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Abstract
Quality control (QC) of brain magnetic resonance images (MRI) is an important process requiring

a significant amount of manual inspection. Major artifacts, such as severe subject motion, are

easy to identify to naïve observers but lack automated identification tools. Clinical trials involv-

ing motion-prone neonates typically pool data to obtain sufficient power, and automated quality

control protocols are especially important to safeguard data quality. Current study tested an

open source method to detect major artifacts among 2D neonatal MRI via supervised machine

learning. A total of 1,020 two-dimensional transverse T2-weighted MRI images of preterm new-

borns were examined and classified as either QC Pass or QC Fail. Then 70 features across focus,

texture, noise, and natural scene statistics categories were extracted from each image. Several

different classifiers were trained and their performance was compared with subjective rating as

the gold standard. We repeated the rating process again to examine the stability of the rating

and classification. When tested via 10-fold cross validation, the random undersampling and ada-

boost ensemble (RUSBoost) method achieved the best overall performance for QC Fail images

with 85% positive predictive value along with 75% sensitivity. Similar classification performance

was observed in the analyses of the repeated subjective rating. Current results served as a proof

of concept for predicting images that fail quality control using no-reference objective image fea-

tures. We also highlighted the importance of evaluating results beyond mere accuracy as a per-

formance measure for machine learning in imbalanced group settings due to larger proportion of

QC Pass quality images.
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1 | INTRODUCTION

Modern medical imaging analysis pipeline such as brain segmentation,

cortical morphometry analysis requires high quality data as even sub-

tle motion has shown to bias measurements (Alexander-Bloch et al.,

2016; Reuter et al., 2015). The implementation of quality control

(QC) process ensures the accuracy of brain imaging measurements.

This is particularly important for multicenter clinical trials involving

neonates and infants, where pooling data from multiple local cohorts

is often required to obtain sufficiently powered studies. In addition,

neonates and pediatric images typically face additional challenges

such as motion and noncooperative patients during scanning sessions

(Raschle et al., 2012). To address these challenges, the Canadian Neo-

natal Brain Platform brought together a national, multidisciplinary

team of researchers and clinicians to identify causes of brain dysma-

turation and develop strategies to minimize brain injury occurring dur-

ing the neonatal period (https://www.cnbp.ca). However, merging

data from different institutions mandates standardization including

QC process and site-specific acquisition protocol. These needs high-

light the importance of scalability and automation.

Machine learning has been successfully implemented across mul-

tiple fields, especially in the context of image object recognition where

it has even achieved classification results exceeding human accuracy

(Ren, He, Girshick, & Sun, 2015). The goal of the current work was to
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devise and empirically test a modular and scalable workflow pipeline

that adapts to user input to perform semiautomated quality assess-

ments of MRI image data using a supervised machine learning

approach to help facilitating larger scale rating and QC of neuroimaging

data sets in the future. The most similar categories of image analyses

based QC approach is the Preprocessed Connectome Project Quality

Assessment Protocol (PCP-QAP, see http://preprocessed-connectomes-

project.org/quality-assessment-protocol/) and its derived Stanford's

MRIQC initiative (https://github.com/poldracklab/mriqc and http://

mriqc.readthedocs.io) (Esteban et al., 2017). Both pipelines are heavily

optimized toward high quality 3D anatomical and 4D functional neuroim-

aging research data sets. Both tools measure features such as noise, spa-

tial prior distribution of information, statistical properties of tissue

distributions, and the sharpness/blurriness of the images. Still, there is a

demand for a similar QC approach on routinely acquired lower resolution

2D clinical data sets with little or no anatomical prior and brain segmenta-

tion to assist with the isolation and identification of artifacts.

To this end, we tailored our approach to 2D images acquired in

clinical settings instead. In addition, we evaluated existing image-

processing and analyses algorithms to postulate a series of objective

features from independent single 2D image. Currently four major cat-

egories of image-derived features were extracted per image: (1) focus

and blurriness measurements; (2) signal, noise and signal-to-noise ratio

measurements; (3) texture analyses mostly through statistical summa-

ries of the gray level codependence matrix (GLCM); and (4) natural

scene statistics measurements (see Supporting Information Method

section for details). These four categories of features were proposed

because each potentially contributed to measure different aspects of

unique properties of the images. Focus features were chosen mostly

to help detecting motion induced onionskin-like artifacts (as typically

seen in Figure 1 and Supporting Information Figure S1). This resulted

in less sharp contrasting edges and defocusing of the image; the signal

and noise ratio detection features were mainly based on the mean sig-

nal intensity of the central region of the image with no other prior

anatomical assumptions. MRI signals are acquired in radio frequency

domains hence aberrant signals can result in recurring wave like pat-

terns when images are reconstructed in spatial domain resulting in

features that may not be adequately described by aforementioned

focus or noise features. These repetitive patterns within the image

may be detected using texture features via adjacency measures such

as those using GLCM. Lastly, organic shapes have typically smoother

shapes in comparison to sharp edges of man-made objects or distor-

tion artifacts. Natural scene statistics were shown to emphasize

organic and smooth edges/shapes over preferences to more com-

monly seen artificial structures and shapes (Moorthy & Bovik, 2011;

Sheikh, Bovik, & De Veciana, 2005).

2 | METHODS

2.1 | Participants

Following ethical approval, we selected a cohort of preterm neonates

with bronchopulmonary dysplasia imaged for clinical purpose at term

equivalent age scanned between March 31, 2009 and March 4, 2012.

All these neonates were hospitalized at the Centre Hospitalier Univer-

sitaire Sainte-Justine (CHU Sainte-Justine) for premature birth below

29 weeks of gestational age and underwent an axial T2w clinical MRI

on the same scanner with identical parameters.

2.2 | MRI acquisition parameters

All clinical images were acquired on a Siemens (Munich, Germany)

Avanto 1.5 T scanner (Device Serial 25603) with console version Syngo

MR B15/B17 at CHU Sainte-Justine. These T2w Axial turbo spin echo

images were acquired with repetition time (TR) of 6,480 ms, echo time

(TE) of 106 ms, across 20 slices each with 4 mm thickness in ascending

acquisition orders. Field of view was adjusted per patient varies

between 119 mm by 159 mm to 157 mm by 180 mm. All relevant sub-

ject data were exported after subject anonymization from Synapse

PACS system (Fujifilm Medical System USA, Stamford, Connecticut).

Across the 51 subjects, 1,020 images were successfully imported.

2.3 | Quality assessment

2.3.1 | Subjective rating

Subjective manual image quality assessment ratings were obtained first.

All T2w images were sorted by anatomical positions from inferior to

superior (for ease of comparison of similar section across subjects) and

then visually checked and rated individually for quality control by a coau-

thor (SS) without awareness of the subsequent in silico results. The

image quality of each individual 2D image was classified by the rater as

either QC Pass or QC Fail, where QC Fail typically indicated significant

artifacts such as severe subject motion or acquisition issues (see the

complete list of examples in supporting information figure S1). In our

subsequent comparisons between objective machine classifications and

subjective ratings, subjective ratings were considered as the gold stan-

dard. Two separate subjective ratings were carried out by the same coau-

thor (SS) and Cohen’s kappa value was calculated to assess intra-rater

reliability.

2.3.2 | Objective features

Four main categories of objective features were obtained per 2D

image: Focus, signal to noise, texture, and natural scene statistics. Even

within each category, different features characterize the image quality

from different perspectives: for instance, both spatial frequency

approach (Eskicioglu & Fisher, 1995) and wavelet domain approach

(Xie, Rong, & Sun, 2006) can be used to characterize image focus.

• Focus features provided quantitative measurements to the blurri-

ness within the image set to detect motion artifacts or aliasing

during typical acquisition processes (Pertuz, Puig, & Garcia, 2013).

A total of 25 focus measurement features were computed based

on an adapted version of Pertuz’s code.

• Noise measures were included to compensate the focus features

because high contrast noise (e.g., salt and pepper noise) would result

in elevated measure of focus, despite being another indicator of poor

image quality. In addition, overly noisy images could be indicative of

poor MRI data. Fernandez et al. reviewed and implemented nine

algorithms to estimate Rician noise typically found in 2D magnetic
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resonance imaging (Aja-Fernandez, Tristan-Vega, & Alberola-Lopez,

2009). An adapted version of their code was included. We also

included of six signal related measurements. For signal measurement,

since without prior information, it is impossible to identify the precise

region of interest to be considered “signal” with respect to noise, the

average signal intensities from the central region of the 2D image

(50 × 50 pixels or 100 × 100 pixels) were used as a crude proxy mea-

sure of the real signal for the anatomical region. This was done pur-

posely to help generalize this process beyond brain quality control

and avoid using anatomical priori information such as brain segmen-

tation with the implicit assumption that the regions of interest were

more likely to be in the middle of the image. The signal measure-

ments were then compared with the noise measurement to derive

the signal to noise ratio.

• Texture analyses in the form of GLCM, a measure of the statistical

relationship between two adjacent pixels, were also implemented

by adapting Dr. Avinash Uppuluri’s approach (Uppuluri, 2008).

These measures complement existing focus features

(by highlighting elevated degree of correlation with neighboring

pixels) as well as noise measure (MRI Rician noise is more random

and less likely to possess texture and patterns).

• Lastly, seven natural scene statics (NSS) features were included.

Natural scene statistics are measurements of the physical regulari-

ties within images that depict and stem from natural environment.

Natural scene evolutionarily influences the development of early

stage of neuronal processing specialization notably in the visual

cortex (Olshausen & Field, 1996) and help facilitating the innate

ability to differentiate between natural versus manmade objects

in the environments. Almost all NSS features were developed

from the University of Texas at Austin, Laboratory for Image &

Video Engineering labs (http://live.ece.utexas.edu/research/

quality), namely: Blind/Referenceless Image Spatial QUality Evalu-

ator (BRISQUE) from (Mittal, Moorthy, & Bovik, 2012), Blind

Image Quality Index (BIQI) from (Moorthy & Bovik, 2010). NSS

for compressed image (JP2KNR) by Sheikh, Bovik, and Cormack

(2005), Spatial Spectral Entropy based Quality features (SSEQ) by

(Liu, Liu, Huang, & Bovik, 2014) and Naturalness Image Quality

Evaluator (NIQE) by (Mittal et al., 2012) have been implemented.

MatLab’s implementation of BRISQUE and BIQI were also

additionally included. We implicitly assume biomedical images

such as brain images should conform as natural scenes with

smoother shapes and curvatures more so than shapes observed in

distortion, motion or inhomogeneity acquisition artifacts.

Further details about individual features, including relevant refer-

ences, are included in the Supporting Information Material.

The overall features extraction pipeline was built to be modular

and expandable to accommodate additional features in the future. In

the current analyses, 70 features were extracted per input 2D image.

2.4 | Analyses of quality assessment results

Once the subjective ratings and objective image features were

derived, two steps of analyses were implemented (see Figure 2). The

first analysis step was to inspect the various quantitative values of the

objective features using traditional statistics and check if (and how)

they differed across the subjectively classified rating groups. This was

important as the objective image quality ratings and subjective ratings

were independently derived. While the objective features were cho-

sen purposefully to ideally represent the essential image features

underlying the subjective ratings, it was not guaranteed, and the rela-

tion between these two sources of data needed to be statistically vali-

dated (see Figure 2, Top).

The second analysis step was to apply supervised machine learn-

ing to classify images into groups based on the input from the objec-

tive image features and subjective labels. This step was important

because even if statistical differences across the subjective rating

groups were established, they cannot guarantee it was possible to

precisely classify the group membership at individual 2D image level.

Ultimately a good quality control process must be able to efficiently

and effectively discriminate the images with good accuracy, sensitivity

and specificity into QC Pass versus QC Fail labels.

2.4.1 | Step 1: Statistical analyses

For all statistical analyses (see Figure 2, Top), a family-wise alpha

threshold of 0.05 was set a priori as significant. All statistically ana-

lyses were performed in SPSS 23.0 (SPSS, Chicago, Illinois).

FIGURE 1 Example of images that fail (left) and pass (right) subjective quality control
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First, an omnibus one-way MANOVA test was conducted with subjec-

tive manual classified ratings (i.e., QC Pass or QC Fail) as independent

variable and the various objective features as dependent variables. This

omnibus MANOVA test could reveal (with family-wise error corrected) if

overall, subjective ratings were associated with the differences

observed in objective image features.

If and only when such significant differences were detected, fur-

ther post-hoc one-way omnibus MANOVA tests of specific category of

objective image features (i.e., focus or SNR or texture or NSS) were

evaluated to determine if the subjectively rating groups differed in

terms of the major category of features. The alpha for this post-hoc

omnibus was family-wise corrected via Bonferroni correction and set

to be at 0.05/4 categories = 0.0125.

Further exploration of individual feature within each category of

objective image features were conducted via post-hoc univariate t-

test with a Bonferroni corrected alpha level and were presented in the

Supporting Information Material.

2.4.2 | Step 2: Supervised machine learning

To further explore our subjective quality assessment and to take

advantage of these objective features (see Figure 2, Bottom), several

different supervised machine learning models were trained and tested

with the end goal of producing a machine model that can accurately

classify image quality based on the training input. This was carried out

using MATLAB version 2017b with Statistics and Machine Learning

toolbox (MathWorks, Natick, MA). The analysis was conducted with

10-fold cross-validation and we tested different kinds of classifiers

including linear and quadratic discriminant analyses which were com-

mon approaches for initial analyses, naïve Bayes Classifier and deci-

sion tree (Breiman, Friedman, Stone, & Olshen, 1984) which were

insensitive to irrelevant features, and Random UnderSampling and

adaBoost (RUSBoost) ensemble method (Seiffert, Khoshgoftaar, Van

Hulse, & Napolitano, 2008) which specifically alleviated the extreme

ratings in-balance observed in our dataset (Table 1). A mock illustra-

tion (not using our data) of how these classifiers differ in their higher-

level approach to classifying 2D data is given in the Supporting Infor-

mation Figure S2. Because of the rating imbalance in the data, three

key measures were focused on: (1) positive predictive value (true QC

fail images/predicted QC fail images) which represented the propor-

tion of classifier predicted poor images that were actually images with

poor qualities; (2) sensitivity (true QC fail images/all QC failed images)

which represented the ability to detect all known poor quality images;

and (3) f1 score, the harmonic mean of the above two measures. By

choosing these key features to gauge the performance of the classi-

fiers instead of accuracy, we avoided classification performance bias

from imbalanced data groups. Accuracy in our example would not be

representative of the performance across both groups since QC pass

images represent about 95% of all our data. We also calculated the

Cohen’s kappa between the subjective rating and the best performing

machine learning model.

2.5 | Computation performance benchmark

The predictive analyses involved two major processes: the objective

image features extraction and the model training process, both were

benchmarked. To compute all 70 image features on a six core Xeon

CPU E5-2620 2.00 Ghz HP z620 workstation with 32 GB RAM run-

ning Windows 10, it took about 2.5 hr across all 1,024 images. Once

all features were extracted, to generate and train all supervised classi-

fier models and to summarize and report their model performance

data took 10 min.

Once the model is trained and saved to disk, we also bench-

marked the time requirement for QC prediction on a new image. Pre-

diction involves two similar phases: (1) passing the input 2D image

through the entire metrics extraction pipeline, which took 1.5 min

mostly due to Matlab parallel processing pool setup overhead, and

(2) apply the best trained classifier to predict QC status of the images

based on its extracted features which required 0.12 s.

2.6 | Source code

All the image-based features extraction, classification analyses, includ-

ing results and MatLab source code were uploaded to http://github.

com/CNBP/DICOMetrics. An anonymized version of the extracted

FIGURE 2 Graphical illustration of the analyses strategy and respective hypotheses

TABLE 1 Similarity matrix between first and second classification of

the same dataset

First rating

TotalQC fail QC pass

Second rating QC fail 44 7 51

QC pass 15 954 969

Total 59 961 1,020

QC = quality control.
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70 features along with their QC labels (without any identifiable infor-

mation) was also available in the Results folder. Future production

branches of our software can utilize smaller sets of metrics once the

final prediction model is fully validated across wider range of datasets

and populations.

3 | RESULTS

3.1 | Subjective manual quality assessment

The results of the repeated subjective rating of the images into QC

Pass or QC Fail are shown in Table 1. Overall, our subjective rat-

ings demonstrated considerable consistency across the two blind

subjective ratings of the same set of images. Cohen’s κ were calcu-

lated to determine if there were substantial agreement between

the two quality assessments of the 1,020 two-dimensional MRI

images. There was a substantial agreement as defined in Landis

and Koch (1977), between the two ratings of the same image sets,

κ = 0.79 (95% CI: 0.70–0.87), p < .0005. The results based on sec-

ond repeated rating included in the Supporting Information Result.

3.2 | Objective image features quality assessment

Seventy features were derived per image across four major categories:

25 features to measure image focus, 15 features to measure signal/

noises, 23 features to measure image texture, and seven features to

measure natural scene statistics.

Detailed distribution of features was posted on DICOMetric

Github pages “Results” section. Overall, we observed strong asymme-

try and bimodal distributions across majority of the focus and SNR

features, whereas the natural scene statistics and texture features

showed a unimodal and normal distributions across them.

3.3 | Statistical analyses of quality assessment
results

3.3.1 | All objective image feature categories

The omnibus one-way MANOVA test across all 70 features between

subjective ratings (QC Pass vs. QC Fail) has shown that there was

overall a statistically significant difference among all image features

between QC Pass and QC Fail rated images (F[58, 961] = 198.6,

p < .0005; Wilk’s Λ = 0.077, partial η2 = 0.923). This warranted fur-

ther post hoc analyses to examine, among all four feature

categories, which specific category of features significant differs

between the QC Pass and QC Fail rated images.

3.3.2 | Individual objective image feature category

When the post hoc MANOVA analysis was conducted on each indi-

vidual feature category, the results showed statistically significant

differences between the two subjective ratings across every

single individual feature category (Table 2): focus features, signal/

noise features, texture features, and natural scene statistics features,

where all p values were far below the 0.0125 Bonferroni corrected

alpha threshold.

Notably, focus features category overall had the lowest value for

Wilk’s Λ (Table 2), where Wilk’s Λ value was used to indicate the pro-

portion of variance in dependent variables not explained by the inde-

pendent variables. Here, low Wilk’s Λ value suggested relatively

smaller amount of variance in the focus image features (dependent

variables) were unexplained by variance in QC Pass versus QC Fail

subject rating assignment (independent variable). Other feature cate-

gories such as noise, texture and natural scene statistics all had Wilk’s

Λ values much higher than 0.5 suggesting majorities of variance in

these image features were not well explained by the subjective rating

assignment, despite statistical significance.

These results established that images with different subject rat-

ings were statistically significantly different in terms of their objec-

tively derived image features (Figure 2, Top, Hypothesis 1). However,

such group level statistical significance in features cannot guarantee

effective case by case classification performance at individual image

level (Figure 2, Bottom, Hypothesis 2).

We also included detailed individual objective image feature com-

parison across QC Pass and QC Fail groups in the Supporting Informa-

tion Tables S1 and S2.

3.3.3 | Supervised machine learning and quality
assessment results

The results of the effective predictive power of objectively derived

image features to infer the appropriate subjective rating at individ-

ual image level are summarized in Table 3. In short, we observed

overall better performance from decision tree based approaches

(decision tree and RUSBoost ensemble) than discriminant and naïve

Bayes classifiers. Overall, the prediction accuracies of all classifiers

were elevated because of excessively large number of QC Pass

images (95 + %, See Table 1) and hence the classification algo-

rithms performance were biased toward QC Pass images in most

scenarios at the expense of worse performance toward the QC Fail

TABLE 2 MANOVA Wilk’s lambda test measuring the amount of variance observed in the four image feature categories not accounted for by the

variance in the subjective manual ratings

Feature type Wilk’s lambda F Hypothesis DF Error DF p Partial Eta squared

Focus and Blurr 0.11 342.5 24 995 <.001 0.89

Signal and noise 0.87 10.3 14 1,005 <.001 0.13

Texture 0.54 44.4 19 1,000 <.001 0.46

Natural scene statistics 0.56 115.5 7 1,012 <.001 0.44

Combination of all feature types 0.08 201.2 56 963 <.001 0.92

DF = degree of freedoms.
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images. Given such premises, we chose best classifier based on its per-

formance of positive predictive value and sensitivity with respect to

QC Fail images. The best classifier was the RUSBoost decision tree with

a false positive emphasis that on average after tenfold cross-validation

resulted in over 84% positive predictive value with about 75% sensitiv-

ity and F1 score of 0.79 for QC Fail images. The Cohen’s kappa

between final model prediction versus the first subjective manual rating

was 0.78 (95% CI: 0.70–0.87) p < .0005, on par with kappa of intra-

rater reliability.

4 | DISCUSSION

Current work proposed a novel set of quality control processes for 2D

image by a features extraction pipeline producing 70 features across

four major categories: image focus, signal/noise, adjacent pixel rela-

tion/texture, and natural scene statistics. Our statistical analyses

(Figure 2, Top) first showed that the two subjective rating groups

(QC Pass and QC Fail) differed across all four categories of image fea-

tures. Therefore, these features were relevant, informative and poten-

tially useful features in the machine learning analyses (Figure 2,

Bottom).

The MANOVA statistical analysis section and Table 3 highlighted

several important results: (1) Taken as a collective measure, the

objective features overall significantly differed between the sub-

jective QC rating groups, (2) when further examined, every individ-

ual category of image features (i.e., focus, SNR, texture or natural

scene statistics) were significantly different between the subjective

rating groups, (3) when evaluating the proportion of the variance

explained using MANOVA models, the subjective rating differences

were better at explaining the variance observed in focus features

(as revealed by a small Wilk’s Λ = 0.11), as compare to the other

three categories of features (where Wilk’s Λ > 0.5). These findings

supported the application of a supervised machine learning

approach (specifically, a classification scenario) by using image fea-

tures to infer the individual subjective ratings.

Several common models of supervised machine learning classi-

fiers were tested, namely: linear discriminant analysis, quadratic

discriminant analysis, naïve Bayes classifier, decision tree, and vari-

ants of Random UnderSampling and adaBoost (RUSBoost) decision

tree ensemble models. After utilizing 10-fold cross validation to

mitigate model overfitting, the end results showed that RUSBoost

decision tree ensemble model performed the best in identifying QC

Fail images with a sensitivity of 75% and positive predictive value

of 80%, replicated across second subjective rating (Supporting

Information Table S3 and Supporting Information Figure S3). The rea-

son RUSBoost tree performed best was most likely accounted by its

special design to deal with classifications of imbalanced groups (Seiffert

et al., 2008). Other classification approaches in general typically per-

formed well in either sensitivity (quadratic discriminant analyses, RUS-

Boost with false negative focus) or positive predictive value (linear

discriminant analyses, decision tree) but seldom both. Overall, this was

an encouraging result given that across the 1,020 images, only

59 images were bad images, accounting approximately 5% of the data-

set, yet the supervised machine learning algorithms were able to

achieve a reasonable sensitivity and positive predictive value after

10-fold cross-validating the results. In fact, the machine learning pre-

dicted labels achieving similar agreement (κ = 0.78) as the intra-rater

reliability on the same dataset (κ = 0.79). On the other hand, for the

QC Pass cases, our classifier performed very well as expected since

there were substantially more QC Pass images due to class imbalance

in the source data.

Quality control has always been a quintessential process before

any MRI data analyses and yet to this date no objective measures or

formalized process have been established due to diverse nature of the

MRI image acquisition protocols. To ensure a consistent and generic

quality assurance process, it is imperative to design an objective image

quality metric evaluation process, that is, robust, time efficient, and

highly quantitative yet flexible enough to adapt to different needs.

We ultimately decided to choose a 2D metric extraction approach for

the following reasons:

1. Generalizability: Our current extraction and validation pipeline is

not protocol specific. It does not require any acquisition protocol

to be adapted as long as the subjective rating data set is congru-

ent with testing data set.

2. Independence of anatomical prior: Our approach does not

require brain segmentation, in fact, none of our analyses even

assumed there was a brain in the DICOM file. As long as the

training dataset is appropriate, the classifiers will mimic how

subjective rating classifies the image qualities regardless of the

content of the images or even criteria of the classification

process.

3. Interoperability: We have designed our quality control pipeline

with clinical images in mind where typically there is a much

shorter acquisition time, larger anisotropic voxel size due to

TABLE 3 Classification performance of various classifiers tested

Performance (10-fold cross validation) Precision (%) Recall (%) F1 score
Negative predictive
value (%) Specificity (%)

Overall prediction
accuracy (%)

Linear discriminant analyses 60.7 62.7 61.67 97.7 97.5 95.5

Quadratic discriminant analyses 46.2 81.4 58.90 98.8 94.2 93.4

Naïve Bay classifier 78.4 49.2 60.42 96.9 99.2 96.3

Decision tree 66.1 69.5 67.77 98.1 97.8 96.2

RUSBoost (min false negative) 65.8 84.7 74.07 99.0 97.3 96.6

RUSBoost (min false positive) 84.6 74.6 79.28 98.5 99.2 97.7

Min = minimizing; RUSBoost, Random UnderSampling and adaBoost.
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thicker slices and often with additional interslice gaps. By work-

ing at individual 2D DICOM image level, we do not require

high-resolution 3D acquisitions, yet our approach is still

forward-compatible with high quality scans allowing future

possible application to both typical clinical and research proto-

cols. Secondly, this quality control process was completely

decoupled from any subsequent image analyses/examinations.

It can provide the researchers/clinicians with more granular

objective and quantifiable information about the number of

images (and proportion of images in 3D volume data) that had

image quality issues.

4. Extensibility: while current version output 70 features, there is no

limit on the number of features that can be extracted in the future

and incorporated. The only limitation lies with the subsequent

negligible increase in training speed of the classifiers.

4.1 | Limitations/outlook

The improvement of classification performance will likely be achieved

by continuously adding more target data sets (i.e., QC Fail). With more

extensive input of larger labeled poor-quality data, we can further

extend the generalizable performance of these classifiers.

Current level of classification performance is most likely higher

than its performance on completely new unseen data set. Our current

results are inherently relying on implicit assumptions these few QC-

Fail images are representative of all QC-Fail images in the real-world

scenario. Although we maximized compatibility with clinical usage by

drawing these data directly from MRI scanners using typical clinical

acquisitions sequences, these QC fail images are very unlikely to rep-

resent the full spectrum of all the poor-quality images, emphasizing

the importance and benefit of having sufficiently largely labeled data

for all the necessary classes. It is our hope that with more extensive

input of labeled poor-quality data such as those from open science

quality control dataset and collective expert input (Keshavan, Yeat-

man, & Rokem, 2018), we can further extend the performance and

generalization of these classifiers.

5 | CONCLUSION

Our long-term development roadmap for DICOMetrics is to pro-

vide a comprehensive quality assessment and quantification tool-

sets that are nonbiased, objective and useful. To achieve that, we

started by working with 2D image features because they are the

common basis of both structural (typically 3D high spatial resolu-

tion) as well as functional or diffusion EPI images (typically 4D low

spatial resolution). Our current results showcased a proof-of-

concept open source pipeline to help delineate 2D T2 MRI images

with major quality issues. The pipeline operated at individual 2D

DICOM image level and leveraged existing no-reference image fea-

tures to produce 70 image features across four major categories.

The results indicated a promising potential for supervised machine

learning based identification of poor-quality images with a positive

prediction ratio above 85% and sensitivity above 75% with no

anatomical prior, segmentation or reference high quality images.

Our pipeline will be proudly incorporated as part of the Canadian

Neonatal Brain Platform to facilitate the quality control process of

all neonatal researchers Canada wide and further improve its per-

formance and generalizability.
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