
Overview of arginine vasopressin and aquaporin-2

The kidney regulates the balance of water, electrolytes, 
and acids and bases (pH) in the body. Two critical com-

ponents for urine concentration in the kidney are: 1) an 
interstitial osmolality, which provides a driving force for 
tubular water reabsorption; and 2) the osmotic water 
permeability of the tubular epithelia, which depends 
on expression of aquaporin (AQP) water-channel pro-
teins in the cell membrane [1,2]. Consistent with these 
components, conditions that result in defective urine 
concentration, such as lithium treatment, are associated 
with decreased medullary organic osmolytes (e.g., beta-
ine, myo-inositol, taurine, and glycerophosphocholine) 
[3]. Because of high osmotic permeability of water in the 
tubular epithelia, proximal tubules and descending thin 
limbs allow the reabsorption of a majority of the water fil-
tered in the glomerulus, where aquaporin-1 (AQP1) me-
diates near-isosmotic fluid reabsorption [4-6]. AQP1 is 
also expressed in the descending thin limb and descend-
ing vasa recta and facilitates countercurrent exchange in 
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the renal medulla, preventing the dissipation of the salt 
and urea gradient [7]. The connecting tubule and col-
lecting duct (CD) reabsorb the remaining tubular fluid, 
which is tightly regulated by arginine vasopressin (AVP)  
[1,8-11]. 

Numerous studies have demonstrated that dysregu-
lation of AQPs, solute (co)transporters, and acid-base 
transporters expressed in renal tubular epithelial cells 
leads to severe disturbances in water, electrolyte, and 
acid-base balance and blood pressure [1,10,12,13]. In 
particular, dysregulation of AVP-mediated water re-
absorption in the CD is a primary pathophysiological 
mechanism underlying disease conditions involving 
body water disturbances, e.g., systemic water-retaining 
or water-losing states [1,10,14]. AVP is a peptide hor-
mone produced in the hypothalamus. It is stored in and 
released from the neurohypophysis. Three exons in the 
AVP gene encode a signal peptide, AVP, neurophysin II, 
and copeptin [15]. The Verney receptor in the hypothala-
mus senses osmotic stimuli and releases AVP in response 
to a plasma osmolality higher than the physiological 
threshold (290-295 mOsm/kg H2O) [16,17]. Copeptin, 
corresponding to the carboxyl terminal portion of prova-
sopressin, is secreted in equimolar amounts to AVP and 
functions as a stable surrogate marker for AVP secretion 
[18]. The importance of copeptin measurement was dem-
onstrated in a meta-analytic study of patients with heart 
failure, which revealed a positive correlation between 
plasma levels of copeptin and all-cause of mortality [19]. 
AVP is also secreted in response to non-osmotic stimuli 
through different pathways such as the parasympathetic 
afferent pathways [20]. Several factors activate the non-
osmotic pathway to secrete AVP, including hypoxia, nico-
tine, altered hemodynamic states, adrenergic stimuli, 
adrenal insufficiency, and advanced hypothyroidism 
[20]. Once secreted into circulation and delivered to the 
kidney, AVP binds to arginine vasopressin receptor 2 
(AVPR2) and induces free water reabsorption in the con-
necting tubule and CD [1]. 

In 1992, Lolait et al [21] cloned AVPR2 and subsequent-
ly, several studies identified that mutations in the AVPR2 
gene on the X-chromosome are associated with X-linked 
nephrogenic diabetes insipidus (NDI) in humans [21-
24]. The exact incidence of X-linked NDI is unknown, 
however a study showed ~8.8 per million male live births 
in Quebec, Canada [25]. Autoradiographic localization of 

3H-AVP binding is restricted to the medulla of rat kidneys 
[26] and a study using in situ hybridization demonstrated 
the distribution of AVPR2 messenger RNA (mRNA) in the 
outer and inner medulla of rat kidneys [27]. A transcrip-
tome study of microdissected renal tubular segments of 
rat kidneys confirmed AVPR2 mRNA in the connecting 
tubule and CD (from the cortical CD to the inner med-
ullary CD); it was also expressed in the thick ascending 
limb and distal convoluted tubule [28]. Furthermore, V1a 
receptor (AVPR1a) mRNA is present in the distal convo-
luted tubule, connecting tubule and cortical CD of rat 
kidneys [28]. AVPR1a is primarily expressed in the med-
ullary vasculature of the kidneys [29].

In CD principal cells, water reabsorption depends on 
AVP stimulation. AVP binds to the heterotrimeric G-pro-
tein α-subunit (Gαs)-coupled AVPR2 in the basolateral 
plasma membrane of principal cells and activates adeny-
lyl cyclase 6. This activation increases intracellular cyclic 
adenosine monophosphate (cAMP) levels, activating 
kinases and enhancing transcellular water reabsorption 
in the CD [1,8,9,30-33]. AVPR2 activation by AVP also in-
duces receptor internalization, which is associated with 
AVPR2 phosphorylation and recruitment of β-arrestin 
[34]. Aquaporin-2 (AQP2) is a water-channel protein lo-
calized in connecting tubule cells and CD principal cells 
that mediates AVP-induced osmotic water permeability 
[35,36]. The importance of AVP-regulated AQP2 for urine 
concentration and body water homeostasis is highlighted 
in Aqp2 gene null mice and in other clinical conditions in 
which upregulation or downregulation of AQP2 expres-
sion in kidneys is closely associated with water-balance 
disorders [1,9,10,14,37]. 

Our studies showed [1,8,9] that AQP2 is regulated on a 
short-term or long-term basis for water reabsorption in 
the CD. AQP2 is immunolocalized at the apical plasma 
membrane and intracellular vesicles of CD principal 
cells [35]. Short-term regulation is rapidly mediated by 
AQP2 trafficking from intracellular vesicles to the apical 
plasma membrane [1,35,38,39]. The intracellular trans-
location of AQP2 to the apical plasma membrane is as-
sociated with phosphorylation of a serine residue in the 
carboxyl terminus of AQP2 via activation of the cAMP/
protein kinase A (PKA) signaling pathway [39-41]. Long-
term regulation or adaptation of CD water permeability 
following AVP stimulation is mediated by changing the 
half-life and abundance of AQP2 protein [42-45]. The 
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abundance of AQP2 protein is regulated by transcription 
of the Aqp2 gene and translation, and post-translational 
modification of products, including ubiquitination and 
subsequent proteasomal and/or lysosomal degradation, 
which involve the actions of E3 ubiquitin-protein ligases 
(e.g., NEDD4 and CHIP) [43,46-52]. In addition, microR-
NAs (miRNA; e.g., miR-32 and miR-137) are important 
post-transcriptional modulators that regulate AQP2 pro-
tein abundance [53,54]. A recent study showed that miR-
132 regulates hypothalamic AVP mRNA expression [55]. 
Methyl-CpG-binding protein-2 is a target of miR-132 
that inhibits hypothalamic AVP synthesis by binding the 
methyl-CpG-binding protein-2 enhancer region [55].

NDI represents the inability of kidneys to concentrate 
urine despite AVP stimulation [1,10,11,56-58]. NDI is 
caused by genetic defects, with primary inherited forms 
caused by mutations in the AVPR2 or AQP2 genes, or ac-
quired conditions. Secondary acquired forms are caused 
by drugs, electrolyte disturbances, renal failure, and other 
diseases [10,25,56,59-62]. In humans, AVP can concen-
trate urine and reduce the urine flow rate to ~0.7 L/day 
and increase urine osmolality to ~1,200 mOsm/kg H2O [63]. 
In contrast, in the absence of AVP and AQP2 response, the 
urine flow rate can increase up to ~28 L/day and urine os-
molality can decline to 50 mOsm/kg H2O [62]. Thus, NDI 
is associated with AVP-resistant severe polyuria, dehydra-
tion, and electrolyte disturbance. This review presents new 
insights on the transcriptional regulation of the Aqp2 gene 
and summarizes novel approaches for the treatment of he-
reditary NDI, particularly when caused by genetic defects 
in the AVPR2 gene. 

Regulation of Aqp2 gene transcription

The regulatory mechanisms involved in the AVP-medi-
ated increase of AQP2 protein, as a long-term response to 
AVP stimulation for hours or even days, have been widely 
studied. Two independent studies showed that AVP 
increases AQP2 mRNA and protein in inner medullary 
collecting duct (IMCD) cells isolated from rat kidneys 
[64,65]. In contrast, water loading decreases AQP2 mRNA 
and protein in rats continuously treated with dDAVP (an 
AVPR2-selective agonist), demonstrating “vasopressin 
escape” [42,66]. These studies on AVP-dependent or AVP-
independent regulation of AQP2 abundance led to other 
studies on Aqp2 transcription. AVP increases intracel-

lular cAMP levels and activity of cAMP-responsive PKA 
by activating G protein-coupled receptor (GPCR) AVPR2, 
resulting in increased Aqp2 expression and AQP2 inser-
tion into the apical plasma membrane [8,33,38,39,67,68]. 
Hozawa et al [69] and Yasui et al [31] demonstrated that 
cAMP-responsive elements (CREs) within 350 bp up-
stream of the transcription start site of Aqp2 in rat kidney 
IMCD cells are critical regulatory elements in AVP-medi-
ated Aqp2 transcription. Matsumura et al [30] confirmed 
impaired activity of the Aqp2 promoter following deletion 
of the CREs. Consistent with those results was a study 
showing that knocking out both catalytic PKA subunits 

α and β (encoded from Prkaca and Prkacb) abolished 
expression of AQP2 mRNA and protein in mpkCCD cells 
treated with dDAVP [41]. These results demonstrate that 
cAMP/PKA signaling is a critical regulatory pathway for 
AVP-mediated AQP2 expression in the renal CD. Howev-
er, other stimuli that regulate AQP2 expression have also 
been found under certain physiological and pathophysi-
ological conditions (Table 1) [53,66,70-77]. For example, 
Kortenoeven et al [78] demonstrated that activation of 
cAMP-Epac, a guanine exchange factor directly activated 
by cAMP [79], is more important than the PKA-CRE path-
way in the long-term regulation of AQP2. These findings 
suggest the need for more studies to further understand 
the transcription regulators of Aqp2. 

The binding of transcription factors (TFs) and cofactors 
to enhancers can stimulate the transcription of an as-
sociated gene [80]. A recent study using high-throughput 
next-generation sequencing (NGS) techniques (ChIP-seq 
and ATAC-seq) revealed potential enhancer elements for 
Aqp2 in the mouse cortical CD cell line mpkCCD [81-
83]. Two enhancer elements were identified within a to-
pologically associating domain containing Faim2-Aqp2-
Aqp5 genes, which is a CTCF-insulated loop regulated by 
a TF CTCF homodimer [84]. Although further functional 
studies are required to fully understand the roles of the 
identified enhancer elements in Aqp2 transcription, this 
study provides insights into Aqp2 transcription regula-
tion mediated by genomic regulatory elements. 

Promoters and enhancers are genomic regulatory ele-
ments with multiple TF-binding sites that facilitate tran-
scription initiation mediated by transcriptional regula-
tors [85]. Transcriptional regulation via a combination 
of TFs is complicated. These cell type-specific processes 
exist due to differential expression levels of TFs in vari-
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ous cell types. Thus, investigation of TF-binding sites and 
regulatory proteins can provide direct information about 
mechanisms that regulate Aqp2 transcription in the CD. 
In-silico analyses using bioinformatic tools indicate sev-
eral potential conserved TF motifs found by scanning for 
TF consensus motif sequences along the genomic DNA of 
the Aqp2 promoter [86-89]. However, sequence-specific 
DNA-binding TFs contain a conserved DNA-binding do-
main across the family with shared consensus DNA mo-
tifs in the genome, as shown in bioinformatic analysis by 
Hwang et al [89]. 

Many studies using in vitro and in vivo models identi-
fied TFs that regulate Aqp2 transcription. Transcriptional 
activity of the Aqp2 promoter mediated by specific TFs 
such as ELF3, ELF5, and GATA2 [86,90,91] has been eval-
uated using luciferase reporter assays. Some TF-knockout 
mice, such as mice deficient in GATA2 or farnesoid X re-
ceptor (FXR), show reduced Aqp2 transcription with im-
paired urinary concentration [91,92]. Tonicity regulates 

Aqp2 transcription mediated by TonEBP and Epac, but 
independent of AVP [93,94]. A study on tonicity-respon-
sive AQP2 expression revealed that a calcium-dependent 
calcineurin-NFATc pathway also involves increased 
AQP2 mRNA expression [95]. An in vitro tubulointerstitial 
inflammation model of mpkCCD cells induced by lipo-
polysaccharides (LPS) showed that LPS-activated nuclear 
factor kappaB (NF-κB) reduces AQP2 mRNA expression 
[96,97]. 

High-throughput NGS techniques for genome-wide 
identification of TF binding sites, namely ChIP-seq (chro-
matin immunoprecipitation followed by NGS), provides 
direct evidence for the presence of TF-binding sites that 
could regulate Aqp2 transcription. A recent ChIP-seq 
analysis of mpkCCD cells identified a binding site of TF 
C/EBPβ, which is known as a pioneer TF, 400 bp down-
stream of Aqp2 [81]. Several high-throughput NGS tech-
niques such as ChIP-seq, ChIP-exo, and cut-and-run, as 
well as conventional ChIP-PCR methods are important 

Table 1. Regulatory mechanisms of AQP2 trafficking/expression in the renal collecting duct
Regulator Regulation Mechanism Components

Hormones Trafficking/
Expression

Signaling pathway activation Vasopressin, oxytocin, angiotensin II, aldosterone, secretin, calcitonin, and 
their receptors

Kinases Trafficking/
Expression

Signal transduction cAMP/PKA, PI3K/Akt/AS160, MAPK (ERK, JNK, p38), GSK-3β, CaMKII, 
AMPK, Epac, and extracellular matrix-to-intracellular scaffold protein ILK

Transcription 
factors

Expression Transcription CREB family, c-Jun and c-Fos heterodimer (AP-1) and Rel family members, 
NF-κB, and NFAT subfamily

Cellular signaling Trafficking/
Expression

Protein-protein interaction (1) Between AQP tetramers. (2) Between AQP monomers. (3) Transient 
interactions with regulatory proteins: clathrin heavy chain; Hsc70; 
annexin II; LIP5; cytoskeletal or cytoskeleton-associated proteins such as 
actin, tropomyosin 5b, and ezrin; PDZ domain-containing protein, such 
as SPA-1 and Sipa1I1; and retromer complex (Vps35)

Protein-modification 
enzymes

Trafficking/
Expression

Post-translational modification Phosphorylation, ubiquitination (E3 ligases), deubiquitination, 
glycosylation, and glutathionylation

Receptors/Agonists Trafficking/
Expression

Signaling pathway activation AVPR2, angiotensin II AT1a receptor, prostanoid receptor (EP2, EP4), 
frizzled receptor, β3-adreneroreceptor, serotonin receptor, calcitonin 
receptor, calcium-sensing receptor, epidermal growth factor receptor, 
bile acid receptor-coupled GPCR, and purinergic receptor

Extracellular 
microenvironment

Trafficking Post-translational modification, 
cytoskeletal rearrangement

Tubular flow, medullary tonicity, and extracellular pH

MicroRNAs Expression RNA interference AQP2-targeting microRNAs (miR-32, miR-137)
Akt, protein kinase B; AMPK, 5′ adenosine monophosphate-activated protein kinase; AP-1, activator protein 1; AS160, Akt substrate of 160 kDa; AVPR2, arginine 
vasopressin receptor 2; CaMKII, calcium/calmodulin-dependent protein kinase II; cAMP, cyclic adenosine monophosphate; CREB, cAMP response element-binding 
protein; EP2, prostaglandin E2 receptor 2; EP4, prostaglandin E2 receptor 4; Epac, guanine exchange factor directly activated by cAMP; ERK, extracellular signal-
regulated kinase; GPCR, G protein-coupled receptor; GSK-3β, glycogen synthase kinase-3β; Hsc70, heat shock cognate protein 70; ILK, integrin-linked kinase; JNK, 
c-Jun N-terminal kinase; LIP5, lysosomal trafficking regulator-interacting protein 5; MAPK, mitogen-activated protein kinase; PI3K, phosphoinositide 3-kinase; PKA, 
protein kinase A; Sipa1I1, signal-induced proliferation-associated 1 like 1; SPA-1, signal-induced proliferation-associated gene-1; Vps35, vacuolar protein sorting-
associated protein 35.
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tools for further studies to identify TFs that bind to genes 
of interest [98]. 

Genomic regions associated with gene expression are 
also regulated directly or indirectly by cofactors. Post-
translational histone modifications by histone-modifying 
enzymes can alter chromatin structure [99]. Histone 
modifications at the N-terminal tails of histones, includ-
ing methylation, phosphorylation, acetylation, ubiqui-
tylation, and SUMOylation, lead to dynamic changes in 
chromatin structure and gene transcription [100,101]. 
Therefore, histone modifications in the vicinity of a 
gene mark its transcription status. For instance, a ChIP-
seq analysis in mpkCCD cells showed that histone H3 
acetylation at Lys27 (H3K27Ac) markedly increases at the 
Aqp2 promoter following dDAVP treatment [41]. More-
over, an increase in H3K27 acetylation levels at the Aqp2 
promoter, which indicates activation, is consistent with 
enhanced binding of RNA polymerase II at the promoter 
and increased AQP2 mRNA expression [43]. However, 
precise cofactors such as acetyltransferases/deacetylases 
that directly modify histones and TFs at the Aqp2 pro-
moter region remain to be elucidated.

Lysine acetyltransferase CREB-binding protein (CBP, 
gene symbol: Crebbp) and P300 (gene symbol: Ep300) are 
transcription coactivating factors that acetylate histones 
and TFs [102,103]. A study showed that CBP and P300 
cooperate with β-catenin [104]. CBP acetylates β-catenin 
at Lys49, leading to promoter-specific gene expression. 
Interestingly, β-catenin has been studied as a potential 
AVP-responsive transcription regulator. Protein mass 
spectrometry analysis of renal CDs showed that AVP in-
creased phosphorylation of β-catenin at Ser552 and its 
translocation into the nucleus in CD cells [87,105-107]. 
Moreover, siRNA-mediated knockdown of β-catenin sig-
nificantly impairs dDAVP-induced AQP2 expression in 
mpkCCD cells [107]. 

Beyond transcription regulatory proteins associated 
with genomic regulatory elements, chromatin modifica-
tions such as DNA methylation are potential epigenetic 
regulatory mechanisms of Aqp2 expression. Several stud-
ies using bisulfite sequencing of targeted genomic re-
gions or whole genomes identified methylated cytosines 
within CpG islands, which are called the DNA methy-
lome. These studies reported that DNA methylation 
widely regulates gene expression in kidney cells [108,109] 
or tissues obtained from models of renal ischemia-re-

perfusion injury [110] and hypertension [111]. Aqp2 has 
a CpG island in the fourth exon. However, the regulation 
of Aqp2 expression associated with DNA methylation has 
not been explored yet. 

Current approaches for treating AVPR2 mutation-
induced X-linked NDI

Hereditary NDI is a genetic disease caused by muta-
tions in the AVPR2 or AQP2 genes [22,25,56,59-62]. 
Gene mutations in AVPR2 result in X-linked NDI, which 
is the most common (~90%) form of inherited NDI 
[22,56,61,112,113]. To date, more than 250 different 
AVPR2 mutations have been identified in more than 300 
families (The Human Gene Mutation Database at the In-
stitute of Medical Genetics in Cardiff; http://www.hgmd.
cf.ac.uk) [56,114]. Deen and his associates [115] classi-
fied AVPR2 gene mutations into five categories: 1) Class 
I indicates absence of AVPR2 protein due to defects in 
transcription, mRNA processing, or translation (e.g., pro-
moter alterations, aberrant splicing, exon skipping, and 
most frameshift and nonsense mutations); 2) Class II in-
dicates retention of fully translated AVPR2 proteins in the 
endoplasmic reticulum (ER) due to misfolding of AVPR2, 
preventing localization at the plasma membrane. The 
underlying mutations include missense, insertion, or de-
letions. Class II mutations are the most common form of 
AVPR2 defect [11,56,57]. The treatment for many patients 
with X-linked NDI requires restoring plasma membrane 
expression of mutant AVPR2 [116,117]; 3) Class III indi-
cates misfolding of AVPR2 leading to defective functions 
(e.g., impaired G protein binding and intracellular signal-
ing), despite correct transport to the plasma membrane; 
4) Class IV has no apparent defects in protein trafficking 
to the plasma membrane, but decreased binding affinity 
to AVP; 5) Class V indicates improper protein sorting to 
intracellular structures, e.g., β-arrestin-positive intracel-
lular vesicles [118].

To treat NDI caused by AVPR2 gene mutations (Table 
2), the first strategy is restoration of AVPR2 plasma mem-
brane expression using chemical chaperones (e.g., glyc-
erol and dimethyl sulfoxide), since AVPR2 mutations are 
fully functional, but misfolded AVPR2 protein is retained 
in the ER/Golgi (Class II) [119]. Previous studies demon-
strated that several cell-permeable AVPR2 antagonists 
(pharmacological chaperones such as S121463, VPA-
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985, SR49059, conivaptan, OPC31260, and OPC41061) 
stabilize AVPR2 mutants in the ER and allow their escape 
for plasma membrane expression [116,120-122]. Cell-
permeable, nonpeptide AVPR2 agonists (e.g., VA999088, 
VA999089, and OPC51803) bind intracellularly retained 
AVPR2 and activate a signaling pathway to induce cAMP 
accumulation without translocating receptors to the 
plasma membrane [123,124]. Other nonpeptide agonists 
(e.g., MCF14, MCF18, and MCF57) activate AVPR2 and 
translocate the receptors to the plasma membrane [125]. 
However, AVPR2 mutations resulting in the absence of 
full-length AVPR2 protein (Class I promoter alterations, 
aberrant splicing, exon skipping, and most frameshift 
and nonsense mutations) cannot be treated by these ap-
proaches.

Another therapeutic approach relies on AVP-indepen-
dent AQP2 trafficking to the plasma membrane. This 
can be achieved through bypassing AVPR2 signaling 
and inducing AQP2 accumulation in the membrane by 
translocating AQP2. These approaches have two catego-
ries: 1) intracellular cAMP elevation by activating other 

GPCRs or inhibiting phosphodiesterases (PDEs); and 
2) cAMP-independent pathways. For elevating intracel-
lular cAMP levels, studying endogenously expressed 
GPCRs in addition to AVPR2 in the renal CD is important. 
GPCRs naturally couple to GαS to increase cAMP levels 
and regulate AQP2 expression. The potential candidate 
GPCRs include the prostaglandin E receptors (EP2 and 
EP4), β3-adrenergic receptor (β3-AR), calcitonin recep-
tor, secretin receptor, and TGR5 (a bile acid-activated 
membrane receptor) [10,77,126-132]. Li et al [129] 
demonstrated that an EP4 agonist increases cAMP levels 
in mouse kidney IMCD suspensions, increasing urine 
osmolality and decreasing urine volume in conditional 
Avpr2-knockout mice. Moreover, treatment with the EP2 
agonist, butaprost, significantly decreases urine volume 
in rats pretreated with an AVPR2 antagonist OPC [130]. 
The β3-adrenergic receptor was immunolocalized at the 
basolateral plasma membrane of tubular epithelial cells 
in the thin and thick ascending limbs, distal convoluted 
tubule, and cortical and medullary CD, where AVPR2 is 
mainly expressed [126]. The same study demonstrated 
that the β3-AR agonist BRL37344 increases cAMP produc-
tion in mouse kidney tubule suspensions and decreases 
urine output in mice that do not express functional 
AVPR2. Calcitonin induces increases in intracellular 
cAMP and AQP2 trafficking in AQP2-expressing LLC-PK1 
cells. This increase is dependent on cAMP-PKA activity 
[132]. Calcitonin treatment in AVP-deficient Brattleboro 
rats is antidiuretic during the first 12 hours of treatment, 
although this effect is attenuated long-term [132]. Intra-
venous administration of secretin in rats decreases urine 
output [128]. Chu et al [127] demonstrated that secretin 
receptor-null mice have mild polydipsia and polyuria as-
sociated with reduced expression of AQP2 and AQP4 in 
the kidney. Another study further demonstrated that se-
cretin increases intracellular cAMP levels in mouse IMCD 
tubule suspensions and that chronic infusion of secretin 
in Avpr2 gene-deficient mice increases AQP2 mRNA 
and protein [133]. Furthermore, activation of bile acid 
receptor-coupled GPCR (TGR5) affects AQP2 trafficking 
and protein expression in inner medullary CD cells via 
a cAMP-PKA signaling pathway [77]. Importantly, TGR5 
stimulation improves impaired urine concentration in 
mice with lithium-induced NDI by increasing AQP2 pro-
tein abundance [77]. These data indicate that in addition 
to AVPR2 in the renal CD, activation of endogenously 

Table 2. Potential therapeutic strategies for X-lined NDI associ
ated with AVPR2 mutation
Evidence for therapeutic strategies
1. �Chaperones that aid AVPR2 protein folding and induce export from 

the ER
2. �Cell-permeable AVPR2 agonists that activate intracellularly retained 

AVPR2 protein 
3. Activation of the cAMP pathway by stimulating other GPCRs
    1) E-prostanoid receptors (EP2/EP4)
    2) Calcitonin receptor
    3) Secretin receptor
    4) β3-adrenoreceptor
    5) Bile acid receptor-coupled GPCR (TGR5)
4. �Activation of the cGMP pathway, promoting AQP2 exocytosis by 

stimulating guanylyl cyclase or inhibiting PDE (PDE5)
5. Inhibition of EGFR induces AQP2 exocytosis
6. �Activation of Wnt5-frizzled receptor promotes AVP-independent 

AQP2 phosphorylation
7. �Statins that inhibit RhoA, promote actin depolymerization, and 

inhibit endocytosis of AQP2
AQP2, aquaporin-2; AVP, arginine vasopressin; AVPR2, arginine vasopressin 
receptor 2; cAMP, cyclic adenosine monophosphate; cGMP, cyclic guanosine 
monophosphate; EGFR, epidermal growth factor receptor; EP2, prostaglandin 
E2 receptor 2; EP4, prostaglandin E2 receptor 4; ER, endoplasmic reticulum; 
GPCR, G protein-coupled receptor; NDI, nephrogenic diabetes insipidus; PDE, 
phosphodiesterase; PDE5, PDE type 5; RhoA, Ras homolog gene family member 
A; TGR5, G-protein coupled bile acid receptor 1 (GPBAR1).
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expressed GPCRs that naturally couples to GαS increases 
cAMP levels and regulates AQP2 expression and water re-
absorption. In addition, AQP2 trafficking and abundance 
are affected by the cAMP-Epac pathway [78,134]. Since 
Epac is activated by a cAMP analog (8-pCPT-2′-O-Me-
cAMP), Epac activators could be used to increase AQP2 
expression in the membrane. 

Inhibition of PDE is another strategy to induce intracel-
lular cAMP levels. Sohara et al [60] showed that the PDE4 
inhibitor rolipram increases urine osmolality in mutant 
AQP2 (763-772 del) knockin mice associated with in-
creased cAMP levels in renal papillae. Another study 
demonstrated that cotreatment with PDE3 (milrinon) 
and PDE4 (rolipram) inhibitors reduces impaired urinary 
concentration ability in rats with hypercalcemia [135]. 
An additional study showed that increasing cGMP levels 
via PDE5 inhibitors or cGMP induces AVP-independent 
AQP2 trafficking to the plasma membrane. Consistent 
with these results, the PDE5 inhibitor sildenafil citrate 
induces AQP2 redistribution to the apical plasma mem-
brane in rat kidney slices and reduced polyuria in rats 
with lithium-induced NDI [136,137]. 

An alternative approach is to find GPCRs in the kidney 
CD that do not couple to the GαS and cAMP pathway but 
regulate AQP2 expression. Ando et al [138] demonstrated 
that Wnt5a, a ligand for frizzled receptors, activates in-
tracellular calcium release. The calcium-binding protein 
calmodulin and calmodulin-mimicking protein AA stim-
ulate calcineurin, which decreases AQP2 phosphoryla-

tion at S261 and increases phosphorylation at S269, lead-
ing to AQP2 apical trafficking [138]. Wnt5 administration 
to mice pretreated with tolvaptan, an AVPR2 antagonist, 
increases urine osmolality and induces AQP2 trafficking 
to the apical plasma membrane [138]. Epidermal growth 
factor receptor (EGFR) inhibitors do not affect intracel-
lular levels of cAMP and cGMP in LLC-AQP2 cells [139]. 
However, EGFR inhibitors increase AQP2 membrane ac-
cumulation in LLC-PK1 cells, reduce urine volume and 
increase urine osmolality in mice with lithium-induced 
NDI [139]. These results indicate that frizzled receptor 
and EGFR could be involved in AQP2 regulation inde-
pendent of the AVP-cAMP/PKA pathway. An additional 
study demonstrated that tamoxifen, a selective estrogen 
receptor modulator, improves impaired urine concentra-
tion and reduces downregulation of AQP2 protein abun-
dance in rats with lithium-induced NDI, although the 
underlying mechanisms are still unclear [140]. However, 
tamoxifen is unlikely to increase intracellular cAMP lev-
els (unpublished data). Similarly, metformin, an AMPK 
activator, increases urine osmolality and AQP2 abun-
dance in rats with AVPR2 blockade by tolvaptan treat-
ment and Avpr2 null mice [141], suggesting a complex 
mode of AQP2 regulation. 

Another strategy is inhibition of AQP2 internalization. 
Treatment with statins can prevent AQP2 internalization 
and induce AQP2 accumulation at the plasma membrane 
[142]. Simvastatin is associated with increased apical 
membrane AQP2 expression in cultured cells and kidney 

Figure 1. Future approaches to un-
derstanding the mechanisms of 
Aqp2 gene transcription. A multiomics 
approach could provide comprehensive 
insights into transcriptional regulation 
cooperated by transcription regulator 
complexes, genomic regulatory elements, 
and signaling pathway crosstalk in X-linked 
hereditary nephrogenic diabetes insipidus. 
CRE, cyclic adenosine monophosphate-
responsive elements.
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slices from Brattleboro rats [142]. Fluvastatin increases 
AQP2 expression in the apical plasma membrane of 
the kidney CD in C57BL/6 mice [143] and a combina-
tion treatment of fluvastatin and secretin dramatically 
decreases urine output in Avpr2 null mice [133]. These 
results suggest that statin treatment could be used to in-
crease urine concentration in patients with X-linked NDI. 
Future clinical studies will confirm the efficacy of statin 
treatment in patients with hereditary NDI.  

Summary and perspectives

Water reabsorption in the CD is regulated by the ac-
tion of AVP. AVP stimulates the subcellular trafficking 
of AQP2-expressing vesicles to the apical plasma mem-
brane, inducing osmotic water permeability in CD prin-
cipal cells. Moreover, AVP activates Aqp2 transcription, 
increasing AQP2 protein abundance. Hereditary NDI is 
a genetic disease caused by mutations in the AVPR2 or 
AQP2 genes. AVPR2 gene mutations result in X-linked 
NDI, the most common form of inherited NDI. For treat-
ment, restoration of AVPR2 expression in the plasma 
membrane using chemical chaperones or activation 
of intracellularly retained AVPR2 using cell-permeable 
AVPR2 agonists is suggested. Several approaches for by-
passing AVPR2 signaling and inducing membrane AQP2 
accumulation, i.e., AVP-independent AQP2 trafficking to 
the plasma membrane, have been demonstrated. Future 
approaches to treatment should aim to fully understand 
the mechanisms of Aqp2 transcription under various 
physiological and pathophysiological conditions. A mul-
tiomics approach could provide comprehensive insights 
into: 1) transcriptional regulation via transcription regu-
latory complexes, 2) genomic regulatory elements, and 3) 
alterations in signaling pathways in the X-linked heredi-
tary NDI (Fig. 1).
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