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Purpose. Atrial fibrillation (AF) is the most frequent arrhythmia in clinical practice. The pathogenesis of AF is not yet clear.
Therefore, exploring the molecular information of AF displays much importance for AF therapy. Methods. The GSE2240 data
were acquired from the Gene Expression Omnibus (GEO) database. The R limma software package was used to screen DEGs.
Based on the Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis
(GSEA) databases, we conducted the functions and pathway enrichment analyses. Then, the STRING and Cytoscape software
were employed to build Protein-Protein Interaction (PPI) network and screen for hub genes. Finally, we used the Cell
Counting Kit-8 (CCK-8) experiment to explore the effect of hub gene knockdown on the proliferation of AF cells. Result. 906
differentially expressed genes (DEGs), including 542 significantly upregulated genes and 364 significantly downregulated genes,
were screened in AF. The genes of AF were mainly enriched in vascular endothelial growth factor-activated receptor activity,
alanine, regulation of histone deacetylase activity, and HCM. The PPI network constructed of significantly upregulated DEGs
contained 404 nodes and 514 edges. Five hub genes, ASPM, DTL, STAT3, ANLN, and CDCA5, were identified through the
PPI network. The PPI network constructed by significantly downregulated genes contained 327 nodes and 301 edges. Four hub
genes, CDC42, CREB1, AR, and SP1, were identified through this PPI network. The results of CCK-8 experiments proved that
knocking down the expression of CDCA5 gene could inhibit the proliferation of H9C2 cells. Conclusion. Bioinformatics
analyses revealed the hub genes and key pathways of AF. These genes and pathways provide information for studying the
pathogenesis, treatment, and prognosis of AF and have the potential to become biomarkers in AF treatment.

1. Background

Atrial fibrillation (AF) is the most frequent arrhythmia; its
incidence continues to increase, reaching 10% over 75 years
[1]. The frequency of atrial activation in AF is 300-600
beats/min [2]. The heartbeat frequency of AF patients is often
faster and more irregular than normal people’s, sometimes up
to 100-160 beats/min. The prevalence of AF is also associated
with other diseases, such as coronary heart disease, hyperten-
sion, and heart failure [3]. The patients with AF are mainly the
elderly, and common inducing factors include rheumatic heart
disease, coronary heart disease, hyperthyroidism, stroke,
thromboembolism, and heart failure [4]. Stroke is one of the
greatest hazards of AF. The stroke incidence in patients with
nonvalvular AF is 5.6 times higher than that of average people

and in patients with valvular AF is 17.6 times, and the brain
caused by AF is 17.6 times. The consequences of stroke are
more serious [5]. Early symptoms of AF include palpitations,
fatigue, dizziness, chest discomfort, and shortness of breath
[6]. AF can also cause severe morbidity and mortality. In
2017, there were 37.57 million cases of AF patients worldwide,
3.05 million new cases of AF, and 287,000 deaths. At present,
medicine is still the main treatment for AF patients, which can
restore sinus rhythm, reduce the ventricular rate, and prevent
thromboembolic complications [7]. Nonpharmacological
treatments for AF include electro conversion (conversion of
sinus rhythm), radiofrequency ablation treatment, and surgi-
cal maze surgery (complete radical treatment of AF) [8].

There is no uniform classification of AF. According to its
duration, it comprises paroxysmal, persistent, and permanent
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AF [9]. It is generally believed that paroxysmal AF refers to
those who can self-convert to sinus rhythmwithin 7 days, gen-
erally lasting less than 48 hours. Persistent AF refers to those
who last over 7 days and need drugs or an electric shock to
convert to sinus rhythm. Permanent AF refers to those who
cannot be converted to sinus rhythm or relapse within 24
hours after conversion. According to the presence or absence
of underlying heart disease, it is divided into pathological
and idiopathic AF (clinical examination without underlying
heart disease). Idiopathic AF, sometimes called solitary AF,
often occurs in people below 50 years old [10]. The etiology
of AF is multifactorial, and its pathogenesis is not completely
clarified. In recent years, many researchers have tried to find
AF-related hub genes and key pathways through microarray
technology. The hub genes and signaling pathways in the
development of AF are still poorly understood.

Microarray data is the outcome of the gradual applica-
tion of the Human Genome Project (HGP) and the rapidly

developing molecular biology, leading to the development
of research on the genome world, such as genomes, tran-
scriptomes, and proteomes [11, 12]. Its advantage is that it
saves laborious experiments and expensive reagents. How-
ever, the current microarray technology still has room for
development. One of the emerging desires is the ability to
operate and react in multiple steps. Bioinformatics is a mul-
tidisciplinary research method of biological problems, in
addition to traditional biology and chemical methods usu-
ally used to solve biological problems [13]. It is to describe
the technique of collecting and analyzing large amounts of
biological data using computer systems. Many core technol-
ogies of bioinformatics analysis are dependent on statistics
and the collection of large quantities of data usually from
various experiments and labs. The applications of bioinfor-
matics include analyses of DNA sequence, gene expression
and regulation, and comparative bioinformatics of different
biological genomes [14]. Through chromosome microarray
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Figure 1: Hierarchical clustering heat map of all DEGs in AF. Yellow is upregulated DEGs, and purple is downregulated DEGs.
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analysis (CMA) DVL1, SKI, STIM1, CTNNA3, and PLN
were identified as candidate genes related to the phenotype
of congenital heart disease (CHD), which improved the
diagnosis rate of children with CHD. Based on circRNA
microarray analysis, it was found that circPDS5B and cir-
cCDC14A can be used as biomarkers to diagnose and
predict the prognosis of acute ischemic stroke.

This study used bioinformatics analyses to obtain hub
genes and key pathways related to AF. The microarray pro-
file dataset GSE2240 was downloaded from the Gene
Expression Omnibus (GEO) database as the research object.
The finally obtained hub genes and pathways are of great
significance to AF. And based on the Cell Counting Kit-8
(CCK-8) experiment, we verified the relationship between
the hub gene and AF cell proliferation. This strategy is con-
ducive to the discovery of previously neglected genes, and
these findings may provide new perspectives for optimizing
the treatment of AF.

2. Material and Methods

2.1. Microarray Data. Gene Expression Omnibus (GEO)
(http://www.ncbi.nlm. http://nih.gov/geo) is one of the most
commonly used sequencing (chip) databases in the National
Center for Biotechnology Information (NCBI) (https://
pubmed.ncbi.nlm.nih.gov/) [15]. And it is a public reposi-

tory that can archive and freely distribute the complete set
of microarrays submitted by the scientific community,
next-generation sequencing, and other forms of high-
throughput functional genomics data. We downloaded gene
expression profile GSE2240 from the GEO database. The
platform we used for GSE2240 was GPL97[HG-U133B]
Affymetrix Human Genome U133B Array. The samples of
GSE2240 contained 10 patients with AF and 20 people with
sinus rhythm.

2.2. Data Processing. After downloading the gene expression
profile GSE2240, we used R language software to analyze
and process the database. When the genes’ threshold P
value was <0.01, they were chosen as differentially
expressed genes (DEGs). At the same time, when the log2
(fold change) was greater than 0, the DEGs were selected
as significantly upregulated genes, and when the log2 (FC)
was less than 0, the DEGs were selected as significantly
downregulated genes.

2.3. Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) Enrichment Analysis of DEGs. GO
(http://www.geneontology.org.) is a widely used biological
database, divided into three independent ontologies, namely,
biological process (BP), molecular function (MF), and cellu-
lar component (CC) [16]. KEGG (http://www.genome.jp/

Table 1: Log-fold changes of the top10 upregulated DEGs and top10 downregulated DEGs in the sinus rhythm control group and atrial
fibrillation patient samples.

Gene symbol Gene title log2 FC P Expression

SEL1L3 SEL1L family member 3 0.060340007 2:25E − 07 Upregulated

DHRS9 Dehydrogenase/reductase 9 0.188569525 7:01E − 07 Upregulated

FLT4 Fms-related tyrosine kinase 4 0.099135639 7:40E − 07 Upregulated

BICD1 BICD cargo adaptor 1 0.163528177 7:89E − 07 Upregulated

LINC00608 Long intergenic non-protein-coding RNA 608 0.043723792 1:29E − 06 Upregulated

RNF216 Ring finger protein 216 0.074128631 1:82E − 06 Upregulated

DHRS13 Dehydrogenase/reductase 13 0.045246216 2:16E − 06 Upregulated

PRR11 Proline-rich 11 0.056029931 3:58E − 06 Upregulated

MAD2L2 MAD2 mitotic arrest deficient-like 2 (yeast) 0.040471973 4:38E − 06 Upregulated

ATP1B4 ATPase Na+/K+ transporting family member beta 4 0.307563341 4:45E − 06 Upregulated

GALNT16 Polypeptide N-acetylgalactosaminyltransferase 16 -0.098686876 2:84E − 08 Downregulated

HCN4
Hyperpolarization-activated cyclic nucleotide-gated potassium

channel 4
-0.082582678 1:51E − 07 Downregulated

MASP1 Mannan-binding lectin serine peptidase 1 -0.102728211 2:31E − 06 Downregulated

LGR6 Leucine-rich repeat-containing G protein-coupled receptor 6 -0.103112526 3:33E − 06 Downregulated

LOC102725271///
NTM

Neurotrimin-like///neurotrimin -0.202137537 5:13E − 06 Downregulated

CLSTN2 Calsyntenin 2 -0.131561085 6:84E − 06 Downregulated

TMEM245 Transmembrane protein 245 -0.089869756 8:86E − 06 Downregulated

BTBD7 BTB domain-containing 7 -0.073546467 9:78E − 06 Downregulated

ZNF521 Zinc finger protein 521 -0.095026053 1:25E − 05 Downregulated

FNDC5 Fibronectin type III domain-containing 5 -0.076766249 1:62E − 05 Downregulated
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kegg/) is used for comprehensive analysis of gene function in
a knowledge base [17]. Genomic information can be linked
with high-order functional information and kept in the
genes database, which is a collection of gene catalogs of all
fully sequenced genomes and some partial genomes with
newly updated annotations. The significantly upregulated
and downregulated DEGs were analyzed for GO and KEGG
enrichment, respectively, through the Database for Annota-
tion, Visualization, and Integrated Discovery (DAVID v6.8,
https://david.ncifcrf.gov/tools.jsp) [18].

2.4. Protein-Protein Interaction (PPI) Network Analysis of
DEGs. The Search Tool for the Retrieval of Interacting Genes
(STRING v11.0, https://string-db.org/) database is for
interaction identification between proteins on the basis of
experiments, databases, text mining, and predictive bioinfor-
matics. An interaction score of more than 0.4 was set as the
standard value. Then, the Cytoscape (v3.6.0) software was
used to analyze the PPI network. The genes with the highest
node scores and the strongest connectivity were chosen as
hub genes.

2.5. Gene Set Enrichment Analysis (GSEA). GSEA uses the
ranking of differential gene expression degree in two types
of samples to test whether the preset gene set is enriched
at the top or bottom of the ranking table and interpret
biological information from another angle. The Molecular
Signatures Database (MSigDB) was utilized to make Gene
Set Enrichment Analysis (GSEA v3.0, http://www
.broadinstitute.org/gsea/).

2.6. Cell Culture. We first purchased AF cells (H9C2) from
American Type Culture Collection (Manassas, Virginia,
USA) and then placed the cell population in DMEM
medium with 10% fetal bovine serum (Gibco; Thermo
Fisher Scientific, Inc.), which was then put in a humidified
box containing 5% CO2 and maintained at 37°C for
cultivation.

2.7. Cell Transfection. We purchased siRNA and negative
control (si-NC) from Sangon (Shanghai, China), where
siRNA was used to knock down the expression of the hub
gene CDCA5. After that, H9C2 cells were poured into a 6-
well plate and transfected with Lipofectamine 2000
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Figure 2: GO and KEGG enrichment analysis of upregulated DEGs in AF. (a–c) Top 10 BP, CC, and MF terms in which the upregulated
DEGs were enriched. (d) Top 10 KEGG pathways in which the upregulated DEGs were enriched.
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(Invitrogen, California) according to the operating steps
provided by the manufacturer.

2.8. CCK-8 Assay. In order to measure the effect of gene
expression on cell proliferation, CCK-8 assay (cat. no. HY-
K0301; MedChemExpress) was performed. We first added
H9C2 cells to a 96-well plate at a density of 2 × 103 and then
poured 10μl of CCK-8 solution into each well. After a
period of time, at the 24th, 48th, 72nd, and 96th hours, we
used a microplate reader (BMG Labtech GmbH) to measure
the optical density (OD) of the solution at 450nm.

2.9. Statistical Analysis. All experiments were performed in
triplicate. The results of this experiment were presented as
mean ± standard deviation (SD), and SPSS 17.0 (US SPSS
Inc.) was used for data analysis. It was judged statistically
significant when P < 0:05.

3. Result

3.1. Identification of DEGs. We used R language software to
analyze and process the database GSE2240. The gene expres-

sion profile GSE2240 contained myocardial samples from
patients with AF (n = 10) and the control group with sinus
rhythm (n = 20). We screened DEGs based on a P value of
less than 0.01. The processing results were shown in the heat
map; we obtained 906 DEGs, including 542 upregulated
genes and 364 downregulated genes (Figure 1). The top 10
downregulated DEGs and top 10 upregulated DEGs are
shown in Table 1.

3.2. GO and Pathway Enrichment Analysis of Upregulated
Genes. The enrichment analysis results based on DAVID
online database is shown in Figures 2 and 3. The top 10
enriched BP terms of upregulated DEGs were regulation of
exit from mitosis, ganglioside metabolic process, regulation
of systemic arterial blood pressure by hormone, cellular
localization, natural killer cell activation, peptidyl-lysine
trimethylation, glycosphingolipid catabolic process, 4-
hydroxyproline metabolic process, oligosaccharide catabolic
process, and interleukin-23-mediated signaling pathway
(Figure 2(a)). For CC, the upregulated DEGs were mainly
enriched in GO terms of clathrin coat, perinuclear endoplas-
mic reticulum, microtubule minus-end, mitotic spindle,
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Figure 3: GO and KEGG enrichment of downregulated DEGs in AF. (a–c) Top 10 BP, CC, and MF terms in which the upregulated DEGs
were enriched. (d) Top 10 KEGG pathways in which the downregulated DEGs were enriched.
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ionotropic glutamate receptor complex, mitotic spindle pole,
INO80-type complex, microtubule end, dendrite membrane,
and GABA-A receptor complex (Figure 2(b)). For MF, the
upregulated DEGs in AF were chiefly distributed in GO
terms of diacylglycerol kinase activity, rac guanyl-
nucleotide exchange factor activity, phosphatidylinositol
phosphate phosphatase activity, hydroxymethyl-, formyl-
and related transferase activity, alpha-N-acetylneuraminate
alpha-2,8-sialyltransferase activity, SH3 domain binding,
aldehyde-lyase activity, phosphatidylinositol phosphate 4-
phosphatase activity, and vascular endothelial growth
factor-activated receptor activity (Figure 2(c)). The most sig-
nificantly enriched pathways of upregulated DEGs analyzed
by KEGG analysis were the HIF-1 signaling pathway, one
carbon pool by folate, alanine, aspartate and glutamate
metabolism, nicotine addiction, phenylalanine, tyrosine,
and tryptophan biosynthesis, glyoxylate and dicarboxylate
metabolism, synaptic vesicle cycle, amyotrophic lateral
sclerosis (ALS), vibrio cholerae infection, and phos-
phatidylinositol signaling system (Figure 2(d)).

3.3. GO and Pathway Enrichment Analysis of Downregulated
Genes. GO and KEGG analyses are considered to be power-
ful tools for revealing the biological mechanisms or func-
tional pathways of genomics or transcriptional observation

patterns. The top 10 enriched BP terms of downregulated
DEGs were modification-dependent protein catabolic pro-
cess, protein localization to the nonmotile cilium, muscle cell
differentiation, positive regulation of deacetylase activity and
endothelial cell migration, iron ion transport, regulation of
synapse assembly, regulation of histone deacetylase activity,
protein monoubiquitination, and skeletal muscle tissue
development (Figure 3(a)). For CC, the downregulated
DEGs were chiefly enriched in GO terms of nuclear hetero-
chromatin, nuclear speck, endoplasmic reticulum quality
control compartment, heterochromatin, Cul3-RING ubiqui-
tin ligase complex, euchromatin, vacuole, spindle midzone,
focal adhesion, and nuclear body (Figure 3(b)). For MF,
the downregulated DEGs were chiefly enriched in GO terms
of iron ion transmembrane transporter activity, ubiquitin-
protein ligase activity, ubiquitin-protein transferase activity,
methylation-dependent protein binding, oxalate transmem-
brane transporter activity, ubiquitin-like protein ligase activ-
ity, transcription regulatory region DNA binding, sulfate
transmembrane transporter activity, methylated histone
binding, and 3′,5′-cyclic-GMP phosphodiesterase activity
(Figure 3(c)). The most marked pathways of downregulated
DEGs analyzed by KEGG analysis were mineral absorption,
nonalcoholic fatty liver disease (NAFLD), AMPK signaling
pathway, tight junction, hypertrophic cardiomyopathy
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Figure 4: GSEA analysis of pathways related with AF based on dataset GSE2240. (a) The gene set of aldosterone-regulated sodium
reabsorption was significantly enriched in AF patient samples. (b) The gene set of olfactory transduction was significantly enriched in AF
patient samples. (c) The gene set of vibrio cholerae infection was significantly enriched in AF patient samples.
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(HCM), T cell receptor signaling pathway, circadian rhythm,
vitamin B6 metabolism, spliceosome, and GnRH signaling
pathway (Figure 3(d)).

3.4. Signaling Pathways of Genes Associated with MF. We
further carried out GSEA on the database GSE2240. It was

observed that these genes from 10 patients with AF were
positively correlated with aldosterone-regulated sodium
reabsorption (Figure 4(a)), olfactory transduction
(Figure 4(b)), and arginine and vibrio cholerae infection
(Figure 4(c)) signaling pathways compared to the genes
from a person with sinus rhythm.

Figure 5: The constructed PPI network for upregulated DEGs. The PPI network contains 404 nodes and 514 edges. Nodes mean proteins
and edges mean the interaction of proteins.
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3.5. PPI Network Analysis of Upregulated Genes.We used the
selected upregulated DEGs to build a PPI network, and
Cytoscape software was used for analyzing the PPI network.
404 nodes and 514 protein pairs were acquired with a com-
bined score of >0.4 based on the STRING database
(Figure 5). The higher the degree was, the more closely the
gene was associated with AF. ASPM (degree = 19), DTL
(degree = 17), STAT3 (degree = 17), ANLN (degree = 16),
and CDCA5 (degree = 16) were identified as key upregulated
genes. Furthermore, as shown in the box plot diagram, the
expression levels of ASPM, DTL, STAT3, ANLN, and
CDCA5 in myocardial tissue of AF were significantly higher
than those in myocardial tissue of sinus rhythm
(Figures 6(a)–6(e)). We could summarize that ASPM,
DTL, STAT3, ANLN, and CDCA5 were upregulated hub
genes of AF.

3.6. PPI Network Analysis of Downregulated Genes. Also, we
used the selected downregulated DEGs to construct a PPI
network, and the Cytoscape software was used to analyze
the PPI network. 327 nodes and 301 protein pairs were
acquired with a combined score of >0.4 through the
STRING database (Figure 7). CDC42 (degree = 23), CREB1
(degree = 16), AR (degree = 13), and SP1 (degree = 10) were
identified as key downregulated genes. As shown in the box
plot diagram, the expression levels of CDC42, CREB1, AR,
and SP1 in myocardial tissues of AF were significantly lower
than those in myocardial tissues of sinus rhythm
(Figures 8(a)–8(d)). We could summarize that CDC42,
CREB1, AR, and SP1 were downregulated hub genes of AF.

3.7. CDCA5 Knockdown Prevented Cell Proliferation. On the
basis of exploring the effects of the hub genes on the prolif-

eration of H9C2, we knocked down the expression of the
hub gene through siRNA. As shown in Figure 9(a), CDCA5
gene knockdown prevented H9C2 proliferation compared to
the negative control (si-NC).

4. Discussion

AF accounts for about one-third hospitalizations for
arrhythmia and is the most common arrhythmia [19]. Many
researchers believe that inflammation, neurohormonal dis-
orders, and cardiovascular diseases, such as valvular diabe-
tes, hypertension, congestive heart failure, myocardial
infarction, and genetic factors, are “regulators” that can
induce AF [20, 21]. Among them, genetic factors have key
functions in AF oncogenesis. The heritability of polygenic
debt for AF is estimated to be 0.62. The focus of bioinfor-
matics research is mainly reflected in two aspects: genomics
and proteomics [22]. It is the science of maintaining, retriev-
ing, and delving biological information using computers as
tools in the research of life sciences. According to the role
of biomolecules in gene regulation, the internal laws of diag-
nosis and treatment of human diseases are described [23]. Its
research goal is to reveal the “complexity of genome
information structure and the fundamental laws of genetic
language” and explain the genetic language of life. Bioinfor-
matics has become an important part of the development of
the entire life sciences and has become the forefront of life
science research [24].

Based on the GSE2240 database, a total of 906 DEGs
related to the AF process were identified. In order to further
analyze the potential mechanisms involved in DEGs, we
conducted a functional and pathway enrichment analysis.
Our research results found that vascular endothelial growth
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Figure 6: The expression level of (a) STAT3, (b) ASPM, (c) ANLN, (d) CDCA5, and (e) DTL in myocardial tissues of AF was significantly
higher than that in myocardial tissues of sinus rhythm.
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factor-activated receptor activity and alanine were the signif-
icantly enriched pathways of upregulated DEGs. Mezache
et al. pointed out that the effect of vascular endothelial
growth factor on the heart was multifactorial. Inflammation,
vascular leakage, and related tissue edema are common

sequelae of AF [25]. Alanine constitutes the basic unit of
protein and is one of the 20 amino acids that make up
human protein. The role of alanine is to produce sugar from
dietary protein. For downregulated DEGs, regulation of his-
tone deacetylase activity and hypertrophic cardiomyopathy

TC2N

KLHL23

FAM84B

CLSTN2

CAB39

EGR1

AKAP12

STIM2

TEFM

PROX1

CYP4X1

NRXN1

NR3C1

CDC42

PRIMA1

ZRANB2

MUC4
TMOD2

XKR4

AR

AHNAK

TUB

MYLIP

EMCN

CGNL1

C16orf72

SRSF4

THSD4

PPM1L

KLHL41

INHBA

FNBP1 BCL2L11

SRSF3

ADAMTS15

RHBDD1UBE2R2

NFKBIZ

EXOC5

SOX5

RNPC3

LGI4

PRPF38B

KBTBD7

EEF2K

MAP3K1

FOXP1

AQR

ADAM11

UQCRB
VPS13A

KIAA0368

SH3KBP1

DLL1

DNER

CDC37L1

SEMA6D

TM7SF3

EDEM3

MYH11

CBX5

RHBDL3

ACER3

UTP23

ITFG1

SEC61A1

CDON

BCL11B

AQP4

PPTC7

NSUN6

LGR4

DNAJC1

GDI2

ZNF503

MLLT1

ABHD10

SYT13

IRX3

LENG1

TNKS2

EBF1

APOOL

PTER

TGFBR3

DGCR14

MYO9A

ZFAND6

PAPLN

QPRT

LIFR

NUDT3

TRIO

BCL11A

SUPT16H

NAA50

IL6R

GSPT1

UBA6

XBP1

ANP32E

MPHOSPH8

KCNIP2

DCP1A

COG5

ATF5

PHACTR1

WASH1

WTAP

HCN4

MAP1B

GNA12

ATAD2B

ANKRD17

TMEM132B

YTHDC1

NTNG2

REXO1

NGEF

KMT2E
SPTBN1

TMEM19

METTL14

MUC17

DCLK1

NUP133

ASH1L

ANKHD1

ZNF148

TRIM25

GALNT16

RASD1

NUMBL

ZNRF3

RALGPS2

VPS35

NAMPT

GALK2

CYGB

NTN1

CNKSR2

ANGPTL1

VPS29

RASSF5

FNDC5

SLC40A1

CCDC80

ARMC5

HOOK1

SORCS1

NEGR1

PNISR

CYBRD1

SETBP1

TMEM106B

UBE2H

SNX8

LSAMP

STON2UHRF1

CCDC6

ARL8B

AKTIP

SMAD5

LRRC4C

FNBP4

MTAP

STX17

TBL1XR1

CREB1

SLC5A1

TMEM108

FIGN

CXXC4

CALCOCO2

JMJD1C

FOXO6

SLC25A28

LRRC16A

MCOLN3

PRKD2

TRDN

MAP2K7

ERBB3

WHSC1L1

LGR6

FGL2

PDLIM5

KLHL8

ZNF521

PIK3C2A

SCARA5

LARP7

REV1

PRKD3

CACNG7

PNRC2

PLEKHF2

SCARA3

KY

FBXO18

NFIA

CAB39L

SP1

MAP3K8

WAC

TNRC6B
FBLIM1 GPR22

SBNO1

ZBTB7A

AKT3

SLC44A2

PHOSPHO2

HRASLS5

SAMD12

PRKAB2

TMEFF2

SAV1
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(HCM) were the significant enriched pathways. Studies by
Evans and others have shown that histone deacetylase activ-
ity was significantly upregulated in the heart remodeling
model, which had the risk of heart diseases, such as AF,
myocardial infarction, and myocardial failure [26]. Xu
et al. found that AF was the most frequent persistent
arrhythmia in patients with HCM. HCM patients with AF
have upregulated morbidity and mortality because of heart
failure and stroke. HCM patients are more prone to develop

AF, and the existence of AF is associated with an increase in
morbidity and mortality [27]. In summary, DEGs may affect
the activity of receptors activated by vascular endothelial
growth factor, the synthesis of alanine, and the regulation
of histone deacetylase activity, which ultimately leads to
the progression of AF.

Through PPI network analysis, we found that the genes
most associated with AF were ASPM, DTL, STAT3, ANLN,
CDCA5, CDC42, CREB1, AR, and SP1. The full name of
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Figure 8: The expression levels of (a) SP1, (b) AR, (c) CDC42, and (d) CREB1 in myocardial tissues of AF were significantly lower than
those in myocardial tissues of sinus rhythm.
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ASPM is the assembly factor for spindle microtubules.
ASPM-related diseases include microcephaly 5 and pri-
mary autosomal recessive microcephaly [28]. GO annota-
tions related to this gene include binding and calmodulin
binding. EHBP1 is a crucial paralog of this gene. Szczepa-
nek et al. studied that STAT3 was initially identified as an
IL-6-induced acute-phase gene transcription activator. The
normal cardiac function requires the expression of STAT3.
The expression of STAT3 transcription factor in the heart
has a cardioprotective effect and reduces reactive oxygen
species [29]. SP1 is a protein-coding gene that is linked
with Huntington’s disease and embryonal carcinoma
[30]. Toll-like receptor signaling pathways and G-beta
gamma signaling are its pertinent pathways. GO annota-
tions include DNA-binding transcription factor activity
and sequence-specific DNA binding. The mechanism of
action of the hub gene and the correlation between its
expression level and the clinical parameters of AF need
to be further studied.

5. Conclusion

This study uses systematic bioinformatics analyses to
obtain the pivotal genes and key pathways related to AF.
As a research object, the microarray profile data
GSE2240 is acquired in the GEO database. A total of 542
upregulated DEGs and 364 downregulated DEGs were
identified. GO, KEGG, and GSEA analyses were used to
analyze the potential functions of DEGs. Hub genes were
identified based on the PPI network, including ASPM,
DTL, STAT3, ANLN, CDCA5, CDC42, CREB1, AR, and
SP1. These pivotal genes and key pathways are helpful to
the AF research progress and can be used as AF potential
diagnosis biomarkers, treatment, and prognosis. Not only
that, we also find that knocking down the expression of
CDCA5 inhibits the proliferation of AF cells (H9C2).
These findings will benefit the development of AF diagno-
sis and treatment.

Data Availability

The datasets used and/or analyzed during the current study
are available from the corresponding author on reasonable
request.

Conflicts of Interest

No potential conflict of interest was reported by the authors.

Authors’ Contributions

Yanzhe Wang and Qiusheng Shen designed the study.
Yanzhe Wang, Wenjuan Cai, and Xuefeng Ji performed the
study and drafted the article. Yanzhe Wang, Wenjuan Cai,
Liya Gu, and Qiusheng Shen conducted data acquisition,
data analysis, and interpretation. All authors discussed the
results and agreed to be accountable for all aspects of the
work. All authors read and approved the final manuscript.
Yanzhe Wang, Wenjuan Cai, and Liya Gu contributed
equally.

References

[1] H. M. Moss, Knowledge of Coumadin Use and Vitamin K
Interaction in Atrial Fibrillation Patients, Utah State Univer-
sity Utah, 2009.

[2] G. Chatap, K. Giraud, and J. P. Vincent, “Atrial fibrillation in
the elderly,” Drugs & Aging, vol. 19, no. 11, pp. 819–846, 2002.

[3] A. D. Friesen, “Treatment of atrial fibrillation,” Heart, vol. 94,
2007.

[4] P. M. Asadpour, A. H. Pardal, M. Afshar, and M. R. Beyran-
vand, “Comparing the serum level of apelin in patients with
lone atrial fibrillation and their control group,” Pajoohandeh
Journal, vol. 15, no. 2, pp. 83–87, 2010.

[5] R. G. Hart, D. G. Sherman, J. D. Easton, and J. A. Cairns, “Pre-
vention of stroke in patients with nonvalvular atrial fibrilla-
tion,” Neurology, vol. 51, no. 3, pp. 674–681, 1998.

[6] M. H. Namazee, H. R. Rohani-Sarvestani, and A. R. Serati,
“The early presentation of atrial myxoma with acute myocar-
dial infarction,” Archives of Iranian Medicine, vol. 11, no. 1,
pp. 98–102, 2008.

[7] C. T. Zhang, R. Lei, and D. O. Geriatrics, “Treatment for atrial
fibrillation in the elderly,” Chinese Journal of Practical Internal
Medicine, no. 4, pp. 287–289, 2017.

[8] M. J. Gomes, L. U. Pagan, and M. P. Okoshi, “Non-pharmaco-
logical treatment of cardiovascular disease|importance of
physical exercise,” Arquivos Brasileiros de Cardiologia,
vol. 113, no. 1, pp. 9-10, 2019.

[9] S. Kamath, B. Chin, A. D. Blann, and G. Lip, “A study of plate-
let activation in paroxysmal, persistent and permanent atrial
fibrillation,” Blood Coagulation & Fibrinolysis, vol. 13, no. 7,
pp. 627–636, 2002.

[10] C. Chimenti, M. A. Russo, A. Carpi, and A. Frustaci, “Histo-
logical substrate of human atrial fibrillation,” Biomedicine &
Pharmacotherapy, vol. 64, no. 3, pp. 177–183, 2010.

[11] H. B. Burke, “Discovering patterns in microarray data,”Molec-
ular Diagnosis, vol. 5, no. 4, pp. 349–357, 2000.

[12] H. C. Jane, “Integrated transcriptome and proteome data: the
challenges ahead,” Briefings in Functional Genomics & Proteo-
mics, vol. 3, no. 3, pp. 212–219, 2004.

H9C2
O

D
 v

al
ue

 (4
50

 n
m

)

0 h 24 h 48 h 72 h

⁎

⁎

96 h
0.0

0.5

1.0

1.5

si-NC
si-CDCA5 #1
si-CDCA5 #2

Figure 9: CDCA5 knockdown inhibited the proliferation of H9C2
cells. The x-axis is the number of days, and the y-axis is the OD
value at 450 nm corresponding to the number of days. ∗P < 0:05.

19Computational and Mathematical Methods in Medicine



[13] M. A. van Driel and H. G. Brunner, “Bioinformatics methods
for identifying candidate disease genes,” Human Genomics,
vol. 2, no. 6, pp. 429–432, 2006.

[14] N. Kasabov, “Bioinformatics: a knowledge engineering
approach,” in 2004 2nd International IEEE Conference on'In-
telligent Systems'. Proceedings (IEEE Cat. No. 04EX791), Varna,
Bulgaria, 2004.

[15] T. Barrett, S. E. Wilhite, P. Ledoux et al., “NCBI GEO: archive
for functional genomics data sets–update,” Nucleic Acids
Research, vol. 39, no. Database issue, pp. 1005–1010, 2011.

[16] J. A. Blake, J. Chan, R. Kishore, P. W. Sternberg, and Y. Li,
“Gene Ontology Consortium: going forward,” Nucleic Acids
Research., vol. 43, no. Database issue, pp. 1049–1056, 2015.

[17] J. du, Z. Yuan, S. Ma, J. Song, X. Xie, and Y. Chen, “KEGG-
PATH: Kyoto encyclopedia of genes and genomes-based
pathway analysis using a path analysis model,” Molecular
Biosystems Electronic Edition, vol. 10, no. 9, pp. 2441–2447,
2014.

[18] T. Francesco, P. G. Kristen, B. John, S. C. John, and
M. Christian, Pathways Identified by the Database for Annota-
tion, Visualization and Integrated Discovery (DAVID Version
6.7), Kyoto Encyclopedia of Genes and Genomes (KEGG),
2015.

[19] C. Lugero, D. Kibirige, J. Kayima, C. K. Mondo, and F. Juergen,
“Atrial fibrillation among the black population in a Ugandan
tertiary hospital.,” International Journal of General Medicine,
vol. 9, no. Issue 1, p. 191, 2016.

[20] K. Kato, M. Oguri, T. Hibino et al., “Genetic factors for lone
atrial fibrillation,” International Journal of Molecular Medi-
cine, vol. 19, no. 6, pp. 933–939, 2007.

[21] M. Andrew and B. P. Nelson, “Atrial fibrillation,”Mount Sinai
Journal of Medicine, vol. 73, 2006.

[22] M. M. Al-Haggar, B. A. Khair-Allaha, M. M. Islam, and A. S.
Mohamed, “Bioinformatics in high throughput sequencing:
application in evolving genetic diseases,” Journal of Data Min-
ing in Genomics & Proteomics., vol. 4, no. 3, 2013.

[23] S. Alberti and A. A. Hyman, “Biomolecular condensates at the
nexus of cellular stress, protein aggregation disease and age-
ing,” Nature Reviews. Molecular Cell Biology, vol. 22, no. 3,
pp. 196–213, 2021.

[24] V. S. Rao, S. K. Das, V. J. Rao, and G. Srinubabu, “Recent
developments in life sciences research: role of bioinformatics,”
African Journal of Biotechnology, vol. 7, no. 5, pp. 495–503,
2008.

[25] L. Mezache, H. L. Struckman, A. Greer-Short et al., “Vascular
endothelial growth factor promotes atrial arrhythmias by
inducing acute intercalated disk remodeling,” Scientific
Reports, vol. 10, no. 1, p. 20463, 2020.

[26] L. W. Evans, A. Bender, L. Burnett et al., “Emodin and
emodin-rich rhubarb inhibits histone deacetylase (HDAC)
activity and cardiac myocyte hypertrophy,” The Journal of
Nutritional Biochemistry, vol. 79, article 108339, 2020.

[27] H. Xu, J. Wang, J. Yuan et al., “Implication of apnea-hypopnea
index, a measure of obstructive sleep apnea severity, for atrial
fibrillation in patients with hypertrophic cardiomyopathy,”
Journal of the American Heart Association, vol. 9, no. 8, article
e015013, 2020.

[28] A. Gul, M. J. Hassan, S. Mahmood et al., “Genetic studies of
autosomal recessive primary microcephaly in 33 Pakistani
families: novel sequence variants in ASPM gene,” Neuroge-
netics, vol. 7, no. 2, pp. 105–110, 2006.

[29] K. Szczepanek, Q. Chen, M. Derecka et al., “Mitochondrial-
targeted signal transducer and activator of transcription 3
(STAT3) protects against ischemia-induced changes in the
electron transport chain and the generation of reactive oxygen
species,” Journal of Biological Chemistry, vol. 286, no. 34,
pp. 29610–29620, 2011.

[30] A. S. Chen-Plotkin, G. Sadri-Vakili, G. J. Yohrling et al.,
“Decreased association of the transcription factor Sp1 with
genes downregulated in Huntington’s disease,” Neurobiology
of Disease, vol. 22, no. 2, pp. 233–241, 2006.

20 Computational and Mathematical Methods in Medicine


	Comprehensive Analysis of Pertinent Genes and Pathways in Atrial Fibrillation
	1. Background
	2. Material and Methods
	2.1. Microarray Data
	2.2. Data Processing
	2.3. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) Enrichment Analysis of DEGs
	2.4. Protein-Protein Interaction (PPI) Network Analysis of DEGs
	2.5. Gene Set Enrichment Analysis (GSEA)
	2.6. Cell Culture
	2.7. Cell Transfection
	2.8. CCK-8 Assay
	2.9. Statistical Analysis

	3. Result
	3.1. Identification of DEGs
	3.2. GO and Pathway Enrichment Analysis of Upregulated Genes
	3.3. GO and Pathway Enrichment Analysis of Downregulated Genes
	3.4. Signaling Pathways of Genes Associated with MF
	3.5. PPI Network Analysis of Upregulated Genes
	3.6. PPI Network Analysis of Downregulated Genes
	3.7. CDCA5 Knockdown Prevented Cell Proliferation

	4. Discussion
	5. Conclusion
	Data Availability
	Conflicts of Interest
	Authors’ Contributions

