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Efforts at finding potential biomarkers of tolerance after kidney transplantation have been
hindered by limited sample size, as well as the complicated mechanisms underlying
tolerance and the potential risk of rejection after immunosuppressant withdrawal. In this
work, three different publicly available genome-wide expression data sets of peripheral
blood lymphocyte (PBL) from 63 tolerant patients were used to compare 14 different
machine learning models for their ability to predict spontaneous kidney graft tolerance. We
found that the Best Subset Selection (BSS) regression approach was the most powerful
with a sensitivity of 91.7% and a specificity of 93.8% in the test group, and a specificity of
86.1% and a sensitivity of 80% in the validation group. A feature set with five genes (HLA-
DOA, TCL1A, EBF1, CD79B, and PNOC) was identified using the BSS model. EBF1
downregulation was also an independent factor predictive of graft rejection and graft loss.
An AUC value of 84.4%was achieved using the two-gene signature (EBF1 and HLA-DOA)
as an input to our classifier. Overall, our systematic machine learning exploration suggests
novel biological targets that might affect tolerance to renal allografts, and provides clinical
insights that can potentially guide patient selection for immunosuppressant withdrawal.

Keywords: machine learning, kidney transplantation, PBMC, tolerance, biomarker
Abbreviations: AR, acute rejection; AUC, area under the curve; BIC, Bayesian Information Criterion; BSS, best subset
selection; CR, chronic rejection; DEGs, Differentially expressed genes; E-Net, elastic network; GEO, Gene Expression
Omnibus; GO, Gene Ontology; HV, healthy volunteers; KKNN, weighted k-Nearest Neighbor; KNN, k-Nearest Neighbor;
LDA, Linear Discriminant Analysis; LOOVE, leave-one-out cross-validation; MARS, Multivariate Adaptive Regression
Splines; ML, machine learning; NPV, negative predictive value; PBL, peripheral blood lymphocyte; PBMCs, peripheral
blood mononuclear cells; PCA, principal component analysis; PCs, Principal components; PPV, positive predictive value;
QDA, Quadratic discriminant analysis; RBF, radial basis function; SI, standard immunotherapy; SVM, support vector
machine; RBF, radial basis function; XGBoost, eXtreme Gradient Boosting.

org July 2021 | Volume 12 | Article 6958061

https://www.frontiersin.org/articles/10.3389/fimmu.2021.695806/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.695806/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.695806/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.695806/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:jmarkmann@mgh.harvard.edu
mailto:sdeng10@126.com
https://doi.org/10.3389/fimmu.2021.695806
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2021.695806
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2021.695806&domain=pdf&date_stamp=2021-07-08


Fu et al. ML-Based Kidney Tx Tolerance Prediction
BACKGROUND

While modern immunosuppressive treatments have significantly
improved the graft survival of kidney transplantation, they also
result in a multitude of unwanted side effects including increased
susceptibility to infection, chronic allograft injury, and
malignancy (1, 2). Operative tolerance, a state of long-term
allograft acceptance without continuous immunosuppression, is
an important tenet for the success of solid organ transplantation
(3, 4). Numerous studies on tolerance have been conducted to
find biomarkers in peripheral blood mononuclear cells (PBMCs)
predictive of renal allograft tolerance (3, 5–10). Spontaneous
allograft tolerance in kidney transplantation appears to be far
less frequent than in liver transplantation (3, 5, 11), limiting the
numbers of patients available for tolerance biomarker studies.
Although prior meta-analysis investigations have sought to
identify key biomarkers for tolerance (3, 5–8, 12), the potential
influence of the diverse RNA sequencing platforms used across
the existing studies has remained a confounding variable. Several
published methods address the problem of integrating data across
platforms (13, 14). Nevertheless, when sequencing platforms vary,
the sample management and gene expression profiles can differ
substantially. For instance, the same probe may yield different
gene segments on different platforms. This limitation can be
addressed, however, by combining the different existing databases
based on the same platform, which would maintain the probes
and exactly match the genes mapped.

Recent advances in machine learning (ML) have allowed for
efficient models for prediction, which can detect novel hidden
patterns within large biomedical databases more effectively than
conventional methods (15, 16). ML can be especially powerful
when nonlinear interactions between the predictors exist in a
high-dimensional feature space (15, 17). Indeed, ML is starting to
become widely applicable for kidney disease prediction and
identifying at-risk individuals in a variety of clinical scenarios
(3, 10, 18). Nonetheless, the predictive power of most existing
ML studies tends to vary from model to model, and any
parameter changes in the algorithm can significantly impact
the final prediction or model output. Although existing allograft
tolerance studies have generated many biologically relevant gene
lists, the overlap among these different studies is generally poor
(12), likely due to small sample sizes, as well as inconsistent
models and parameters.

Here, we present an ML-based analytical solution that
circumvents many of the aforementioned challenges by
combining existing genomic microarray databases based on the
same platform (GPL570). Using PBMC samples from 63 tolerant
patients (19 in the training group, 12 in the test group, 22 in
Immune Tolerance Network (ITN), and 10 in Indices of
Tolerance (IOT), we systematically compare 14 different
prediction models to determine the optimal model parameters
and key gene features that are consistently predictive of renal
allograft tolerance. Altogether, our unbiased ML approach
successfully mines for features that are robustly associated with
renal allograft tolerance, and suggests the optimal timing of
immunosuppressant withdrawal with a low risk of acute or
chronic rejection.
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MATERIALS AND METHODS

Microarray Data Pre-Processing
Publicly available PBMC microarray data on tolerance studies
after renal transplantation using the GPL570 platform
(Affymetrix Human Genome U133 Plus 2.0 Array) were
downloaded from the GEO database (www.ncbi.nlm.nih.gov/
geo/). Tolerant (TOL) recipients were defined as patients who
had not received immunosuppression, with stable renal function
(serum creatinine levels < 25% of baseline or < 150 lmol/L) for at
least 1 year. Stable function (STA) recipients were patients who
took standard immunosuppression (SI) and had stable renal
function (same criteria as TOL) for at least 1 year. Lastly, healthy
volunteers (HV) were individuals with a normal white blood cell
count, and no known history of renal/concomitant diseases for at
least 6 months prior to the study. TOL and STA samples were
based on a histopathologic examination more than 6 months
post-transplantation. The ratio of STA and TOL samples
included was approximately 1:1. The gene expression matrix
was normalized using the gcRMA algorithm (19). After k-
Nearest Neighbor (KNN) imputation (using the R package
impute) (20) for the raw expression data matrix, surrogate
variable analysis was applied to adjust for batch effects (21).
Differentially expressed genes (DEGs) were analyzed using the
Empirical Bayes method based on limma (22). Log2 absolute fold
change >1 (FDR adjusted P < 0.05) was set as the cut-off value to
identify significant DEGs. The Go enrichment analysis was
performed in R (version 3.6.3) and the codes are available on
GitHub (https://github.com/wangshisheng/EnrichVisBox).
Finally, hierarchical clustering analysis was performed using
one minus Pearson’s correlation coefficient method.

Establishment of Predictive Models
DEGs identified were used to predict stable (STA) or tolerant
(TOL) status. The dataset was divided into training and test sets by
3:2 randomization without replacement. Fourteen models were
established to assess the predictive accuracy of tolerance: Logistic
Regression (LR), Linear Discriminant Analysis (LDA) (23),
Quadratic discriminant analysis (QDA), Multivariate Adaptive
Regression Splines (MARS) (24), best subset selection (BSS, leaps
package), ridge regression (25), elastic network (E-Net), the lasso
regression (Lasso), kNN Classification (23), support vector
machine (SVM) with radial basis function (RBF) kernel
(package e1071), classification tree (package rpart), random
forest (package randomForest) (26), and eXtreme Gradient
Boosting (XGBoost) (27). The packages indicated in parentheses
are available open source in R version 3.6.3. In addition to
supervised ML methods, the unsupervised principal component
analysis (PCA) was also utilized (28), as a measure of comparison
for the performance of the ML methods being tested.

Assessment of Prediction Models and
Validation of Key Gene Features
Predictive of Tolerance
Classification algorithms have to employ a balance penalizing
poorly predictive variables and overfitting the data. To minimize
July 2021 | Volume 12 | Article 695806
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any overfitting or underfitting, different methods to corroborate
our observations were applied. For example, Bayes’ theorem was
adopted for LDA model prediction. For the MARS model, k-fold
cross-validation (k=3) was applied, and the additive model was
repeated without interactions. Bayesian Information Criterion
(BIC) was used to establish the most optimal BSS model. Leave-
one-out cross-validation (LOOVE) was used as the resampling
method, and a and l combinations were exhausted by grid search
(using the R package caret) and selected in the training group in
the E-Net model. In Ridge, Lasso, and E-Net models, the k-fold
cross-validation (k=5) was introduced using the glmnet package.
LOOVE and caret were also used in KNN to select the optimal k.
Kappa, calculated as (probability of agreement - probability of
expected outcome)/[1 - (probability of expected outcome)], was
used to evaluate the efficiency of a model. Furthermore, to
enhance the accuracy of the different ML models, several
weighted distance methods, including rectangular, triangular,
and epanechnikov in weighted kNN (KKNN package) were
examined in the KNN model. We also employed different
kernels, including the linear kernel, polynomial kernel, RBF
kernel, and sigmoid kernel, for the SVM model. The Gini index
is a robust measure of the dispersion of a variable’s distribution,
and Gini weighting has been shown to provide a sensitive method
of feature selection, including with kernel ML algorithms (29).
Thus, the Gini index was used to improve the efficiency of the
classification tree. For the XGboost model, the k-fold cross-
validation (k=5) and the caret package were utilized to resample
data and tune parameters. ROC curve or the confusion matrix,
including area under the curve (AUC), accuracy, sensitivity,
specificity, positive predictive value (PPV), and negative
predictive value (NPV) were calculated.

Prediction Assessment and Validation of
Renal Graft Rejection
The predictive power of the different models was validated in
GSE14655 (data set 2, based on GPL8136), including 22 TOL
samples collected by the ITN in the United States, and 10 TOL
samples by the IOT in Europe. The cutoff point differs when
sequencing platforms vary. We calculated the new optimal cutoff
in ITN using the 5-gene signature, and validated the findings in
IOT (7). The expression values of the 5-gene signature above the
cutoff were classified as TOL, those below as STA. To assess the
prediction of graft rejection, the expression data in GSE21374
(n=282) were transformed into Z scores (30). Z score > 1.0 was set
as the cut-off for high expression, Z score < -1.0 was set as the cut-
off for low expression, and Z scores between -1.0 and 1 were
defined as normal or mean expression. Each gene was tested
independently via Cox regression using the RegParallel package
(https://github.com/kevinblighe/RegParallel) in R.

Statistical Analysis
Kaplan-Meier and log-rank methods were used for graft rejection
prediction. Shapiro-Wilk normality test or Kolmogoov-Smirnov
test was used to assess whether the data belong to a Gaussian
distribution. Differences between TOL and STA groups were
analyzed using the Student’s t-test or Kolmogorov-Smirnov test.
Frontiers in Immunology | www.frontiersin.org 3
FDR-adjusted P < 0.05 was considered statistically significant. All
data analysis was performed in the statistical programming
language R (version 3.6.3).
RESULTS

Identification and Analysis of Differentially
Expressed Genes
Due to the inherently low number of TOL subjects profiled in
existing studies of renal allograft tolerance, we included fewer STA
samples in the training dataset to maintain a 1:1 ratio of STA: TOL
samples for designing our ML classifiers. PBMC gene expression
data from 31 TOL samples, 39 STA samples, and 24 HV samples
across GSE22707 (8) and GSE22229 (3) were combined in dataset 1.
Data from 32 TOL samples (22 in ITN, and 10 in IOT), and 60 STA
samples were used for validation. The demographic characteristics of
the patient cohorts are shown in Supplementary Table S1.
Compared to the STA samples, there were 149 DEGs (Log2|fold
change| > 1 and adjusted P < 0.05) in the TOL samples, among
which 108 transcripts were upregulated and 41 transcripts were
downregulated (Figure 1A). Compared to the HV samples, there
were 64 DEGs in the STA samples (2 upregulated and 62
downregulated transcripts), and 3 DEGs in the TOL samples (1
upregulated and 2 downregulated transcripts, Figure 1A).
Interestingly, TUBB2A and TUBB2B were upregulated in STA
PBMCs when compared with HV and TOL PBMCs. Additionally,
60 genes were found to be significantly downregulated in STA
PBMCs when compared with HV and TOL PBMCs (Figure 1B).
Two genes –EGR1 and EIF5/SNORA28– were downregulated in
TOL PBMCs when compared with HV and STA PBMCs. There
were 21 co-DEGs among dataset 1 and dataset 2 (ITN and IOT
respectively, Figure 1B, and Supplementary Figure S1, Table S2).
Gene Ontology (GO) analysis revealed that seven pathways were
significantly enriched, five of which were B cell-related (Figure 1C).
Pearson’s correlation analysis of the identified DEGs is shown in
Figure 1D, and the characteristics of STA and TOL samples are
displayed in Figure 1E using the top 2 principal components (PCs).

Comparative Analysis of the Predictive
Power of Linear Models
Among linear models, the AUC values were 79.2% for LR, 83.3%
for LDA, 79.2% for QDA, and 75.0% for MARS in dataset 1 when
seven gene features (BTLA, FCRL2, TCL1A, EBF1, AKR1C3,
CD79B, PNOC) were included (Figure 2A). The generalizability
and prediction of tolerance by these models were validated in
dataset 2, wherein the AUC for LR was 90.8%, LDA was 94.2%,
QDA was 74.4%, and MARS was 95.6% (Figure 2B). An AUC of
93.8% was obtained for BSS in dataset 1 and 87.2% in dataset 2
when five gene features (HLA-DOA, TCL1A, EBF1, CD79B, and
PNOC, Supplementary Table S2) were included (Figures 3A, B),
whereas an AUC of 88.5% was obtained for Ridge regression
using same gene features (Figures 3C, D). In contrast, the Lasso
model had an AUC of 87.0%, compared to an AUC of 91.7% with
E-Net (Figure 3E). The AUC for Ridge was 90.8%, for Lasso was
83.3%, and for E-Net was 91.4% in dataset 2 (Figure 3F). The
July 2021 | Volume 12 | Article 695806
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Ridge, Lasso, and E-Net models were then validated with a class/
auc type measure. After k-fold cross-validation (k=5), the Ridge
model attained the minimum binomial deviance using loglmin
(minimum standard error, Supplementary Figure S2A). The
maximum AUC was achieved using loglmin when the type
measure was auc/class in dataset 1 (Supplementary Figures
S2B, C). ROC analysis showed consistently high AUC values
irrespective of whether the loglmin or logl1se (one standard
error away from the minimum standard error) was used in
dataset 2 (Supplementary Figure S2D). The Lasso model
resulted in minimum binomial deviance when loglmin was
used and four genes were included (Supplementary Figure 2E).
The maximum AUC was achieved with this four-feature gene set
when type measure was “auc” in datasets 1 and 2 (Supplementary
Figures S2F–H). Because Lasso uses an L1 regularization which
shrinks noninformative feature coefficients to zero, it has
inherently fewer gene features, which may lend itself to easier
translational applications. Similarly, consistently high AUC
values were obtained with the E-Net models using loglmin or
Frontiers in Immunology | www.frontiersin.org 4
logl1se (Supplementary Figures S2I–K). The E-Net model with
5 genes obtained the minimum binomial deviance and the
maximum AUC using loglmin and an auc type measure
(Supplementary Figures 2I–K).

Prediction Assessment and Validation of
Nonlinear Models
Among the nonlinear models, kernel SVM had an accuracy of
85.7% and a Kappa value of 0.67 in dataset 1, and an 89.1%
accuracy in dataset 2 (Table 1). In contrast, the random forest
model obtained a minimum error and an accuracy rate of 71.43%
(trees = 12; Table 1 and Supplementary Figure S3A). The Gini
index was used to weigh features as described in the methods, and
gene features used in the classification tree were those with the
highest MeanDecreaseGini values (Supplementary Figure S3B).
Meanwhile, XGBoost had an AUC of 84.1% in dataset 1 and
92.2% in dataset 2 (Supplementary Figure S3C); the additive
benefits of including more features in the model input are shown
in Supplementary Figure S3D. Although the classification tree
A

D

E

C

B

FIGURE 1 | Identification of differentially expressed genes. (A) Venn diagram of the DEGs in dataset 1 is shown. (B) There were 21 co-DEGs among dataset 1, ITN
and IOT in dataset 2. (C) Pearson correlation analysis of the 21 co-DEGs is shown. (D) The heatmap and Gene Ontology (GO) enrichment analysis of the co-DEGs
in dataset 1 is demonstrated. (E) The top 2 PCs were used to display the characteristics of STA and TOL. *P < 0.05
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had a sensitivity and specificity > 80.0%, based on computational
efficiency and overall accuracy, SVM with a linear kernel
appeared to be the best model for tolerance prediction using
five gene features.
Frontiers in Immunology | www.frontiersin.org 5
Next, we used PCA to compare this unsupervised method with
the other supervised and semi-supervisedMLmethods used in our
analysis. Using the same five genes – HLA-DOA, TCL1A, EBF1,
CD79B, and PNOC – we found that the first three PCs accounted
A B

FIGURE 2 | Prediction assessment and validation of the linear models. (A) The AUCs were 79.2% for the LR, 83.3% for LDA, 79.2% for QDA, and 75.0% for MARS
in dataset 1. (B) The AUCs were 90.8% for LR, 94.2% for LDA, and 74.4% for QDA in dataset 2.
A C

B D

E

F

FIGURE 3 | Prediction assessment and validation of BSS, Ridge, Lasso, and E-Net. (A) A minimum BIC score was obtained when five gene features (HLA-DOA,
TCL1A, EBF1, CD79B, and PNOC) were included. (B) The AUC was 93.8% for BSS in dataset 1, and 87.2% in dataset 2. (C) The coefficient plot of the Ridge
model is shown. (D) An AUC of 88.5% for the Ridge, 87.0% for the Lasso, and 91.7% for the E-Net was obtained in dataset 1. (E) The coefficient plot of the Lasso
model is shown. (F) AUC values of 90.8% for Ridge, 83.3% for Lasso, and 91.4% for E-Net were obtained in dataset 2.
July 2021 | Volume 12 | Article 695806
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for ~80% variance in the data (Supplementary Figure S4A), and
separated TOL from STA patients in the test groups
(Supplementary Figure S4B). Using the top three PCs, the
model achieved an AUC of 84.4%, sensitivity of 83.3% and a
specificity of 87.5% (Supplementary Figure S4C). This model
performed reasonably well in the validation dataset 2 with 90%
sensitivity and a 77.8% specificity, accurately classifying the TOL
and STA patients (Supplementary Figures S4D, E).

Prediction of Graft Rejection and Cox
Proportional Hazards Analysis
Using the Z-scale cut-offs obtained in the Cox analysis, subjects
were divided into high-, mid-, and low- expression groups as
described in the methods. Among the five gene features (HLA-
DOA, TCL1A, EBF1, CD79B, and PNOC) used in the BSS model,
HLA-DOA and EBF1 were found to be significantly associated
with renal allograft rejection (FDR-adjusted P < 0.05). The effects of
HLA-DOA and EBF1 on the overall survival are plotted in
Figure 4A. To further investigate whether the genes exert an
independent effect on graft rejection and survival, a proportional
hazards model was applied. We discovered that EBF1
independently predicted graft rejection (Figure 4B). Additionally,
patients in the group with a low expression of the 2-gene signature
Frontiers in Immunology | www.frontiersin.org 6
had poor outcomes, while higher expression was associated with a
longer surviving graft with stable function (Figure 4C).
Furthermore, HLA-DOA and EBF1 were included in or selected
by all the ML models that were successful in predicting renal
allograft loss (Figure 4D). An AUC of 84.4% was achieved using
the two-gene signature for tolerance prediction (sensitivity=0.83,
specificity=0.81) using BSS in the discovery dataset 1, while the
AUC was 73.6% in the validation dataset 2 (Figure 4E).
DISCUSSION

Analysis of long-term renal allograft tolerance induction in
human subjects remains challenging, largely due to an
extremely limited number of successful participants in existing
tolerance studies (3). Although allograft tolerance has been
studied with ML algorithms using LDA, existing studies have
had genome-wide expression data on a relatively small sample
size (3, 10), which in turn has curtailed the power of ML to
robustly forecast the genomic factors associated with tolerance.
To address this challenge, we merged data from three different
genome-wide expression studies. The resulting transcriptomics
dataset (GSE166865) together with IOT and ITN, being made
TABLE 1 | Confusion Matrix and Statistics using KNN, KKNN, SVM, Classification Tree, and Random Forest.

Model Dataset Prediction Reference Accuracy % Kappa Sensitivity % Specificity % PPV % NPV %

STA TOL

KNN Dataset 1 Test STA 11 3 71.43 0.43 75.00 68.75 64.29 78.57
TOL 5 9

Dataset 2 Validation STA 30 3 80.43 0.48 70.00 83.33 53.85 90.91
TOL 6 7

KKNN Dataset 1 Test STA 12 3 75.00 0.49 75.00 75.00 69.23 80.00
TOL 4 9

Dataset 2 Validation STA 30 3 80.43 0.48 70.00 83.33 53.85 90.91
TOL 6 7

SVM linear tune Dataset 1 Test STA 13 1 85.71 0.71 91.67 81.25 78.57 92.86
TOL 3 11

Dataset 2 Vaidation STA 34 3 89.13 0.67 70.00 94.44 77.78 91.89
TOL 2 7

SVM polynomial Dataset 1 Test STA 12 3 75.00 0.49 75.00 75.00 69.23 80.00
TOL 4 9

Dataset 2 Validation STA 33 4 84.78 0.54 60.00 91.67 66.67 89.19
TOL 3 6

SVM radial Dataset 1 Test STA 10 3 67.86 0.36 75.00 62.50 60.00 76.92
TOL 6 9

Dataset 2 Validation STA 33 4 84.78 0.54 60.00 91.67 66.67 89.19
TOL 3 6

SVM sigmoid Dataset 1 Test STA 15 4 82.14 0.62 66.67 93.75 88.89 78.95
TOL 1 8

Dataset 2 Validation STA 31 2 84.78 0.60 80.00 86.11 61.54 93.94
TOL 5 8

Classification Tree (party) Dataset 1 Test STA 14 3 82.14 0.63 75.00 87.50 81.82 82.35
TOL 2 9

Dataset 2 Validation STA 35 5 86.96 0.55 50.00 97.22 83.33 87.50
TOL 1 5

Random Forest Dataset 1 Test STA 12 4 71.43 0.42 66.67 75.00 66.67 75.00
TOL 4 8

Dataset 2 Validation STA 31 2 84.78 0.60 80.00 86.11 61.54 93.94
TOL 5 8
Ju
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publicly available with this work, includes 63 total tolerant
patients, the largest sample size to date among all human renal
allograft tolerance studies for ML exploration.

Different ML methods vary not only in their predictive abilities,
but also in terms of the penalty they impose on features that are not
as informative in forecasting the output. The latter naturally allows
for feature selection in a complex, high-dimensional space, and
consequently a comparison of diverse models allows for the
Frontiers in Immunology | www.frontiersin.org 7
selection of optimal biomarkers for clinical application. Using the
most statistically significant 31 DEGs between tolerance and
chronic rejection (CR), the Brouad group was successfully able to
discern tolerance from CR with a specificity of 99% (5, 31).
Identifying individuals with allograft tolerance with high
confidence is important for clinicians to safely minimize or
withdraw immunosuppression without rejection (6). Sagoo et al.
had previously identified 10 DEGs among TOL, STA, CR, and HV
A

C

B

D

E

FIGURE 4 | HLA-DOA and EBF1 are associated with graft rejection and allograft survival. (A) The survival curves for HLA-DOA and EBF1 are plotted (n = 282).
(B) EBF1 independently predicted renal graft rejection. (C) Patients with a low expression of the 2-gene signature had poor outcomes, while those with higher
expression had a longer graft with stable function. (D) The rejection curve for HLA-DOA and EBF1 are plotted. The patients with a low expression of the 2-gene
signature experienced faster graft loss. (E) An AUC of 84.4% could be achieved using EBF1 and HLA-DOA with the BSS model, while an AUC value of 73.6% could
be achieved in the validation dataset 2. **P < 0.01
July 2021 | Volume 12 | Article 695806
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groups that resulted in a sensitivity of 80.6% and a specificity of
89.0% for their predictive model (7). Using elastic nets, they
reported a 9-gene signature that further increased the model
sensitivity to 92% and specificity to 88% (10). Similarly, using
LDA Newell et al. defined three B cell-related genes (IGKV4-1,
IGLL1, and IGKV1D-13) from 249 DEGs, and found that this 3-
gene signature resulted in a PPV of 83% and an NPV of 84% (3).
Subsequently, they found that IGKV1D-13 showed a consistent
increase in patients rendered tolerant via chimerism induction, and
those individuals maintained minimal immunosuppression akin to
spontaneously tolerant patients (32). Building on these efforts, 24 B
cell-related genes have been implicated as informative in enhancing
the predictive ability of ML models (8). Using logistic regression,
three of these transcript signatures (KLF6, BNC2, and CYP1B1)
have been found to accurately classify the TOL and STA
individuals with a sensitivity of 84.6% and a specificity of 90.2%
(33). In the current study, we systematically examined 14 different
ML models and found that BSS obtained a sensitivity of 91.7% and
a specificity of 93.8%. These predictive statistics were robust across
a range of cross-validations, and to our knowledge, outperform
existing published ML models that have sought to predict renal
allograft tolerance. Notably, different immunosuppression time
(156 vs. 7 months) between the 2 groups may affect the
differential expression of genes. To eliminate the potential
influence, we combined the 2 groups to obtain a stably expressed
gene signature across the groups. However, further research on
immunosuppression time is still needed to examine its importance
on DEGs.

Among the BSS selected set of five genes, four B cell-specific
genes – HLA-DOA, TCL1A, EBF1, and CD79B – were further
confirmed as being predictive of tolerance status, insinuating at
the vital role of B cells in promoting and maintaining tolerance.
TCL1A, PNOC, and CD79B have been reported as valuable
biomarkers of tolerance in prior studies (7, 8, 12). For example,
TCL1A expression has been reported to be highest in immature
cells, and lower or even absent in mature B cells (34). Herein we
found that TCL1A expression was increased in the PBMCs of
TOL patients compared to the STA patients. This is in
accordance with the literature wherein increased TCL1A
expression has been observed in the STA PBMCs, and
decreased TCL1A has been reported in both the PBMCs and
isolated B cells in acute rejection (AR) (35, 36).

The B cell-specific genes that comprise our model are particularly
revealing. For instance, the B-cell-related biomarker of tolerance
EBF1 is upregulated in the tolerant patients when compared to the
STA patients. EBF1 is crucial for B lineage commitment (37).
Choi et al. performed gene expression analysis on subjects with
AR and TOL, and found that both EBF1 and TCL1A were
upregulated in the tolerant patients, highlighting their role in
tolerance induction (38). Herein we found that EBF1 expression
was upregulated in tolerant patients in comparison with STA
patients, and EBF1 could also predict the chronic graft rejection
and graft loss. This suggests a possible role for EBF1 in B cell-
mediated tolerance and renal graft survival. Similarly, HLA-DOA,
together with HLA-DOB, encodes HLA-DO (39), and inhibits B
cell-mediated antigen presentation (41). Downregulation of HLA-
Frontiers in Immunology | www.frontiersin.org 8
DOA in children after liver transplantation enhances antigen-
presentation by B cells (40, 41). Yet, whether and how HLA-DOA
might affect allograft tolerance has remained unclear. Here we found
that HLA-DOA is an important predictive feature in the BSS model,
and tolerant patients had a significantly higher HLA-DOA
expression in comparison to STA. Survival analysis using the two-
gene signature (EBF1 and HLA-DOA) further substantiates an
important role for EBF1 and HLA-DOA, and points to novel
hypotheses that can be readily tested experimentally.
CONCLUSIONS

We compared 14 different machine learning models for renal
allograft tolerance prediction using genomic features from PBMC
microarray data, and found that Best Subset Selection (BSS) was the
most robust method for tolerance prediction with both specificity
and sensitivity > 90%. We also identified a novel feature set
consisting of five genes, four of which were B cell-related, that
consistently predicted tolerance and resulted in better ML
performance than other existing models. Our findings collectively
provide clinically actionable insights that can guide practitioners on
novel biomarkers associated with tolerance, and consequently
identify patients for whom immunosuppression withdrawal
would have a relatively low risk of acute or choric rejection.
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