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Abstract: Malaria is one of the leading causes of morbidity and mortality in Mozambique, which has
the fifth highest prevalence in the world. Sussundenga District in Manica Province has documented
high P. falciparum incidence at the local rural health center (RHC). This study’s objective was to analyze
the P. falciparum temporal variation and model its pattern in Sussundenga District, Mozambique.
Data from weekly epidemiological bulletins (BES) was collected from 2015 to 2019 and a time-series
analysis was applied. For temporal modeling, a Box-Jenkins method was used with an autoregressive
integrated moving average (ARIMA). Over the study period, 372,498 cases of P. falciparum were
recorded in Sussundenga. There were weekly and yearly variations in incidence overall (p < 0.001).
Children under five years had decreased malaria tendency, while patients over five years had an
increased tendency. The ARIMA (2,2,1) (1,1,1) 52 model presented the least Root Mean Square being
the most appropriate for forecasting. The goodness of fit was 68.15% for malaria patients less than
five years old and 73.2% for malaria patients over five years old. The findings indicate that cases are
decreasing among individuals less than five years and are increasing slightly in those older than five
years. The P. falciparum case occurrence has a weekly temporal pattern peaking during the wet season.
Based on the spatial and temporal distribution using ARIMA modelling, more efficient strategies that
target this seasonality can be implemented to reduce the overall malaria burden in both Sussundenga
District and regionally.

Keywords: malaria; modelling; temporal; Sussundenga

1. Background

Malaria is an ancient disease that occupies a unique place in the annals of history.
Globally there were 228 million malaria cases recorded in 2018. The Sub-Saharan African
region has the highest burden of malaria cases and 93% of all malaria cases reported are
from this region. More than half of these cases come from only six countries, namely: Nige-
ria (25%), Democratic Republic of Congo (12%), Uganda (5%), Cote d’Ivoire, Mozambique,
and Niger (4%) [1].

In 2018, Mozambique reported 8,921,081 malaria cases and 1114 fatalities, making
it one of the leading causes of morbidity and mortality in the nation compared to other
countries [2]. The malaria burden in Mozambique is still unacceptably high, trending in
the wrong direction in some areas.

Manica province is in the central region of Mozambique and recorded 821,775 malaria
cases in 2019, which is the fourth highest number of cases in the country [3].
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Sussundenga District in Manica Province has documented high P. falciparum incidence
at the local rural health centers (RHC). Sussundenga is a rural district located along
the Mozambique, Zimbabwe border with differing control policies on each side of the
international border.

For malaria control, indoor residual spraying (IRS), insecticide-treated bed nets (ITNs),
and parasitological diagnosis in health facilities using rapid diagnostic test (RDTs) with
effective artemisinin combination therapy (ACT) are the malaria interventions currently
being used in the country [4].

Mathematical modelling can be used for malaria trend predictions, to describe multiple
scenarios, to combine strategies for interventions and to provide a verifiable prediction on
what can be expected form implemented schemes [5].

Rural health centers (RHCs) in Mozambique have a large volume of time series case
data that feeds the Mozambican management information system (SIS-MA) for systematic
dissemination of health data from all districts [6]. These data are retrospective and generally
only detect patterns after they have happened. Using this real-time data for mathematical
modelling can describe current case trends and predict future malaria cases. Modelling can
produce valid results and is inexpensive. This can be helpful for planning malaria control
and eradication efforts [7].

There is a growing need for methods for accurate forecasting of malaria cases, and in
the past years, methods have been developed and produced worldwide. Most of them use
monthly data. Monthly data may not capture detailed events and inappropriate measures
may be taken. Malaria is impacted by weather which varies weekly. It is common in
Mozambique for the weekly precipitation to fluctuate between 0 mm to 400 mm and have
average temperatures below 18 ◦C and 24 ◦C. These events will greatly influence the
mosquito breeding and malaria infection in the following weeks. Malaria epidemics can
occur when climate and other conditions suddenly favor transition [8].

Malaria risk is rarely uniform considering households in a village, villages in a district
or districts in a country [9], and the establishment of spatiotemporal patterns in malaria
maps is necessary for change contextualization [10]. Geographical information systems can
help to describe variations in malaria occurrence and identify areas of high risk, assisting
in timely interventions [11]. The Malaria Atlas Project uses global data to address critical
malaria questions such as the global malaria landscape, its change, and the impact of
malaria interventions [10].

Very few studies on temporal and spatial trends in malaria cases have been reported in
Mozambique, especially using weekly surveillance data. Understanding these underlying
trends and variations are very important for planning and timing interventions at the local
scale for the highest impact.

This study’s objective is to analyze the P. falciparum temporal and spatial variation to
model its pattern using weekly data throughout Sussundenga District and to predict the
expected malaria occurrence for application of timely prevention and control interventions.

2. Material and Methods
2.1. Study Area

Sussundenga is a district of Mani Province in Western Mozambique with a land area
of 7107 square kilometers and a population of approximately 168,000 [12]. It lies between
latitudes 19◦00′ and 20◦30′ South and longitude 32◦30′ and 34◦00′ East. It borders the
districts of Manica and Gondola to the north through to the Revué and Zònue rivers to the
south, with the district of Mossurize and the province of Sofala to the east and the district
of Buzi (Sofala Province) to the West with the Republic of Zimbabwe [13], as presented
in Figure 1.
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less than 3% with electricity in 2011 [12]. Sussundenga is administratively divided into 
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25 °C, occur in the Dombe Administrative Post. In Sussundenga in the plateau and moun-
tainous areas in the west of the District, lower temperatures from 15 to 17.5 °C occur [14]. 

2.2. Study Subjects 
Public RCHs in Sussundenga collect daily P. falciparum malaria case data that are 
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ning division of Sussundenga District for the District weekly epidemiologic bulletin. This 
surveillance system was established in 2015 and is part of the national malaria control 
program (PNCM). The data was collected from 12/13 RHCs, from 2015 to 2019. Malaria-
positive cases were captured using mostly rapid diagnostic tests (RDT) and microscopy 
for diagnosis. The data reports confirmed cases into two age groups: under five years old 
and over five years old (Supplementary File 1). The population data used the annual pop-
ulation projection from the National Institute of Statistics of Mozambique [15] from 2015 
to 2019. Before data analysis, missing data was calculated by imputation using multivari-
ate normal procedures [16]. A schematic representation of data flow and analysis is pre-
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Figure 1. Study area. Adapted from Cenacarta, 2011.

The inhabitants of the district are mainly rural citizens, with 20% under four years
old and less than 3% greater than 65 years old. The majority of the population lives in
traditional huts (90%) with less than 1% with piped water, 77% with no latrine access, and
less than 3% with electricity in 2011 [12]. Sussundenga is administratively divided into
four wards of Sussundenga—Sede, Dombe, Moha and Rotanda. The district has 15 villages
and 13 rural health centers (RHCs).

The district has two seasons, the rainy season from November to March and the dry
season from May to August. The remaining months represent a transition period between
the two seasons. The average annual rainfall increases with altitude, varying from 800 mm
in low altitude less than 200 m, up to 1400 mm and more in the in mountainous areas.
The altitude varies from 200 to 1500 m. Average summer temperatures (rainy season)
are approximately 21 ◦C throughout the District. Warmer conditions, with temperatures
around 25 ◦C, occur in the Dombe Administrative Post. In Sussundenga in the plateau
and mountainous areas in the west of the District, lower temperatures from 15 to 17.5 ◦C
occur [14].

2.2. Study Subjects

Public RCHs in Sussundenga collect daily P. falciparum malaria case data that are com-
piled to produce the Weekly Epidemiological Bulletin (BES). This is sent to the planning
division of Sussundenga District for the District weekly epidemiologic bulletin. This surveil-
lance system was established in 2015 and is part of the national malaria control program
(PNCM). The data was collected from 12/13 RHCs, from 2015 to 2019. Malaria-positive
cases were captured using mostly rapid diagnostic tests (RDT) and microscopy for diagno-
sis. The data reports confirmed cases into two age groups: under five years old and over
five years old (Supplementary File 1). The population data used the annual population
projection from the National Institute of Statistics of Mozambique [15] from 2015 to 2019.
Before data analysis, missing data was calculated by imputation using multivariate nor-
mal procedures [16]. A schematic representation of data flow and analysis is presented
in Figure 2.



Int. J. Environ. Res. Public Health 2021, 18, 5692 4 of 16
Int. J. Environ. Res. Public Health 2021, 18, x 4 of 17 
 

 

 
Figure 2. Schematic representation of data flow and analysis. 

2.3. Data Analysis 
Analysis of variance (ANOVA) was performed to determine differences between 

weeks and years using Tukey’s test for mean separation. The model used was: 

Yij = μ + τi + βj + γij + ϵijk (1)

where μ is the overall mean response, τi is the effect of month i, βj is the effect the j-th of 
factor B (week) and Yij is the effect of any interaction between the i-th level of A and the 
j-th level of B, and τi is the effect of month i [17]. 

P. falciparum incidence per 100 person-years was calculated by dividing the total 
number of cases by total population and then multiplying by 100 [18]. 

Incidence rate = ்௢௧௔௟ ௡௨௠௕௘௥ ௢௙ ௖௔௦௘௦்௢௧௔௟ ௣௢௣௨௟௔௧௜௢௡   × 100 (2)

To obtain groupings or clusters of similar weeks—a hierarchical cluster—a summary 
of distance matrix analysis was performed. The hierarchical cluster analyses followed 
three basic steps: (1) calculate the Euclidian distances using a 1.0 cluster cutoff for the 
weeks, (2) link the clusters and, (3) choose a solution by selecting the right number of 
clusters [19] resulting in a dendrogram, a tree-based two-dimensional plot [19]. For the 
preparation of choropleth maps of the malaria incidence in Sussundenga District, data on 
the administrative division of the country were acquired from the Mozambique National 
Mapping Center (CENACARTA) [20]. The data from the administrative division were 
clipped and added to the incidence data of malaria between the age groups using ArcGIS 
10.7.1 (ESRI, Redlands, CA, USA) [21]. 

The ARIMA model has three values, namely “p” weeks over P period for each of the 
52 weeks sets in our data set, differencing over “d” adjacent weeks or D periods, and mov-
ing averages sustained over “q” weeks or Q periods [7]. The p and q are the number of 
significant lags of the autocorrelation function (ACF) and the partial autocorrelation func-
tion (PACF) plots, respectively, and d is the different order needed to remove the ordinary 
non-stationarity in the mean of the error terms [21,22]. 

Figure 2. Schematic representation of data flow and analysis.

2.3. Data Analysis

Analysis of variance (ANOVA) was performed to determine differences between
weeks and years using Tukey’s test for mean separation. The model used was:

Yij = µ+ τi + βj + γij + εijk (1)

where µ is the overall mean response, τi is the effect of month i, βj is the effect the j-th of
factor B (week) and Yij is the effect of any interaction between the i-th level of A and the
j-th level of B, and τi is the effect of month i [17].

P. falciparum incidence per 100 person-years was calculated by dividing the total
number of cases by total population and then multiplying by 100 [18].

Incidencerate =
Total number o f cases

Total population
× 100 (2)

To obtain groupings or clusters of similar weeks—a hierarchical cluster—a summary
of distance matrix analysis was performed. The hierarchical cluster analyses followed
three basic steps: (1) calculate the Euclidian distances using a 1.0 cluster cutoff for the
weeks, (2) link the clusters and, (3) choose a solution by selecting the right number of
clusters [19] resulting in a dendrogram, a tree-based two-dimensional plot [19]. For the
preparation of choropleth maps of the malaria incidence in Sussundenga District, data on
the administrative division of the country were acquired from the Mozambique National
Mapping Center (CENACARTA) [20]. The data from the administrative division were
clipped and added to the incidence data of malaria between the age groups using ArcGIS
10.7.1 (ESRI, Redlands, CA, USA) [21].

The ARIMA model has three values, namely “p” weeks over P period for each of
the 52 weeks sets in our data set, differencing over “d” adjacent weeks or D periods, and
moving averages sustained over “q” weeks or Q periods [7]. The p and q are the number
of significant lags of the autocorrelation function (ACF) and the partial autocorrelation
function (PACF) plots, respectively, and d is the different order needed to remove the
ordinary non-stationarity in the mean of the error terms [21,22].
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The ARIMA model using the Box–Jenkins method was performed in three princi-
pal steps:

(1) Model identification tentative from the ARIMA class. (2) Estimation of parameters
in the identified model. (3) Diagnostic checks.

1. Model identification tentative: In this step, graphical devices, namely autocorrelation
function (ACF) and partial autocorrelation function (PACF), were used as guides to
select one or more Autoregressive Integrated Moving Average (ARIMA) models.

2. Estimation of parameters in the identified model: In this step, the precise estimate of
the coefficients of the model was selected, chosen from the identification step.

3. Diagnostic check: This step was used to determine if the estimated model was
statically adequate. If the identified model passed the diagnostic check, the model
was ready to be used for forecasting. If it failed, the model was modified through a
new cycle process.

After obtaining a stationary series, a basic model can be identified. There are three
basic models, AR (autoregressive), MA (moving average) and their combination, ARMA.
When regular differencing is applied in conjunction with AR and MA, they are referred to
as ARIMA, with the “I” meaning “integrated” [23].

The model used was:

Yt = θ0 + φ1y t−1 + . . . + φ p y t−p + ε t − θ1 ε t−1 − . . .− θ q ε t−q (3)

where yt is the real value at the of t, θ and φ are the moving average and autoregres-
sive coefficients, respectively, p and q are integer numbers referencing the order of the
autoregressive and moving average, respectively, εt is the error, and d is the differencing
parameter [7].

Data were tested for stability plotting the temporal trend and tested using the Mann-
Kendall method. The Bartlett test was used to assess normality, and the Dick-Fullert test
was performed [24] to determine stationarity. Seasonal differencing was applied to remove
the seasonal trend. Plots of auto correlation function (ACF) and partial auto correlation
functions (PACF) were created to determine the trends in the data. The lowest values of
Akaike information criteria (AIC) and short Bayesian criteria (SBC) were used to assess the
goodness of the fit among identified models. Ordinary least-mean squares (OLS) were used
for model estimation. For a diagnosis check, residual plots of ACF, PACF, and Portmanteau
test were used [25]. The forecasting was performed for 52 weeks in 2016. The statistical
analysis was carried out using SPSS IBM version 20 and NCSS Data analysis 2020.

3. Results
3.1. Descriptive and ANOVA

Over the 260 weeks (from 2015 to 2019), 372,498 cases of P. falciparum were recorded in
Sussundenga, 177,957 from children under five years old (47.5%) and 194,541 (52.2%) from
individuals over five years old (Figure 3).

The average weekly cases for children under five years old was 680 standard devi-
ation (Sd) = 250.1 and 748 (Sd = 320.1) for individuals over five years old. The highest
weekly cases were 1263 cases in children under five years old at week 9 and 1797 cases in
individuals over five years old at week 5 in 2017. The lowest weekly malaria cases were
recorded in 2018 with 30 and 19 cases for children under five years old and individuals
over five years old, respectively, both at week 32.

The year 2019 had the highest number of cases for both age groups, with 41,887
and 50,326 cases in the children under five years old and individuals over five years old,
respectively. Analysis of variance (ANOVA) indicated a statistically significant difference
in malaria incidence between years and weeks for both categories (p < 0.05), Table 1A,B.
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Table 1. Analysis of variance (ANOVA) of malaria occurrence between weeks and years in Sussun-
denga. (A) Under five years old, (B) over five years old.

A

Year 2015 2016 2017 2018 2019

Weeks 52 52 52 52 52
Mean 737 a 700 b 648 c 531 c 806 d

Sd 246 194 236 228 252

B

Year 2015 2016 2017 2018 2019

Weeks 52 52 52 52 52
Mean 687 a 760 a 735 a 592 b 968 c

Sd 270 247 276 289 374
a,b,c different letters indicate difference between years.

3.2. Temporal Clusters

Figure 4 presents the weekly malaria temporal clusters for under five and over five
years old. For under five years old, three malaria clusters were identified: cluster one of
five weeks, from week 31 to 35, where the lowest cases of malaria occurred, on average
394 sd 168.9 per week. The second cluster, from weeks 20 to 47, with a moderate number
of cases, on average 570 sd 173.2 cases per week. Cluster three, from week 48 to week 19,
with highest malaria cases, on average 855 sd 202.4 weekly.

For individuals over five years old, two temporal clusters were identified: cluster one,
from week 48 to 24, with the highest malaria cases, on average 846 sd 272.4 weekly cases
and cluster two, from week 23 to 47, with a moderate number of cases, on average with
516 sd 171.4 cases.

3.3. Malaria Incidence Spatial Variation for under Five Year Old Category

Figure 5 presents the choropleth maps of spatial distribution of malaria incidence
in the last five years and the average cases in children under five years old. The maps
show the high concentration of malaria incidence in the Sussundenga-Sede RHC and low
concentration of malaria incidence in RHCs in Rotanda and Dombe. The Moha admirative
post had a moderate concentration of malaria incidence. Overall, children under five years
old in the Dombe and Rotanda administrative posts presented 0.5 episodes of malaria per
year, while residents of the Moha administrative post had about one case of malaria per
year and residents of Sussundenga-Sede had more than one case of malaria per year.
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3.4. Malaria Incidence Spatial Variation for 5< Years Category

Figure 6 presents the choropleth maps of spatial distribution of malaria incidence
variation from 2015 to 2019 in individuals over five years old. The maps indicate a mod-
erate concentration of malaria incidences in the Sussundenga-Sede, Rotanda and Moha
admirative posts and a low concentration of malaria incidence in the admirative posts of
Dombe. On average, patients in this category experienced 0.27 cases of malaria per year.
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Overall, one in six residents in Dombe, Rotanda and Moha administrative posts will have
an episodes of malaria per year, while one in three residents of Sussundenga-Sede will
experience an episode case of malaria per year.
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3.5. ARIMA Modelling (under Four Years Old)

Figure 7A presents the trends for the temporal series plot for under four years old.
There is a decreased number of malaria cases in ages 0–4 years old, confirmed by the Mann-
Kendall test, Sen’s slope = −0.521. The series presents several peaks and fluctuations; the
weekly peaks are separated by more than a few weeks, suggesting a seasonal pattern.

The Bartlett test indicated normality for the data, Jack Bera = 4.35, P = 0.114,
DF = 2 and no transformation was needed. The Dick-Fuller test indicated a non-stationarity
of the mean Tau = 4.35, P = 0.114, DF = 2 and first-order differencing was applied, and
a stationary pattern obtained (Figure 7B). Figure 7C,D presents the features of the data
for autocorrelation (ACF) and partial autocorrelation (PACF) plot. The ACF indicates an
exponential decay and PACF with a single spike at lag 1, suggesting an ARMA (2,1) for
non-seasonal and ARMA (1,1) for seasonal components. In eight experiments, the selected
final model for malaria patients under five years old was ARIMA (2,2,1) (1,1,1) 52 and the
trend equation was:

Xt = 741.0547− 0.4336641× (week) (4)

All the coefficients were statically significant at 0.05. Table 1A presents the goodness-
of-fit results.
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For a diagnostic check, the residual ACF and PACF plot (Figure 7F,G) both indicated
that all the terms were within to the confidence intervals, implying that the residuals are
“white noise”. The Portmanteau test of the residuals also indicated the model adequacy,
Portmanteau = 13.35, P = 0.42, DF = 13.

Using Equation (1), the malaria cases for under four-year-old patients were forecasted
for year 2016 (Table 2). Figure 7E presents the predicted trends and intervals (90% and 95%).

Table 2. Under 5 years. Malaria cases forecast for year 2020 in Sussundenga.

Week Forecast LL 95% UL 95% Week Forecast LL 95% UL 95%

1 337 115 560 27 309 −23 641

2 325 74 576 28 308 −24 641

3 326 56 596 29 308 −24 640

4 324 40 609 30 307 −25 640

5 323 28 619 31 307 −25 639

6 322 19 626 32 307 −26 639

7 321 11 631 33 306 −26 638

8 320 5 635 34 306 −27 638

9 319 1 638 35 305 −27 638

10 319 −3 640 36 305 −28 637

11 318 −6 642 37 304 −28 637

12 317 −9 643 38 304 −28 636

13 316 −11 644 39 304 −29 636

14 316 −13 644 40 303 −29 635
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Table 2. Cont.

Week Forecast LL 95% UL 95% Week Forecast LL 95% UL 95%

15 315 −14 644 41 303 −30 635

16 314 −15 644 42 302 −30 635

17 314 −17 644 43 302 −31 634

18 313 −18 644 44 301 −31 634

19 313 −18 644 45 301 −31 633

20 312 −19 644 46 301 −32 633

21 312 −20 643 47 300 −32 633

22 311 −21 643 48 300 −33 632

23 311 −21 643 49 299 −33 632

24 310 −22 642 50 299 −33 631

25 310 −22 642 51 299 −34 631

26 309 −23 641 52 298 −34 631

LL = Low limit, UL = Upper limit.

Figure 8A presents the trends for the temporal series plot for individuals over five
years old. There is an increasing tendency of malaria cases in over five-year-old patients
confirmed by the Mann-Kendall test, Sen’s slope = 0.100. The series presents several peaks
and fluctuations; the weekly peaks are separated by more than few weeks, suggesting a
cyclical pattern.
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The Bartlett test indicated normality for the data, Jack Bera = 17.17, P = 0.1011,
DF = 2. The Dick-Fuller test indicated a non-stationarity of the mean, Tau = −3.96,
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P = 0.118, DF = 2, and first-order differencing was applied and a stationary pattern obtained
(Figure 8B). Figure 8C,D presents the features of the data for the autocorrelation (ACF) and
partial autocorrelation (PACF) plot. The ACF indicates an exponential decay and PACF
with a single spike at lag 1.

In eight experiments, the selected final model for malaria patients older than five
years old was ARIMA (2,2,1) (1,1,1) 52 and the trend equation was:

Xt = (715.3047) + (0.2524547)× (week) (5)

All the coefficients were statically significant at 0.05. Table 1B presents the goodness-
of-fit results for over five years old. For a diagnostic check, the residual ACF and PACF
plot (Figure 8F,G) both indicated that all the terms were interior to the confidence limit,
implying that the residuals are “white noise.” The Portmanteau test of the residuals also
indicated the model adequacy to lag 16, Portmanteau = 13.29, P = 0.4253, DF = 13. Using
Equation (1), the malaria cases for 0–4-year-old patients were forecasted for year 2016
(Table 3). Figure 8E presents the predicted trends and intervals (90% and 95%).

Table 3. Over 5 years Malaria cases forecast for year 2016 in Sussundenga.

Week Forecast LL 95% UL 95% Week Forecast LL 95% UL 95%

1 821 432 1210 27 790 175 1406

2 812 370 1255 28 790 174 1406

3 811 331 1290 29 790 174 1406

4 808 300 1316 30 790 174 1406

5 806 276 1336 31 790 174 1407

6 804 256 1351 32 790 174 1407

7 802 241 1363 33 791 174 1407

8 800 228 1372 34 791 174 1407

9 799 218 1379 35 791 175 1407

10 797 210 1385 36 791 175 1407

11 796 203 1389 37 791 175 1408

12 795 198 1393 38 791 175 1408

13 794 193 1396 39 792 175 1408

14 794 190 1398 40 792 175 1408

15 793 187 1399 41 792 175 1408

16 792 184 1401 42 792 176 1409

17 792 182 1402 43 792 176 1409

18 792 181 1403 44 793 176 1409

19 791 179 1403 45 793 176 1409

20 791 178 1404 46 793 176 1409

21 791 177 1404 47 793 177 1410

22 791 176 1405 48 793 177 1410

23 790 176 1405 49 794 177 1410

24 790 175 1405 50 794 177 1410

25 790 175 1405 51 794 178 1411

26 790 175 1406 52 794 178 1411

LL = Low limit, UL = Upper limit.



Int. J. Environ. Res. Public Health 2021, 18, 5692 12 of 16

4. Discussion

Malaria epidemiology and its modelling has had limited investigation in Sussundenga
District. The age category under five years old reported 52.5% of the total malaria cases,
although this category represents only 21% of the population of the district. This imbalance
is attributed to immunity. Most malaria cases and death occur in young children due to
low immunity. Partial immunity is developed over years of exposure. Although it does not
provide complete protection, it reduces severe malaria in adults [26] and this can explain
the higher cases in the under-five category and lower cases in the over-five category.

Malaria occurrence varies by week and year in Sussundenga, and the first weeks of
the year (weeks 5 and 9) presented the highest number of cases while week 32 (September)
presented the least cases. January to Mach are the months that record higher amounts of
rain and humidity in Sussundenga, while September is the month with least humidity [14].
This pattern was also reported in Chimoio, Beira and Maputo in Mozambique [27–29]. The
disproportional peak of malaria in 2019 occurred when cyclone IDAI hit the area and the
annual rainfall recorded in Sussundenga was almost double of annual average [30].

The malaria incidence in this study was 91.3 per 100 for children under five years old
and 27.3 per 100 in individuals older than five years old. In Chimoio, an average of 20.5 per
100 persons malaria incidence was reported, in Manica Province it was 43 per 100 persons
and 33 per 100 persons in Beira [27–29] in Mozambique.

This study identified three malaria clusters of malaria cases for children under five
years old. Higher number of cases coincides with the rainy season, a lower number of cases
with the dry season, and moderate cases with the transitional period. For individuals over
five years old, only two cluster were identified, one with high malaria cases coinciding with
the rainy season and another cluster with lower malaria cases in the dry season. A similar
pattern was reported in Chimoio and Maputo [31,32] in Mozambique. In Senegal, 23% of
malaria positive cases were reported during rainy season and 9% during the dry season [33].
Seasonal differences in infectious diseases were also reported in central Europe [34].

This study found temporal and spatial variation of malaria cases between adminis-
trative wards (posts). Rotanda administrative posts present lower malaria episodes per
year, while Sussundenga-Sede administrative posts have more episodes of malaria per
year. This can be a result of the differences in average annual rainfall, in altitude, and in
temperature between the different administrative posts. Rotanda is located at an altitude
around 1500 m (highland), and temperatures range from 15 to 17.5 ◦C. Sussundenga-Sede
has an altitude at around 600 to 800 m (midland) with an average temperature of 21 ◦C,
and Dombe has an altitude between around 200 (lowland) with an average temperature of
around 25 ◦C.

Variation in malaria cases as a result of environmental conditions were also reported
in Beira, Chimoio, and Maputo in Mozambique [29,31,32].

In the present study, children under five have on average 0.9 episodes of malaria per
year and individuals over five years old have 0.27 episodes of malaria per year. This can
be related to lower immunity in children under five years old. In Manhiça, Mozambique
in 2008, an average of more than two episodes of malaria per year were reported [33].
In Malawi, an overall incidence rate of clinical malaria of 1.2 cases per child per year
was reported [34]. Studies in South Africa and Zimbabwe reported opposite results, with
children under five having a lower positivity rate. In Zimbabwe, 95% of malaria cases were
among individuals older than five years old [35,36].

This study finds a decreased trend in number of malaria cases for under five year
olds and an increasing tendency for malaria cases in patients older than five years old.
The decreasing trend in this category was also reported by the World Health Organization
for Mozambique [3]. In Tanzania, the peak prevalence shifted from children 5–9 years
old to those aged 10–19 years old [37]. The effective interventions against malaria lead
to age-shifts, delayed morbidity, or rebounds in morbidity and mortality [38]. Pregnant
woman and their newborns receive an ITN at the pre-natal clinic. Decreasing cases in this
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age range and shifts to higher ages with clinical malaria may be an indicator of effective
malaria control.

A rapid decline in malaria burden was reported in many areas in Africa from 2015
to 2017, with incidence declining by 27.9% and mortality by 42.5%. Despite the declines,
90.1% of Sub-Saharan African residents live in endemic regions (Cameron).

Similar results were reported in Chimoio Municipality [23], Mozambique in gen-
eral [39], and the Limpopo region in South Africa [21], contrary to decreasing tendencies
in the neighboring countries [36–38]. This can be due to different approaches in malaria
interventions. In Mozambique, the malaria surveillance is mostly passive case detection in
the health clinics while other regions use active case detection in the communities [39].

Both qualitative and quantitative bioinformatics models are advocated for forecasting
and public health promotion [40]. In Ampá Brasil, 10 deterministic and stochastic statistical
models were tested to predict malaria cases from 1997 to 2016. Deterministic models
performed better, and the ARIMA model was the best for predicting future scenarios [41].

An agent-based model validated malaria incidence data collected in Chimoio, Mozam-
bique [42]. In recent years an increase usage of time series techniques has enabled better
results [42].

The ARIMA (2,2,1) (1,1,1) 52 models in this study provide the optimal approach to
forecast malaria cases per week over the years for different age categories. The goodness
of fit was 68.15% for malaria cases of children under five years old and 73.2% for malaria
cases of individuals older than five years old. In Chimoio in 2018, a similar study indicated
an ARIMA (2,1,0) (2,1,1) model with a goodness of fit of 72.5% [12]. In the Philippines,
ARIMA (2,1,0) was found to be the appropriate model to predict malaria incidence using
weekly data [43]. Similar studies were carried out in Ghana, Afghanistan, Nigeria, Zambia,
and India using monthly data with comparable results [7,43–46].

The ARIMA model of this study is robust, inexpensive, and can predict the expected
number of malaria cases. This model can contribute to timely prevention and control
planning measures such as awareness campaigns, correct times and places to spray, and
elimination of vector breeding places. As a result, malaria reduction can occur, saving lives
and improving the livelihood of Sussundenga residents. Nowadays, with the advent of
GIS, computers, and more real-time data available, weekly planning is advised, reducing,
for example, medicine waste and expiring test kits, especially in developing countries
where resources for health services are scare.

5. Limitations of the Study

This study result may be over- or underestimated since there are generally under-
reported cases, especially from places lacking health centers, while some cases patients
may be diagnosed more than once a year, be self-medicated, or use traditional healers [23].
The weekly malaria missing data was 13%, and missing data proportion is directly related
to the quality of statistical inference, although there is no established cutoff regarding an
acceptable percentage of missing data for valid statistical inferences [44]. One advantage of
using the ARIMA approach is the relative simplicity and stability of the model in predict-
ing malaria cases in a context where political unrest and poor resources lead to a lack of
detailed data [7].

6. Conclusions

The findings indicate that cases are decreasing among children under five years old
and are increasing slightly in individuals older than five years old. The P. falciparum case
occurrence presents a weekly temporal and spatial pattern, peaking during the wet season.
Based on the temporal distribution and modelling using ARIMA, more efficient strategies
that target this seasonality can be implemented to reduce the overall malaria burden in
the Sussundenga District and regionally. The model can be used to test other infectious
diseases, and other models should also be considered.
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