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Heuristic recurrent algorithms for photonic Ising
machines
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The inability of conventional electronic architectures to efficiently solve large combinatorial
problems motivates the development of novel computational hardware. There has been much
effort toward developing application-specific hardware across many different fields of engi-
neering, such as integrated circuits, memristors, and photonics. However, unleashing the
potential of such architectures requires the development of algorithms which optimally
exploit their fundamental properties. Here, we present the Photonic Recurrent Ising Sampler
(PRIS), a heuristic method tailored for parallel architectures allowing fast and efficient
sampling from distributions of arbitrary Ising problems. Since the PRIS relies on vector-to-
fixed matrix multiplications, we suggest the implementation of the PRIS in photonic parallel
networks, which realize these operations at an unprecedented speed. The PRIS provides
sample solutions to the ground state of Ising models, by converging in probability to their
associated Gibbs distribution. The PRIS also relies on intrinsic dynamic noise and eigenvalue
dropout to find ground states more efficiently. Our work suggests speedups in heuristic
methods via photonic implementations of the PRIS.
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euristic methods—probabilistic algorithms with stochastic

components—are a cornerstone of both numerical

methods in statistical physics! and NP-Hard optimiza-
tion?. Broad classes of problems in statistical physics, such as
growth patterns in clusters?, percolation®, heterogeneity in lipid
membranes®, and complex networks®, can be described by
heuristic methods. These methods have proven instrumental for
predicting phase transitions and the critical exponents of various
universality classes - families of physical systems exhibiting
similar scaling properties near their critical temperature!. These
heuristic algorithms have become popular, as they typically out-
perform exact algorithms at solving real-world problems’.
Heuristic methods are usually tailored for conventional electronic
hardware; however, a number of optical machines have recently
been shown to solve the well-known Ising®® and Traveling
Salesman problems!®!l. For computationally demanding pro-
blems, these methods can benefit from parallelization speed-
upsb12, but the determination of an efficient parallelization
approach is highly problem-specificl.

Half a century before the contemporary Machine Learning
Renaissance!3, the Little!* and then the Hopfield!>1¢ networks
were considered as early architectures of recurrent neural net-
works (RNN). The latter was suggested as an algorithm to solve
combinatorially hard problems, as it was shown to deterministi-
cally converge to local minima of arbitrary quadratic Hamilto-
nians of the form

1
K) — _ = E ’
HY = 3 a,»K,»joj, (1)

1<ij<N

which is the most general form of an Ising Hamiltonian in the
absence of an external magnetic field!”. In Eq. (1), we equivalently
denote the set of spins as 0 € {—1, 1}N or S € {0, 1}V (with 0 =25
—1), and K is a Nx N real symmetric matrix.

In the context of physics, Ising models describe the interaction
of many particles in terms of the coupling matrix K. These sys-
tems are observed in a particular spin configuration ¢ with a
probability given by the Gibbs distribution
p(a) oc exp(—BHK) (0)), where = 1/(ksT), with kp the Boltz-
mann constant and T the temperature. At low temperature, when
B — oo, the Gibbs probability of observing the system in its
ground state approaches 1, thus naturally minimizing the quad-
ratic function in Eq. (1). As similar optimization problems are
often encountered in computer science?’, a natural idea is to
engineer physical systems with dynamics governed by an
equivalent Hamiltonian. Then, by sampling the physical system,
one can generate candidate solutions to the optimization pro-
blem. This analogy between statistical physics and computer
science has nurtured a great variety of concepts in both fields!8,
for instance, the analogy between neural networks and spin
glasses>19,

Many complex systems can be formulated using the Ising
model2)—such as ferromagnets!7-21, liquid-vapor transitions22,
lipid membranes®, brain functions?3, random photonics?4, and
strongly-interacting systems in quantum chromodynamics®.
From the perspective of optimization, finding the spin distribu-
tion minimizing HK) for an arbitrary matrix K belongs to the
class of NP-hard problems?°.

Hopfield networks deterministically converge to a local mini-
mum, thus making it impossible to scale such networks to
deterministically find the global minimum?’—thus jeopardizing
any electronicl® or optical®® implementation of these algorithms.
As a result, these early RNN architectures were soon superseded
by heuristic (such as Metropolis-Hastings (MH)) and meta-
heuristic methods (such as simulated annealing (SA)?, parallel
tempering®), genetic algorithms®!, Tabu search3? and local-

search-based algorithms33), usually tailored for conventional
electronic hardware. Even still, heuristic methods struggle to solve
large problems, and could benefit from nanophotonic hardware
demonstrating parallel, low-energy, and high-speed computa-
tions34-36,

Here, we propose a photonic implementation of a passive
RNN, which models the arbitrary Ising-type Hamiltonian in Eq.
(1). We propose a fast and efficient heuristic method for photonic
analog computing platforms, relying essentially on iterative
matrix multiplications. Our heuristic approach also takes
advantage of optical passivity and dynamic noise to find ground
states of arbitrary Ising problems and probe their critical beha-
viors, yielding accurate predictions of critical exponents of the
universality classes of conventional Ising models. Our algorithm
presents attractive scaling properties when benchmarked against
conventional algorithms, such as MH. Our findings suggest a
novel approach to heuristic methods for efficient optimization
and sampling by leveraging the potential of matrix-to-vector
accelerators, such as parallel photonic networks34. We also hint at
a broader class of (meta)heuristic algorithms derived from the
PRIS, such as combined simulated annealing on the noise and
eigenvalue dropout levels. Our algorithm can also be imple-
mented in a competitive manner on fast parallel electronic
hardware, such as FPGAs and ASICs.

Results

Photonic computational architecture. The proposed archi-
tecture of our photonic network is shown in Fig. 1. This photonic
network can map arbitrary Ising Hamiltonians described by Eq.
(1), with K;; =0 (as diagonal terms only contribute to a global
offset of the Hamiltonian, see Supplementary Note 1). In the
following, we will refer to the eigenvalue decomposition of K as
K = UDUY, where U is a unitary matrix, UT its transpose con-
jugate, and D a real-valued diagonal matrix. The spin state at time
step t, encoded in the phase and amplitude of N parallel photonic
signals S €{0, 1}V, first goes through a linear symmetric
transformation decomposed in its eigenvalue form 2] = USq,(D)
U', where Sq,(D) is a diagonal matrix derived from D, whose
design will be discussed in the next paragraphs. The signal is then
fed into nonlinear optoelectronic domain, where it is perturbed
by a Gaussian distribution of standard deviation ¢ (simulating
noise present in the photonic implementation) and is imparted a
nonlinear threshold function Thy (Thy(x) =1 if x> 6, 0 other-
wise). The signal is then recurrently fed back to the linear pho-
tonic domain, and the process repeats. The static unit
transformation between two time steps ¢ and ¢+ 1 of this RNN
can be summarized as

X~ N(215Yg),
SEFY = Thy(x1) @

where A (x|¢) denotes a Gaussian distribution of mean x and
standard deviation ¢. We call this algorithm, which is tailored for

P Optoelectronic recurrent feedback S

o S

Fig. 1 Operation principle of the PRIS. A photonic analog signal, encoding
the current spin state S®, goes through transformations in linear photonic and
nonlinear optoelectronic domains. The result of this transformation St is
recurrently fed back to the input of this passive photonic system.
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a photonic implementation, the Photonic Recurrent Ising Sam-
pler (PRIS). The detailed choice of algorithm parameters is
described in the Supplementary Note 2.

This simple recurrent loop can be readily implemented in the
photonic domain. For example, the linear photonic interference
unit can be realized with MZI networks®437-39, diffractive
optics¥41, ring resonator filter banks*>~44, and free space lens-
SLM-lens systems#>40; the diagonal matrix multiplication
Squ(D) can be implemented with an electro-optical absorber, a
modulator or a single MZI3447:48; the nonlinear optoelectronic
unit can be implemented with an optical nonlinearity*’->1, or
analog/digital electronics®>=>°, for instance by converting the
optical output to an analog electronic signal, and using this
electronic signal to modulate the input®®. The implementation
of the PRIS on several photonic architectures and the influence
of heterogeneities, phase bit precision, and signal to noise ratio
on scaling properties are discussed in the Supplementary
Note 5. In the following, we will describe the properties of an
ideal PRIS and how design imperfections may affect its
performance.

General theory of the PRIS dynamics. The long-time dynamics
of the PRIS is described by an effective Hamiltonian H; (see
refs. 198 and Supplementary Note 2). This effective Hamiltonian
can be computed by performing the following steps. First, cal-
culate the transition probability of a single spin from Eq. (2).
Then, the transition probability from an initial spin state S to
the next step S¢+1 can be written as

7ﬁH(’(S(’“)\S(’))
w© (S(t+1)|s(t)) — 67(0), (3)
) o BH' (SIS

H'(S|S) = - Z Ui(s)]ijaj(sl)7 (4)
1<ij<N

where S, §' denote arbitrary spin configurations. Let us emphasize
that, unlike H(X)(S), the transition Hamiltonian H®)(S|S') is a
function of two spin distributions S and §'. Here, = 1/(k¢) is
analogous to the inverse temperature from statistical mechanics,
where k is a constant, only depending on the noise distribution
(see Supplementary Table 1). To obtain Egs. (3), (4), we
approximated the single spin transition probability by a rescaled
sigmoid function and have enforced the condition 6; = ¥;J;. In
the Supplementary Note 2, we investigate the more general case
of arbitrary threshold vectors 6; and discuss the influence of the
noise distribution.

One can easily verify that this transition probability obeys the
triangular condition (or detailed balance condition) if ] is
symmetric J; = J; From there, an effective Hamiltonian H;
can be deduced following the procedure described by Peretto®®
for distributions verifying the detailed balance condition. The
effective Hamiltonian H; can be expanded, in the large noise
approximation (¢>> 1, f < 1), into Hy:

H, = —%Zlogcosh (ﬂz]1j0j>a (5)
i )

==y 3 P o
1<ij<N
Examining Eq. (6), we can deduce a mapping of the PRIS to the

general Ising model shown in Eq. (1) since H, = fH U*). We set
the PRIS matrix ] to be a modified square-root of the Ising matrix
K by imposing the following condition on the PRIS

Sq,(D) = 2Re (VD + aA). (7)

We add a diagonal offset term aA to the eigenvalue matrix D,
in order to parametrize the number of eigenvalues remaining
after taking the real part of the square root. Since lower
eigenvalues tend to increase the energy, they can be dropped
out so that the algorithm spans the eigenspace associated with
higher eigenvalues. We chose to parametrize this offset as follows:
a € R is called the eigenvalue dropout level, a hyperparameter to
select the number of eigenvalues remaining from the original
coupling matrix K, and A >0 is a diagonal offset matrix. For
instance, A can be defined as the sum of the off-diagonal terms of
the Ising coupling matrix A; = Z;.;|Kjj|. The addition of A only
results in a global offset on the Hamiltonian. The purpose of the A
offset is to make the matrix in the square root diagonally
dominant, thus symmetric positive definite, when « is large and
positive. Thus, other definitions of the diagonal offset could be
proposed. When o — 0, some lower eigenvalues are dropped out
by taking the real part of the square root (see Supplementary
Note 3); we show below that this improves the performance of the
PRIS. We will specify which definition of A is used in our study
when a#0. When choosing this definition of Sq,(D) and
operating the PRIS in the large noise limit, we can implement
any general Ising model (Eq. (1)) on the PRIS (Eq. (6)).

It has been noted that by setting Sq,(D) = D (i.e., the linear
photonic domain matrix amounts to the Ising coupling matrix
2] = K), the free energy of the system equals the Ising free energy
at any finite temperature (up to a factor of 2, thus exhibiting the
same ground states) in the particular case of associative memory
couplings!® with finite number of patterns and in the thermo-
dynamic limit, thus drastically constraining the number of
degrees of freedom on the couplings. This regime of operation
is a direct modification of the Hopfield network, an energy-based
model where the couplings between neurons is equal to the Ising
coupling between spins. The essential difference between the
PRIS in the configuration Sq,(D) = D and a Hopfield network is
that the former relies on synchronous spin updates (all spins are
updated at every step, in this so-called Little network!4) while the
latter relies on sequential spin updates (a single randomly picked
spin is updated at every step). The former is better suited for a
photonic implementation with parallel photonic networks.

In this regime of operation, the PRIS can also benefit from
computational speed-ups, if implemented on a conventional
architecture, for instance if the coupling matrix is sparse.
However, as has been pointed out in theory!® and by our
simulations (see Supplementary Note 4, Supplementary Fig. 7),
some additional considerations should be taken into account in
order to eliminate non-ergodic behaviors in this system. As the
regime of operation described by Eq. (7) is general to any
coupling, we will use it in the following demonstrations.

Finding the ground state of Ising models with the PRIS. We
investigate the performance of the PRIS on finding the ground
state of general Ising problems Eq. (1) with two types of Ising
models: MAX-CUT graphs, which can be mapped to an instance
of the unweighted MAX-CUT problem® and all-to-all spin glas-
ses, whose connections are uniformly distributed in [—1, 1] (an
example illustration of the latter is shown as an inset in Fig. 2a).
Both families of models are computationally NP-hard pro-
blems?%, thus their computational complexity grows exponen-
tially with the graph order N.

The number of steps necessary to find the ground state with
99% probability, Ni,, 999 is shown in Fig. 2a-b for these two
types of graphs (see definition in Supplementary Note 4 and in
the Methods section). As the PRIS can be implemented with
high-speed parallel photonic networks, the on-chip real time of a
unit step can be less than a nanosecond3*>? (and the initial setup
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Fig. 2 Scaling performance of the PRIS. (a, top) Ground state energy versus graph order of random spin glasses. A sample graph is shown as an inset in
(a, bottom): a fully-connected spin glass with uniformly-distributed continuous couplings in [—1, 1]. Niter, 999 Versus graph size for spin glasses (a, bottom)
and MAX-CUT graphs (b). € Niter, 999, Versus graph density for MAX-CUT graphs and N = 75. The graph density is defined as d = 2|E|/(N(N — 1)), |E|
being the number of undirected edges. RCG denotes Random Cubic Graphs, for which |E| = 3N/2. Ground states are determined with the exact solver
BigMac®’ (see Methods section). In this analysis, we set « = 0, and for each set of density and graph order we ran 10 graph instances 1000 times. The
number of iterations to find the ground state is measured for each run and Ni,, 4 is defined as the g-th quantile of the measured distribution.

time for a given Ising model is typically of the order of
microseconds with thermal phase shifters®?). In such architec-
tures, the PRIS would thus find ground states of arbitrary Ising
problems with graph orders N ~ 100 within less than a
millisecond. We also show that the PRIS can be used as a
heuristic ground state search algorithm in regimes where exact
solvers typically fail (N~ 1000) and benchmark its performance
against MH and conventional metaheuristics (SA) (see Supple-
mentary Note 6). Interestingly, both classical and quantum
optical Ising machines have exhibited limitations in their
performance related to the graph density®®!. We observe that
the PRIS is roughly insensitive to the graph density, when
optimizing the noise level ¢ (see Fig. 2¢, shaded green area). A
more comprehensive comparison should take into account the
static fabrication error in integrated photonic networks3* (see also
Supplementary Note 5), even though careful calibration of their
control electronics can significantly reduce its impact on the
computation®2:63,

Influence of the noise and eigenvalue dropout levels. For a
given Ising problem, there remain two degrees of freedom in the
execution of the PRIS: the noise and eigenvalue dropout levels.
The noise level ¢ determines the level of entropy in the Gibbs
distribution probed by the PRIS p(E) o exp(—f(E — ¢S(E))),
where S(E) is the Boltzmann entropy associated with the energy
level E. On the one hand, increasing ¢ will result in an expo-
nential decay of the probability of finding the ground state
P(Hyin, ¢)- On the other hand, too small a noise level will not
satisfy the large noise approximation Hy ~ H, and result in large
autocorrelation times (as the spin state could get stuck in a local
minimum of the Hamiltonian). Figure 3e demonstrates the
existence of an optimal noise level ¢, minimizing the number of
iterations required to find the ground state of a given Ising
problem, for various graph sizes, densities, and eigenvalue
dropout levels. This optimal noise value can be approximated
upon evaluation of the probability of finding the ground state

p(Hins¢) and the energy autocorrelation time £, , as the
minimum of the following heuristic
log (1 —
Niceq ~ T (#) + ) o B ®)

log(l - p(Hmim ¢)) 7

which approximates the number of iterations required to find the
ground state with probability g (see Fig. 3a—e). In this expression,
qu((/)) is the energy equilibrium (or burn-in) time. As can be seen

in Fig. 3e, decreasing « (and thus dropping more eigenvalues,
with the lowest eigenvalues being dropped out first) will result in
a smaller optimal noise level ¢. Comparing the energy landscape
for various eigenvalue dropout levels (Fig. 3h) confirms this
statement: as « is reduced, the energy landscape is perturbed.
However, for the random spin glass studied in Fig. 3f-g, the
ground state remains the same down to a=0. This hints at a
general observation: as lower eigenvalues tend to increase the
energy, the Ising ground state will in general be contained in the
span of eigenvectors associated with higher eigenvalues (see dis-
cussion in the Supplementary Note 3). Nonetheless, the global
picture is more complex, as the solution of this optimization
problem should also enforce the constraint o€ {—1, 1}N. We
observe in our simulations that & = 0 yields a higher ground state
probability and lower autocorrelation times than a >0 for all the
Ising problems we used in our benchmark. In some sparse
models, the optimal value can even be a <0 (see Supplementary
Fig. 3 in the Supplementary Note 4). The eigenvalue dropout is
thus a parameter that constrains the dimensionality of the ground
state search.

The influence of eigenvalue dropout can also be understood
from the perspective of the transition matrix. Figure 3f-g shows
the eigenvalue distribution of the transition matrix for various
noise and eigenvalue dropout levels. As the PRIS matrix
eigenvalues are dropped out, the transition matrix eigenvalues
become more nonuniform, as in the case of large noise (Fig. 3g).
Overall, the eigenvalue dropout can be understood as a means of
pushing the PRIS to operate in the large noise approximation,
without perturbing the Hamiltonian in such a way that would
prevent it from finding the ground state. The improved
performance of the PRIS with a~0 hints at the following
interpretation: the perturbation of the energy landscape (which
affects p(H,,;,)) is counterbalanced by the reduction of the energy
autocorrelation time induced by the eigenvalue dropout. The
existence of these two degrees of freedom suggests a realm of
algorithmic techniques to optimize the PRIS operation. One
could suggest, for instance, setting « = 0, and then performing an
inverse simulated annealing of the eigenvalue dropout level to
increase the dimensionality of the ground state search. This class
of algorithms could rely on the development of high-speed, low-
loss integrated modulators>64-66,

Detecting and characterizing phase transitions with the PRIS.
The existence of an effective Hamiltonian describing the PRIS
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Fig. 3 Influence of noise and eigenvalue dropout levels. a-d Probability of finding the ground state, and the inverse of the autocorrelation time as a
function of noise level ¢ for a sample Random Cubic Graph® (N = 00, (50/100) eigenvalues (a), (99/100) eigenvalues (b), and a sample spin glass (N =
50, (37/100) eigenvalues (c), (26/100) eigenvalues (d)). The arrows indicate the estimated optimal noise level, from Eq. (8), taking rgq to be constant. For
this study we averaged the results of 100 runs of the PRIS with random initial states with error bars representing * & from the mean over the 100 runs. We
assumed A; = Y Kj. (€): Niter, 909 versus noise level ¢ for these same graphs and eigenvalue dropout levels. f-g Eigenvalues of the transition matrix of a
sample spin glass (N=8) at ¢ = 0.5 (f) and ¢=2 (g). h The corresponding energy is plotted for various eigenvalue dropout levels @, corresponding to less
than N eigenvalues kept from the original matrix. The inset is a schematic of the relative position of the global minimum when a =1 (with (8/8)
eigenvalues) with respect to nearby local minima when a < 1. For this study we assumed 4; = Y K;.

dynamics Eq. (6) further suggests the ability to generate samples
of the associated Gibbs distribution at any finite temperature.
This is particularly interesting considering the various ways in
which noise can be added in integrated photonic circuits by
tuning the operating temperature, laser power, photodiode
regimes of operation, etc.’>%7. This alludes to the possibility of
detecting phase transitions and characterizing critical exponents
of universality classes, leveraging the high speed at which pho-
tonic systems can generate uncorrelated heuristic samples of the
Gibbs distribution associated with Egs. (5), (6). In this part, we
operate the PRIS in the regime where the linear photonic matrix
is equal to the Ising coupling matrix (Sq,(D) = D)!°. This allows
us to speedup the computation on a CPU by leveraging symmetry
and sparsity of the coupling matrix K. We show that the regime of
operation described by Eq. (7) also probes the expected phase
transition (see Supplementary Note 4).

A standard way of locating the critical temperature of a system is
through the use of the Binder cumulant! U,(L) =1— (m*)/
(3(m?)%), where m = SN 0,/N is the magnetization and (.)
denotes the ensemble average. As shown in Fig. 4a, the Binder
cumulants intersect for various graph sizes L2 =N at the critical
temperature of Tc=2.241 (compared to the theoretical value of
2269 for the two-dimensional Ferromagnetic Ising model, ie.,
within 1.3%). The heuristic samples generated by the PRIS can be
used to compute physical observables of the modeled system, which
exhibit the emblematic order-disorder phase transition of the two-

dimensional Ising model2! (Fig. 4b). In addition, critical
parameters describing the scaling of the magnetization and
susceptibility at the critical temperature can be extracted from the
PRIS to within 10% of the theoretical value (see Supplementary
Note 4).

In Fig. 4c, we benchmark the performance of the PRIS against
the well-known Metropolis-Hastings (MH) algorithm!68%%. In
the context of heuristic methods, one should compare the
autocorrelation time of a given observable. The scaling of the

magnetization autocorrelation time 77, = O(L?) = O(N*/?) at
the critical temperature is shown in Fig. 4c for two analytically-
solvable models: the two-dimensional ferromagnetic and the
infinite-range Ising models. Both algorithms yield autocorrelation
time critical exponents close to the theoretical value (z ~ 2.1)! for
the two-dimensional Ising model. However, the PRIS seems to
perform better on denser models such as the infinite-range Ising
model, where it yields a smaller autocorrelation time critical
exponent. More significantly, the advantage of the PRIS resides in
its possible implementation with any matrix-to-vector accelera-
tor, such as parallel photonic networks, so that the computational
(time) complexity of a single step is O(N)3%383% Thus, the
computational complexity of generating an uncorrelated sample
scales like O(N'*#es/2) for the PRIS on a parallel architecture,
while it scales like O(N?*#w1/2) for a sequential implementation
of MH, on a CPU for instance. Implementing the PRIS on a
photonic parallel architecture also ensures that the prefactor in
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Fig. 4 Detecting and characterizing phase transitions. a Binder cumulants U4(L) for various graph sizes L on the 2D Ferromagnetic Ising model. Their
intersection determines the critical temperature of the model T¢ (denoted by a dotted line). b Magnetization estimated from the PRIS for various L.

¢ Scaling of the PRIS magnetization autocorrelation time for various Ising models, benchmarked versus the Metropolis-Hastings algorithm (MH). The
complexity of a single time step scales like N2 = [4 for MH on a CPU and like N = L2 for the PRIS on a photonic platform. For readability, error bars in b are

not shown (see Supplementary Note 4).

this order of magnitude estimate is small (and only limited by the
clock rate of a single recurrent step of this high-speed network).
Thus, as long as zpgis <zmy +2, the PRIS exhibits a clear
advantage over MH implemented on a sequential architecture.

Discussion

To conclude, we have presented the PRIS, a photonic-based
heuristic algorithm able to probe arbitrary Ising Gibbs distribu-
tions at various temperature levels. At low temperatures, the PRIS
can find ground states of arbitrary Ising models with high
probability. Our approach essentially relies on the use of matrix-
to-vector product accelerators, such as photonic networks3467,
free-space optical processors?®, FPGAs’?, and ASICs7! (see
comparison of time estimates in the Supplementary Note 5). We
also perform a proof-of-concept experiment on a Xilinx Zynq
UltraScale+ multiprocessor system-on-chip (MPSoC) ZCU104,
an electronic board containing a parallel programmable logic unit
(FPGA-Field Programmable Gate Arrays). We run the PRIS on
large random spin glasses N =100 and achieve algorithm time
steps of 63 ns. This brings us closer to photonic clocks <1ns,
thus demonstrating that (1) the PRIS can leverage parallel
architectures of various natures, electronics and photonics; (2) the
potential of hybrid parallel opto-electronic implementations.
Details of the FPGA implementation and numerical experiments
are given in Supplementary Note 7.

Moreover, our system requires some amount of noise to per-
form better, which is an unusual behavior only observed in very
few physical systems. For instance, neuroscientists have con-
jectured that this could be a feature of the brain and spiking
neural networks’273, The PRIS also performs a static transfor-
mation (and the state evolves to find the ground state). This kind
of computation can rely on a fundamental property of photonics
—passivity—and thus reach even higher efficiencies. Non-volatile
phase-change materials integrated in silicon photonic networks
could be leveraged to implement the PRIS with minimal energy
costs”4.

We also suggested a broader family of photonic metaheuristic
algorithms which could achieve even better performance on

larger graphs (see Supplementary Note 6). For instance, one could
simulate annealing with photonics by reducing the system
noise level (this could be achieved by leveraging quantum
photodetection noise®’, see discussion in Supplementary Notes 5
and 6). We believe that this class of algorithms that can be
implemented on photonic networks is broader than the meta-
heuristics derived from MH, since one could also simulate
annealing on the eigenvalue dropout level a.

The ability of the PRIS to detect phase transitions and probe
critical exponents is particularly promising for the study of uni-
versality classes, as numerical simulations suffer from critical
slowing down: the autocorrelation time grows exponentially at
the critical point, thus making most samples too correlated to
yield accurate estimates of physical observables. Our study sug-
gests that this fundamental issue could be bypassed with the PRIS,
which can generate a very large number of samples per unit time
—only limited by the bandwidth of active silicon photonics
components.

The experimental realization of the PRIS on a photonic plat-
form would require additional work compared to the demon-
stration of deep learning with nanophotonic circuits>*. The noise
level can be dynamically induced by several well-known sources
of noise in photonic and electronic systems>2. However, attaining
a low enough noise due to heterogeneities in a static architecture,
and characterizing the noise level are two experimental chal-
lenges. Moreover, the PRIS requires an additional homodyne
detection unit, in order to detect both the amplitude and the
phase of the output signal from the linear photonic domain.
Nonetheless, these experimental challenges do not impact the
promising scaling properties of the PRIS, since various photonic
architectures have recently been proposed3440:4367.75 giving a
new momentum to photonic computing.

Methods

Numerical simulations. To evaluate the performance of the algorithm on several
Ising problems, we simulate the execution of an ideal photonic system, performing
computations without static error. The noise is artificially added after the matrix
multiplication unit and follows a Gaussian distribution, as discussed above. This

results in an algorithm similar to the one described in the section II of this work.
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In the main text, we present the scaling performance of the PRIS as a
function of the graph order. For each graph order and density, we generate 10
random samples with these properties. We then optimize the noise level
(minimizing Njir, 99%) 0n a random sample graph and generate a total of
10 samples for each pair of graph order/density. The optimal value of ¢ is shown in
Supplementary Fig. 2 in Supplementary Note 4.

For each randomly generated graph, we first compute its ground state with the
online platform BigMac®”. We then make 100 measurements of the number of
steps required (with a random initial state) to get to this ground state. From these
1000 runs, we define the estimate of finding the ground state of the problem with g
percent probability Nir, 4 as the g-th quantile.

Also in the main text, we study the influence of eigenvalue dropout and of the
noise level on the PRIS performance. We show that the optimal level of eigenvalue
dropout is usually a < 1, and around a = 0. In some cases, it can even be & < 0 as we
show in Supplementary Fig. 3 in Supplementary Note 4 where the optimal (a, ¢) =
(—0.15, 0.55) for a random cubic graph with N = 52. In addition to Fig. 3f-h from the
main text showing the influence of eigenvalue dropout on a random spin glass, the
influence of dropout on a random cubic graph is shown in Supplementary Fig. 4 in
Supplementary Note 4. Similar observations can be made, but random cubic graphs,
which show highly degenerated hamiltonian landscapes, are more robust to
eigenvalue dropout. Even with @ = —0.8, in the case shown in Supplementary Fig. 4 in
Supplementary Note 4 the ground state remains unaffected.

Others. Further details on generalization of the theory of the PRIS dynamics,
construction of the weight matrix J, numerical simulations, scaling performance of
the PRIS, and comparison of the PRIS to other (meta)heuristics algorithms can be
found in the Supplementary Notes 1-7.

Data availability
The data that support the plots within this paper and other findings of this study are
available from the corresponding authors upon reasonable request.

Code availability
The code that supports the plots within this paper and other findings of this study are
available from the corresponding authors upon reasonable request.
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