal implant.)

The study was approved and monitored by the Institutional 
Review	 Board	 of	 the	 Veterans	 Administration	 Boston	 Healthcare	
System	(VA),	Jamaica	Plain,	MA,	USA.	All	participants	provided	in‐
formed consent prior to study procedures.

2.2 | Risk factor measurement

Fasting	blood	(12	hr)	was	drawn	and	processed	for	analysis	of	serum	
RF	levels	including	triglycerides,	HDL‐C,	and	fasting	plasma	glucose.	
Systolic and diastolic blood pressure (BP) were recorded in a seated 
position	after	five	minutes	of	rest	with	the	arm	at	rest,	at	the	level	of	
the	heart,	using	a	standard	sphygmomanometer.	A	second	measure‐
ment was obtained five minutes later and the average of two values 
was recorded. Waist circumference measurement was taken while 
standing,	 to	 the	 nearest	 centimeter,	 with	 measuring	 tape	 placed	
around	the	abdomen	at	the	level	of	the	umbilicus.	Medications	taken	
to	 treat	 hypertension,	 diabetes,	 or	 abnormal	 cholesterol	 were	 re‐
ported by participants and recorded by an examiner.

2.3 | Metabolic syndrome assessment

MetS	criteria	were	determined	from	the	RF	measures.	Participants	
with	MetS	were	 defined	 as	meeting	 thresholds	 for	 three	 or	more	
of	 the	 following	 component	RFs:	 (a)	 elevated	waist	 circumference	
≥102/88	cm	(male/female),	(b)	elevated	triglycerides	≥150	mg/dl	or	
drug	 treatment	 for	dyslipidemia,	 (c)	 reduced	HDL‐C	<40/50	mg/dl	
(male/female)	or	drug	 treatment	 for	dyslipidemia,	 (d)	elevated	sys‐
tolic	BP	≥130	mm	Hg	or	diastolic	BP	≥85	mm	Hg	or	drug	treatment	
for	hypertension,	and	(e)	elevated	fasting	plasma	glucose	≥100	mg/
dl	or	drug	treatment	for	elevated	glucose	or	diabetes	(Grundy,	2005).

2.4 | Imaging data acquisition

For	70	participants,	neuroimaging	data	were	acquired	on	a	3‐Tesla	
Siemens,	Erlangen,	German	Prisma	Fit	60	cm	bore	(RF	coil	ID)	using	a	
transmission body coil and a 32‐channel reception head coil.

The first eight participants were scanned prior to the scan‐
ner	upgrade,	on	a	3‐Tesla	Siemens	 (Erlangen,	Germany)	TIM	Trio	
scanner,	using	a	transmission	body	coil	and	a	32‐channel	reception	
head	coil.	Two	MPRAGE	(Magnetization	Prepared	Rapid	Gradient	
Echo) T1‐weighted structural scans (repetition time (TR)/echo time 
(TE):	 2,530/3.35	ms,	 flip	 angle	 =	 7°,	 inversion	 time	 =	 1,200	ms,	
field	of	view	(FOV)	=	256	×	256	mm,	acquisition	matrix	256	×	256,	
176	 contiguous	 sagittal	 slices,	 voxel	 size	 =	 1	 ×	 1	 ×	 1	mm)	were	
acquired	 for	 surface	 reconstruction,	 FC	 seed	 placement,	 and	
inter‐participant registration. Resting state functional data were 
acquired	in	a	single	run	(gradient	echo	echo‐planar	imaging	(EPI),	
TR/TE:	4,000/31	ms,	flip	angle:	90°,	FOV	=	128	×	128	mm,	voxel	
size	2	×	2	×	2.5	mm,	55	axial	slices,	90	volumes,	6:12	min	per	run).	
To	achieve	a	T1	steady	state,	the	scanner	was	set	to	automatically	

discard the first three volumes from the acquired data. Prior to 
scanning,	participants	were	instructed	to	keep	their	eyes	open	and	
stay awake.

2.5 | Imaging data preprocessing

A	 model	 of	 each	 subject's	 cortical	 surface	 was	 reconstructed	
from	 the	T1	 ‐weighted	MRI	volume	using	FreeSurfer	as	described	
previously	 (Dale,	 Fischl,	 &	 Sereno,	 1999;	 Lindemer,	 Salat,	 Leritz,	
McGlinchey,	&	Milberg,	2013).	The	 surface	was	 then	anatomically	
parcellated into 34 distinct ROIs (which included the seed region) 
using	 the	Desikan‐Killiany	atlas	 (Desikan	et	al.,	2006;	Fischl	et	 al.,	
2004).	Functional	neuroimaging	data	were	processed	using	a	com‐
bination	of	FreeSurfer	(Fischl,	Sereno,	Tootell,	&	Dale,	1999),	AFNI	
(Cox,	1996),	 and	FSL	 (Jenkinson,	Beckmann,	Behrens,	Woolrich,	&	
Fsl,	2012)	based	on	the	FSFAST	processing	stream	(http://frees	urfer.
net/fswik	i/	FsFast).	Resting	state	fMRI	scans	for	each	subject	were	
preprocessed using a standard stream (motion correction using six 
parameters,	time	shifting,	concatenation	of	scans,	motion	regressed	
from	time	series,	regression	of	the	global	mean,	and	the	average	time	
courses	from	the	white	matter	and	the	ventricles,	band	pass	filter‐
ing between 0.01 and 0.1 Hz). Time points with excessive motion 
were excluded (0.5 mm/TR). Data were sampled to and smoothed on 
the	surface,	and	each	brain	was	warped	to	a	surface‐based	template	
(fsaverage)	(Fischl,	Sereno,	&	Dale,	1999).	Seed	regions	were	derived	
from	surface‐based	parcellation	of	 the	 cortex	 (Fischl	 et	 al.,	 2002).	
Previous studies have shown the isthmus cingulate region to be a re‐
liable	seed	to	study	the	default	network	(Poole	et	al.,	2016;	Robinson	
et	al.,	2015;	Seibert	&	Brewer,	2011).	Thus,	the	bilateral	superior	third	
of	the	isthmus	of	the	cingulate,	as	defined	within	each	participant's	
native	space,	was	used	as	a	seed	region.	Following	 the	FreeSurfer	
FSFAST	processing	stream,	the	vertex‐wise	partial	correlation	to	the	
DMN	seed	was	computed	and	used	for	further	group‐level	analyses.	
Briefly,	to	estimate	FC	to	the	DMN	seed,	the	mean	time	series	of	the	
DMN	seed	was	first	correlated	with	all	other	voxels’	time	series	 in	
the	brain,	and	then	the	measures	were	transformed	onto	the	cortical	
surface	and	represented	them	as	vertex‐wise	partial	correlation	(i.e.,	
at	each	vertex	over	the	cortical	surface,	more	details	can	be	found	
in	FS‐FAST	processing	stream:	http://frees	urfer.net/fswik	i/FsFast).

2.6 | Statistical analyses

Group	differences	in	age,	waist	circumference,	triglycerides,	HDL‐C,	
systolic	and	diastolic	blood	pressure	(BP),	and	fasting	blood	glucose	
were	 examined	 either	 with	 independent	 two‐sample	 Student's	 t 
tests (for normally distributed data as assessed with a Shapiro‐Wilk 
test),	 the	 Wilcoxon	 rank‐sum	 test	 with	 continuity	 correction	 (for	
non‐normally	 distributed	 data),	 or	 the	Welch's	 t test (when there 
was a significant group difference in variance as assessed with an F 
test). To examine group differences on categorical variables such as 
gender,	Fisher's	exact	test	was	employed.	Statistical	analyses	were	
two tailed with an alpha level set at p	<	0.05	and	carried	out	 in	R	
(Version 3.2.2).

http://freesurfer.net/fswiki/
http://freesurfer.net/fswiki/
http://freesurfer.net/fswiki/FsFast
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Group differences and associations (see Table 2) were computed 
at each vertex over the cortex using multiple linear regression using 
FreeSurfer's	 mri_glmfit	 function,	 and	 custom	 scripts	 in	 MATLAB	
(Mathworks;	Natick,	MA).	The	nuisance	regressors	of	age,	sex,	and	
scanner	were	included	in	all	models	unless	otherwise	noted.	Family‐
wise corrections for multiple comparisons were simulated with 
pre‐computed	Monte‐Carlo	 simulations	of	10,000	 iterations	using	
FreeSurfer's	mri_glmfit‐sim	function,	with	vertex‐	and	cluster‐wise	
thresholds of p < 0.05.

3  | RESULTS

3.1 | Group differences in participants’ 
characteristics

3.1.1 | Demographics

The	MetS	group	was	significantly	older	(p = 0.007) and had a larger 
proportion of males (p	 =	 0.011)	 relative	 the	HC	group	 (Table	 1A).	
Furthermore,	the	MetS	group	was	significantly	older	(p = 0.014) than 
the	pre‐MetS	group,	although	no	significant	difference	 in	 sex	was	
observed (p = 0.1).

3.1.2 | Risk factors

Table	2	presents	the	summary	of	RFs	by	group.	In	the	HC	group,	25	
participants (HCN0)	did	not	meet	the	threshold	for	any	RF,	11	partici‐
pants (pre – MetSN1)	met	threshold	for	only	one	RF,	and	15	partici‐
pants (pre – MetSN2)	had	two	RFs.	Elevated	blood	pressure	(BP)	was	
the	most	common	RF	(N	=	18/35%)	observed,	followed	by	waist	cir‐
cumference (N	=	13/25%),	glucose	(N	=	7/14%),	HDL‐C	(N	=	5/10%),	
and triglycerides (N = 3/6%).

Subsequently,	 from	 the	 MetS	 group,	 12	 participants	 (MetSN3) 
met	criteria	for	three	RFs,	10	participants	 (MetSN4) met criteria for 
four	 RFs,	 and	 five	 participants	 (MetSN5)	 met	 criteria	 for	 five	 RFs.	
Waist circumference (N = 18/67%) and glucose (N = 18/67%) were 
most	often	met,	followed	by	BP	(N	=	16/59%),	HDL‐C	(N = 7/26%) 
and triglycerides (N = 6/22%). Consistent with prior literature and in 
expected	directions,	the	HC	and	MetS	groups	significantly	differed	

in	all	measures	of	RFs	 (i.e.,	waist	 circumference,	 triglycerides,	 sys‐
tolic	and	diastolic	BP,	HDL‐C,	and	glucose	(Table	1)).	No	significant	
group	differences	between	pre‐MetS	and	MetS	RFs’	measures	were	
observed.

3.2 | Group differences in functional connectivity

Figure	1	highlights	both	the	uncorrected	(Figure	1a)	and	corrected	
for	multiple	comparisons	(Figure	1b)	results	from	the	GLM	analysis	
showing	 the	 one‐sample	 group	 mean	 (OSGM)	 measures	 of	 non‐
MetS	 and	 MetS	 groups,	 and	 the	 group	 differences	 in	 FC	 of	 the	
DMN	seed	 to	 the	vertices	 in	 the	 cortex,	 after	 regressing	out	 age	
and	sex‐effects.	Note	 that,	no	significant	age‐	and	sex‐effects	on	
FC	of	the	DMN	seed	to	the	rest	of	the	brain	regions	was	observed	
after correcting for multiple comparisons (p	 <	0.05).	Table	3	pro‐
vides	the	mean	FC,	number	of	vertices,	cluster	size	(in	mm2) maxi‐
mum	t‐value,	and	MNI	coordinate	for	each	of	the	significant	clusters	
from right and left hemispheres. The primary whole‐brain between‐
group	GLM	analysis	revealed	three	clusters	in	the	left	hemisphere	
and three clusters in the right hemisphere that survived multiple 
comparison	correction.	Relative	to	the	non‐MetS	group,	in	the	left	
hemisphere	 the	 MetS	 group	 demonstrated	 significantly	 reduced	
positive	 correlation	 between	 the	 DMN	 seed	 (isthmus	 cingulate)	
and	left	superior	frontal	region,	and	significantly	reduced	negative	
correlation	 between	 the	 seed	 and	 left	 superior	 parietal,	 and	 left	
postcentral	regions.	Also,	 in	the	right	hemisphere	the	MetS	group	
showed significantly reduced negative correlation between the 
seed	and	right	precentral,	right	superior	temporal,	and	right	supe‐
rior	parietal	regions.	Furthermore,	we	examined	the	effects	of	age	
and	sex	on	the	FC	measures	and	found	no	significant	effects	after	
correcting for multiple comparisons.

3.3 | Number of RFs and group difference in 
connectivity

Figure	 2	 presents	 the	 group‐wise	 comparisons	 for	 mean	 regional	
connectivity	in	the	left	and	right	hemispheres’	clusters	that	survived	
multiple	comparison	correction	from	GLM	analysis	(Figure	2a,d),	the	
distribution	of	 the	number	of	RFs	across	each	group	 (Figure	2b,e),	
and	the	cluster‐wise	mean	FC	across	individual	RFs	(Figure	2c,f).	In	
the	case	of	the	mean	FC	between	the	seed	and	left	superior	frontal	
cluster,	where	non‐MetS	showed	significantly	greater	FC	compared	
to	MetS,	relatively	higher	mean	FC	measures	in	the	non‐MetS	group	
were	observed	in	participants	with	no	RFs	or	only	one	RF.	The	pat‐
terns	associated	with	the	number	of	RFs	in	MetS	groups	were	evenly	
distributed,	suggesting	reduced	FC	in	this	cluster	could	result	from	
any	number	of	RFs	(in	this	case	the	number	of	RF	is	three	or	greater).	
Similar	patterns	were	observed	in	FC	in	the	remaining	two	clusters.	
Furthermore,	Figure	2c	and	Figure	2f	highlight	the	boxplots	show‐
ing	the	mean	FC	across	individual	RFs	within	each	significant	cluster	
in	the	left	and	right	hemispheres,	respectively.	These	results	show	
that	the	mean	FC	measures	are	sparsely	distributed	across	each	of	
the	RFs.

TA B L E  2   Group‐wise risk factors

RF Criteria
Non‐MetS 
(N = 51)

MetS 
(N = 27)

i)	Waist	circumference	≥102/88	cm	
(male/female)

13 18

ii)	Triglycerides	≥150	mg/dl 3 6

iii)	HDL‐C	<40/50	mg/dl	(male/female) 5 7

iv)	Systolic	BP	≥150	mm	Hg	or	diastolic	
BP	≥85	mm	Hg

18 16

v)	Fasting	plasma	glucose	≥100	mg/dl 7 18

Abbreviations:	cm	=	centimeter;	mg/dL	=	milligrams	per	deciliter;	
HDL‐C	=	high‐density	lipoprotein	cholesterol;	BP	=	blood	pressure;	mm	
Hg = millimeters of mercury.
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3.4 | Additional validation: no RFs versus three or 
more RFs

In	an	effort	to	further	validate	our	findings,	and	to	examine	the	two	
groups	while	balancing	the	sample	size,	we	conducted	an	additional	
GLM	analysis	 in	which	we	compared	FC	between	the	MetS	group	
and	 in	a	 subset	of	HC	participants	with	 zero	RFs	 (HCN0	 =	25,	 age	
(mean	±	SD):	59.24	±	8.83,	11	females)	(Figure	3).

Even	after	excluding	the	participants	with	one	and	two	RFs	from	
the	HC	group,	between‐group	differences	in	FC	were	observed	in	the	

same	clusters	as	from	our	primary	GLM	analysis.	Moreover,	stronger	
group	 difference	 in	 FC	was	 captured	 in	 the	 left	 postcentral	 cluster,	
where	patients	with	MetS	showed	 less	negative	connectivity	 to	 the	
seed	(isthmus	cingulate)	compared	to	that	of	the	HC	group	with	no	RFs.

4  | DISCUSSION

In	 this	 study,	we	performed	 a	 resting	 state	 seed	based	 functional	
connectivity	 (FC)	analysis	 to	evaluate	 the	patterns	of	connectivity	

F I G U R E  1   Group difference in 
functional connectivity. One‐sample 
group	mean	(OSGM)	results	from	
functional connectivity analyses for non‐
metabolic	syndrome	(Non‐MetS;	number	
of	risk	factors	(RFs)	<3)	and	patients	with	
metabolic	syndrome	(MetS;	RF	≥3),	and	
their group differences without correction 
(a) and after corrected for multiple 
comparisons	(b).	For	Non‐MetS	group,	
samples	have	number	of	RFs	ranging	from	
zero	to	two,	and	for	metabolic	syndrome	
(MetS)	group,	samples	have	three	or	more	
RFs

(a)

(b)

TA B L E  3  Summary	information	on	clusters	that	survived	multiple	comparison	correction	in	general	linear	model	(GLM)	analysis

Cortical region

Mean FC 
(mean ± std)

Number of 
vertices

Cluster size 
(mm2) Maximum t‐value MNI (x, y, z)Non‐MetS MetS

LH

Superior frontal 0.31	±	0.14 0.18	±	0.15 5,353 3,222.12 5.578 −10.3,	57.4,	5.2

Superior parietal −0.07	±	0.15 0.09	±	0.13 4,398 2,329.34 −5.501 −16.9,	71.5,	41.4

Postcentral −0.16	±	0.13 −0.03	±	0.14 6,182 2,656.18 −3.871 −58,	17.7,	27.7

RH

Precentral −0.03	±	0.042 0.01	±	0.05 8,416 3,897.77 −3.968 58.6,	6,	20

Superior temporal −0.04	±	0.05 −0.01	±	0.06 7,036 3,226.02 −3.481 60.3,	−35.1,	16.2

Superior parietal −0.07	±	0.07 −0.003	±	0.10 4,639 2,184.63 −2.662 9.5,	−64.6,	59.3

Note:	Mean	functional	connectivity	(FC)	measures	are	presented	as	mean	±	standard	deviation.	mm	=	millimeter;	LH	=	left	hemisphere;	and	RH	=	right	
hemisphere.

F I G U R E  2  Mean	connectivity	and	risk	factors.	(a)	Results	from	one‐sample	group	mean	(OSGM)	for	nonmetabolic	syndrome	(Non‐
MetS)	and	patients	with	metabolic	syndrome	(MetS)	and	significant	left	hemisphere's	clusters	from	their	group	differences	after	corrected	
for	multiple	comparisons,	and	(b)	boxplots	showing	the	group‐wise	mean	functional	connectivity	(FC)	in	each	significant	cluster	and	the	
associated	distributions	of	number	of	risk	factors	(RFs)	in	the	left	hemisphere.	(c)	Boxplots	showing	the	mean	FC	across	individual	RFs	within	
each	significant	cluster	in	the	left	hemisphere.	(d)	Results	from	one‐sample	group	mean	(OSGM)	for	non‐MetS	and	patients	with	MetS	and	
significant	right	hemisphere's	clusters	from	their	group	differences	after	corrected	for	multiple	comparisons,	(e)	boxplots	showing	the	group‐
wise	mean	FC	in	each	significant	cluster	and	the	associated	distributions	of	number	of	RFs	in	right	hemisphere,	and	(f)	boxplots	showing	the	
mean	FC	across	individual	RFs	within	each	significant	cluster	in	the	right	hemisphere.	Diastolic:	diastolic	blood	pressure	(mm	Hg);	Glucose:	
fasting	blood	glucose	(mg/dl);	HDL:	HDL‐C	(mg/dl);	Systolic:	systolic	blood	pressure	(mm	Hg);	TGL:	triglycerides	(mg/dl);	and	Waist:	waist	
circumference (cm)
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between	the	default	mode	network	(DMN)	and	the	voxels	in	the	rest	
of the brain. Previous connectivity studies suggest that typically in 
HC	 individuals,	 the	DMN	 is	 positively	 correlated	within	 itself	 and	
mostly	 negatively	 correlated	 (i.e.,	 anti‐correlated)	with	 other	 task‐
positive	brain	networks	(Fox	et	al.,	2005).	In	accordance	with	these	
findings,	our	study	found	that	when	compared	with	the	non‐MetS	
group,	the	MetS	group	demonstrated	significantly	reduced	positive	
correlation between left superior frontal region to the seed (isthmus 
cingulate),	and	 reduced	negative	correlation	between	 left	 superior	
parietal,	 left	 postcentral,	 right	 precentral,	 right	 superior	 temporal,	
and right superior parietal regions to the seed region. These findings 
demonstrate	 that	MetS	may	 be	 associated	with	 disrupted	 resting	
state	FC	 in	primary	 regions	within	 the	DMN.	 Interestingly,	 results	
from our group analysis between the subset of HC participants with‐
out	 any	 RFs	 and	MetS	 participants	 also	 demonstrated	 significant	
group differences in the same regions (with the same directionality 
in	positive	and	negative	connectivity	within	the	non‐MetS	and	MetS	
groups)	as	observed	in	the	main	analysis,	confirming	that	FC	differ‐
ences	 in	MetS	 remain	 consistent	 when	 compared	with	 HC	 group	
with	 zero	 risk	 factors.	Moreover,	 as	 illustrated	 in	 Figure	2c,	 f,	 the	
mean	FC	measures	are	sparsely	distributed	across	each	of	the	RFs,	
without showing any trends for significant influence of any particu‐
lar	RFs.	 This	might	 imply	 that,	 the	 co‐occurring	RFs	 in	MetS	have	
unique	contributions	that	underlie	the	aberrant	DMN	connectivity	
patterns	in	MetS	individuals,	which	are	not	evident	from	the	isolated	
contributions	of	the	individual	RFs.

Additionally,	we	have	performed	the	group	difference	analyses	
for the whole sample following the same processing pipeline as the 
main analyses without global signal regression. Results for the group 
difference without global signal regression showed similar patterns 
as	observed	in	the	main	analyses	(Figure	1).	Furthermore,	all	of	the	
regions	from	the	main	analyses	showing	group	differences	(i.e.,	clus‐
ter‐wise	corrected	group	difference	as	seen	in	Figure	1	with	global	
signal regression) were also observed from the uncorrected group 
difference	 maps	 estimated	 without	 global	 signal	 regression,	 with	
regions	 just	 falling	 below	 the	 threshold.	We	 speculate	 that,	 since	
global	signal	 regression	accounts	 for	 individual	variability,	without	
global	 signal	 regression,	 the	 data	 will	 contain	 greater	 variability	
across	 individuals.	 Therefore,	 for	 the	 current	 dataset,	 the	 differ‐
ences observed between with and without global signal regression 

are	due	to	lack	of	statistical	power,	and	not	influenced	by	the	global	
signal.

Our novel findings demonstrate altered resting state connec‐
tivity	 in	 individuals	with	MetS.	These	results	suggest	that	multiple	
co‐occurring	vascular	RFs	may	disrupt	fundamental	brain	networks,	
particularly	in	frontal,	parietal,	and	temporal	regions.	This	is	critical,	
as it demonstrates that it is likely the comorbidity	 of	 RFs	 in	MetS	
that	 results	 in	 this	 disruption,	 over	 and	 above	what	 is	 seen	when	
looking	at	individual	RFs	separately.	Given	the	fact	that	most	RFs	do	
not	occur	in	isolation,	our	results	provide	important	evidence	of	the	
underlying functional network disruption that we believe is specific 
to	MetS.	Future	studies	will	determine	if	there	are	particular	combi‐
nations	of	MetS	risk	factors	that	are	more	detrimental	to	disrupted	
functional connectivity.

From	a	mechanistic	standpoint,	it	is	possible	that	the	collective	
burden	of	 vascular	RFs	 that	 comprise	 the	MetS	 syndrome	 impact	
underlying	 brain	 vasculature,	 thus	 globally	 disrupting	 the	 resting	
state signals within and across functional neural networks. This in‐
terpretation	suggests	 that	 the	damaging	effects	of	MetS	on	brain	
function	 are,	 at	 least	 in	 part,	 explained	 by	 abnormalities	 in	 the	
brain's	vascular	system.	Indeed,	the	DMN	appears	to	be	particularly	
vulnerable	to	neurovascular	compromise,	and	studies	have	demon‐
strated reduced cerebrovascular function in the brain regions over‐
lapping	 this	network	 (Claus	et	al.,	1998;	Dai	et	al.,	2009;	 Johnson	
et	al.,	2005),	providing	additional	support	for	our	speculation.	Our	
findings,	together	with	the	previous	evidence,	indicate	that	disrup‐
tion	 in	DMN	connectivity,	 a	network	of	primary	 interest	 in	aging,	
neurological	disease,	and	psychiatric	disorders,	 (Dunn	et	al.,	2014;	
Sperling,	 2007),	may	be	 in	 part	 due	 to	 underlying	 changes	 to	 the	
brain's	vascular	system.

Reduced functional anti‐correlation or negative connectivity be‐
tween	isthmus	cingulate	and	left	superior	parietal,	left	postcentral,	
right	precentral,	right	superior	temporal,	and	right	superior	parietal	
regions	in	MetS	may	reflect	an	inability	of	these	participants	to	ap‐
propriately	 activate	DMN	or	 deactivate	 task	 positive	 networks	 at	
rest.	Activation	of	DMN	at	rest	is	thought	to	support	self‐reflective	
processing as well as internally directed cognitive functions such as 
intrinsic	attention,	remembering	autobiographical	information,	plan‐
ning	and	personal	future,	and	perspective	taking.	(Andrews‐Hanna,	
2012;	Buckner	et	al.,	2008).	Based	on	our	findings,	it	is	possible	that	

F I G U R E  3  Group	difference	in	functional	connectivity	(no	risk	vs.	metabolic	syndrome).	One‐sample	group	mean	(OSGM)	results	from	
functional	connectivity	(FC)	analyses	for	healthy	control	(HC)	without	any	risk	factors	(RFs)	(N = 25) and patients with metabolic syndrome 
(MetS)	with	three	or	more	RFs	(N	=	27),	and	their	group	differences	after	corrected	for	multiple	comparisons
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individuals	with	MetS	may	have	dysfunctional	brain	networks,	and	
therefore	 exhibiting	 less	modularity	 in	 FC.	 Furthermore,	 previous	
evidence	 suggests	 that	 the	 significance	 of	 the	DMN‐task	 positive	
anticorrelations	 have	 been	 implicated	 in	 cognitive	 functioning,	
which tend to become weaker in neurodegenerative disorders 
(Hafkemeijer,	Grond,	&	Rombouts,	2012).	Although,	 future	studies	
are required to fully disentangle the impact of disrupted network 
connectivity	on	cognitive	tasks	in	individuals	with	MetS.

Our findings are consistent with previous studies demonstrating 
alterations	in	DMN	in	the	context	of	one	or	more	of	these	compo‐
nent	RFs.	For	example,	one	study	reported	 increased	connectivity	
among	anterior	and	decreased	connectivity	among	posterior	DMN	
networks	 in	 patients	 with	 diabetes	 (Cui	 et	 al.,	 2015).	 Decreased	
connectivity in posterior nodes was also associated with worse per‐
formance	 on	 tasks	 of	 memory	 and	 executive	 functioning.	 Animal	
studies	have	also	observed	alterations	in	the	DMN	in	rats	genetically	
predisposed	to	develop	hypertension	(Huang	et	al.,	2016).	Another	
study examined the association between dynamic functional net‐
work connectivity and metabolic risks using a sliding‐window clus‐
tering	approach,	and	found	that	metabolic	risk	was	associated	with	
the relative amount of time allocated to dynamic connectivity states 
(Viviano,	Raz,	Yuan,	&	Damoiseaux,	2017).	However,	these	studies	
did	not	 investigate	MetS	 specifically,	 and	 therefore	did	not	 deter‐
mine	the	aggregate	 impact	of	the	entire	constellation	of	RFs	asso‐
ciated with this syndrome. The present investigation demonstrates 
that	altered	FC	in	individuals	who	have	incurred	enough	RFs	to	qual‐
ify	for	MetS.	Interestingly,	our	analyses	indicated	that	a	greater	num‐
ber	of	RFs	did	not	impact	FC	in	the	MetS	group.	Therefore,	this	study	
also	suggests	that	simply	meeting	criteria	for	MetS	imposes	enough	
burden	to	exert	an	impact	on	FC	of	the	DMN	to	other	brain	regions.

Alterations	 in	 within‐network	 DMN	 connectivity	 has	 been	
linked	to	older	age	and	worse	cognition.	For	example,	Huang	and	
colleagues demonstrated that older age was associated with de‐
creased	 connectivity	 among	 ventral	 nodes	 of	 the	 DMN	 (Huang	
et	 al.,	 2015).	 Others	 have	 shown	 associations	 between	 within‐
network	 FC	 of	 the	 DMN	 and	 poorer	 performance	 on	 tasks	 of	
executive functions (including working memory and cognitive 
set	 shifting)	 (van	 Eimeren,	Monchi,	 Ballanger,	 &	 Strafella,	 2009;	
Sambataro	 et	 al.,	 2010)	 in	 elderly	 samples.	 Andrews‐Hanna	 and	
colleagues have observed reduced connectivity between PCC 
and	mPFC	(within	DMN	network	nodes)	related	to	worse	perfor‐
mance	in	memory,	executive	functioning,	and	processing	speed	in	
a	 healthy	 aging	 cohort	 (Andrews‐Hanna	 et	 al.,	 2007).	 Taken	 to‐
gether,	these	studies	suggest	that	the	DMN	is	particularly	sensi‐
tive to pathophysiological changes that can accompany the aging 
process. Our findings extend upon this literature by also demon‐
strating	alterations	between	the	DMN	and	out‐of‐network	regions	
in	samples	of	participants	that	meet	criteria	for	MetS,	a	syndrome	
that is more prevalent in older adults. It is possible that this rep‐
resents an uncoupled synchronization of distinct neural networks 
at	rest,	which	may	play	an	essential	role	in	cognitive	performance	
or	in	switching	between	mental	states	(i.e.,	task‐positive	vs.	task‐
negative).	 Therefore,	 further	 studies	 examining	 the	 relationship	

between	functional	connectivity	of	brain	networks	and	cognition,	
particularly within the cognitive domains that are vulnerable to 
both	vascular	RFs	and	aging,	is	warranted.

Our findings are also consistent with prior studies that 
demonstrate alterations in brain structure and function in the 
presence	 of	MetS	 or	 its	 component	RFs	 (Friedman	 et	 al.,	 2014).	
Overwhelmingly,	these	previous	studies	have	demonstrated	lower	
white	matter	 integrity	 (Salat	 et	 al.,	 2012;	Williams	 et	 al.,	 2013),	
gray	 matter	 volume	 (Kharabian	Masouleh	 et	 al.,	 2018)	 and	 cor‐
tical	 thickness	 (Schwarz	 et	 al.,	 2018;	 Tchistiakova,	 Anderson,	
Greenwood,	 &	 MacIntosh,	 2014),	 white	 matter	 volume	 (Figley,	
Asem,	Levenbaum,	&	Courtney,	2016;	Karlsson	et	al.,	2013),	task	
related	 BOLD	 response	 (Hoth	 et	 al.,	 2011),	 and	 cerebral	 blood	
flow	 (Birdsill	 et	al.,	2013)	 in	 samples	 that	meet	criteria	 for	MetS	
or	possess	elevations	in	one	or	more	RFs.	Our	findings	of	altered	
functional	 connectivity	between	 the	DMN	seed	and	other	brain	
regions extend upon this literature to suggest that the underlying 
pathophysiology	of	MetS	may	also	include	disrupted	connectivity	
among functional networks in the brain.

Several experimental and methodological limitations must be 
considered	while	 interpreting	 the	 results	 of	 this	 study.	 First,	 rela‐
tive	to	the	non‐MetS	group,	the	number	of	subjects	in	MetS	group	
is	considerably	 lower.	 Indeed,	 inclusion	of	more	MetS	participants	
would	increase	the	power	of	statistical	analyses,	and	ultimately	pro‐
vide	more	 robust	measures	of	 group	difference.	 Furthermore,	 the	
cross‐sectional design of the study limits the interpretation of our 
findings	from	a	time‐varying	perspective.	Also,	for	each	subject,	the	
resting‐state functional data consist of only 90 volumes acquired 
during	the	6:12‐min	scanning.	Since	the	resting‐state	fMRI	connec‐
tivity	estimates	are	affected	by	 the	scan	 length	 (Birn	et	al.,	2013),	
future	FC	analyses	in	MetS	cohorts	should	include	longer	scanning	
duration	and/or	higher	number	of	fMRI	volumes	using	a	shorter	TR	in	
order	to	reliably	interpret	the	findings.	In	order	to	identify	how	MetS	
impacts	 functional	 brain	 connectivity	over	 time,	 it	 is	 necessary	 to	
examine samples from a longitudinal study design with information 
on	duration	of	specific	RFs.	Moreover,	given	the	well‐documented	
health disparities across different ethnic groups in the context of 
metabolic	syndrome,	 future	studies	should	also	disentangle	differ‐
ential	 impact	on	brain	health	in	other	ethnic	groups.	Finally,	 in	this	
study	we	examined	a	single	seed,	the	DMN,	and	explored	its	FC	to	
other	voxels	 in	the	brain.	Further	consideration	of	other	networks	
and	ROIs	will	be	important	to	understanding	the	full	impact	of	MetS	
on brain functioning.

5  | CONCLUSION

In	summary,	MetS	is	associated	with	disrupted	DMN	functional	con‐
nectivity,	which	include	both	positive	and	negative	connectivity	with	
frontal,	parietal,	and	temporal	regions.	Moreover,	even	after	only	in‐
cluding	HC	participant	with	no	RFs	 for	 group	difference	analyses,	
altered	FC	measures	between	the	DMN	seed	and	other	brain	regions	
were observed across similar regions as found in our main analysis. 
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This	reinforces	the	fundamental	hypothesis	of	MetS	criteria,	where	
a	participant	is	characterized	as	MetS	only	if	three	or	more	vascular	
RFs	are	reported.	Also,	our	results	showed	that	the	mean	connectiv‐
ity	across	MetS	group	is	not	distributed	based	on	the	number	of	RFs	
for	a	given	participant.	In	other	words,	our	findings	do	not	indicate	
that having three (lowest possible number) or five (highest possible 
number)	RFs	will	result	in	higher	(or	lower)	mean	FC.	This	may	sug‐
gest	that	the	disruption	in	FC	between	DMN	and	other	brain	regions	
may	arise	from	the	underlying	pathophysiology	of	MetS,	regardless	
of	the	number	of	RFs.	The	findings	from	this	study	may	allow	the	de‐
velopment of functional connectivity based biomarkers as observed 
between	the	DMN	and	other	critical	brain	regions	in	MetS	partici‐
pants,	which	could	facilitate	diagnosis,	targeted	intervention	and,	in	
some	cases,	prevention	of	the	disease.
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