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Abstract: Comparative molecular similarity index analysis (CoMSIA) was used to establish a
three-dimensional quantitative structure–activity relationship (3D-QSAR) model with structural
parameters of quinolones as the independent variables and plasma protein binding rate (logf b) as the
dependent variable to predict the logf b values of remaining quinolones in this study. In addition,
the mono-substituted and bis-substituted reaction schemes that significantly influenced the plasma
protein binding rate of quinolones were determined through an analysis of the 3D-QSAR contour
maps. It was found that the replacement of small groups, hydrophobic groups, electronegative
groups, or hydrogen bond acceptor groups at the substitution sites significantly reduce the logf b

values of quinolone derivatives. Furthermore, the mechanism of decrease in binding rate between
trovafloxacin (TRO) derivatives and plasma protein was revealed qualitatively and quantitatively
based on molecular docking and molecular dynamics simulation. After modification of the target
molecule, 11 TRO derivatives with low plasma protein binding rates were screened (reduced by
0.50–24.18%). Compared with the target molecule, the molecular genotoxicity and photodegradability
of the TRO derivatives was higher (genotoxicity increased by 4.89–21.36%, and photodegradability
increased by 9.04–20.56%), and their bioconcentration was significantly lower (by 36.90–61.41%).

Keywords: fluoroquinolone; plasma protein binding rate; three-dimensional quantitative
structure–activity relationship; molecular modification; molecular docking; molecular
dynamics simulation

1. Introduction

Quinolones are synthetic antibacterial agents developed from nalidixic acid [1], and they share
a common structure with pyridone acid [2]. Since the 1980s, the production and utilization
of fluoroquinolones have increased rapidly because of their good pharmacokinetic properties,
broad antibacterial spectrum, strong antibacterial activity, high bioavailability and long half-life.
Their metabolization is relatively slow. Thus, they have become the most widely used antibacterial
agents in clinical practice [3]. However, this widespread use of quinolones has led to a series of toxic
side effects on organisms [4].

Studies have shown that when drugs are ingested, they bind to plasma proteins in the blood
and form drug-protein complexes [5]. As antigens, fluoroquinolones acquire immunogenicity when
combined with plasma proteins, thus stimulating the body to produce a drug-antigen-specific antibody.
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This antibody binds to a drug-bound leukocyte or to a drug to form an antigen–antibody complex,
which subsequently binds to leukocytes with an IgG Fe (Immunoglobulin G-Fe, IgG Fe) receptor to
cause leukopenia [6]. Therefore, for reliable drug design, scientific prediction of the functional and
environmentally friendly parameters of compounds is required. In computer-aided drug design,
known knowledge about drug molecules and biological target cells are used to discover and design
novel drug molecules through theoretical simulation and calculation [7]. Although the rate at which
drugs bind to plasma protein can be measured with experimental methods such as ultrafiltration,
equilibrium dialysis, and microdialysis [8], such measurements generally require complicated processes
and often are expensive. Therefore, it is very important to estimate or to predict the plasma protein
binding rate of drugs by using a theoretical calculation method for rational screening and design of
novel drugs.

In this study, we selected quinolone antibiotics as the research object and we used the
three-dimensional quantitative structure–activity relationship (3D-QSAR) model to construct a CoMSIA
module. Therefore, we used partial least squares regression analysis to establish the quantitative
relationship between the plasma protein binding rate (logf b) of quinolones and their structure. With this
model, we estimated the logf b values of 16 quinolones derivatives. According to the contour maps
of quinolone (template molecule), the modified mono-substituted and bis-substituted sites were
selected accurately, and trovafloxacin (TRO) was selected as the template molecule; thus, 11 types
of TRO derivatives were screened. Then, we used the Gaussian 09 software to calculate the positive
frequency of TRO derivatives and changes in the Gibbs free energy of the 11 substitution reactions.
Thereafter, the function (plasma protein binding rate (Logf b), genotoxicity (negative logarithm of the
Lowest Observed Effect Concentration, pLOEC)) and environmental-friendliness (bioconcentration
(logKow), photodegradability (logt1/2)) of the TRO derivatives were evaluated. The results indicated
that TRO derivatives exhibited good stability (stable in the environment). While their genotoxicity
and photodegradability increased, their bioconcentration decreased. Finally, changes with time in the
trajectories of the complexes of trovafloxacin and its representative derivatives with plasma protein
were simulated by molecular docking and molecular dynamics to verify and supplement microscopy
data on the binding of quinolones to plasma protein. This study aimed to provide an applicable
theoretical method for the research, prediction, and design of new quinolones with a lower plasma
protein binding rate in clinical application and lower environmental damage.

2. Materials and Methods

2.1. Establishment of 3D-QSAR Model of Quinolones with Low Plasma Protein Binding Rate

3D-QSAR analysis was performed using the software SYBYL-X2.0 [9]. The plasma protein binding
rate data (f b) of 16 quinolones were obtained by reference [10], of which 12 were fluoroquinolones.
For convenience in QSAR analysis, the logarithms of fb (logf b) were considered as the indicators of the
plasma protein binding rates of quinolones.

In order to calculate the parameters of the CoMSIA field, 16 logf b values of the quinolones were
successively input into the training table, and the parameters of the CoMSIA field were calculated
automatically by SYBYL-X2.0 through autofill. Partial least squares (PLS) analysis was performed to
establish a relationship between the structure and biological activity of the target compounds. In the
PLS analysis, the compounds from the training set were cross-validated using the leave-one-out method
to calculate the cross-validation correlation coefficient (q2) and the optimum number of components
(n). Then, regression analysis was performed with no validation to calculate the non-cross-validation
correlation coefficients (r2). Finally, the standard error of estimated (SEE) and test value (F) were
calculated to complete the establishment of the CoMSIA model [11–13].
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2.2. Evaluation of Functional Characteristics and Environmental-Friendliness of TRO Derivatives Using
3D-QSAR Model

The functional characteristics (plasma protein binding rate (logf b), genotoxicity (pLOEC)) and
environmental friendliness (bioconcentration (logKow), photodegradation (logt1/2)) of TRO derivatives
were evaluated using the QSAR or hologram QSAR (HQSAR) method. The plasma protein binding
rates (logf b) of the TRO derivatives were predicted using the 3D-QSAR model established in this article.
The genotoxicity (pLOEC) of the TRO derivatives was predicted using the HQSAR model established
by Zhao et al. [14] Bioconcentration (logKow) and photodegradability (logt1/2) were predicted using
the 3D-QSAR model established by Zhao et al. [15,16].

2.3. Interaction Characterisation between Fluoroquinolones and Plasma Protein Based on Molecular
Dynamics Simulation

Molecular dynamics simulations were performed using the Standard Dynamics Cascade module
in the software Discovery Studio (DS). The specific steps are the following:

(1) Initial structural examination and pre-treatment: The first steps in our molecular dynamics
simulation were to determine the initial structure, to compute the initial position and initial
velocity of each atom in the plasma protein structure, and to obtain plasma protein data from the
protein database PDB (ID:5NU7).

(2) Simulation system field: The molecular force field was the basis of this molecular simulation.
It was necessary to use the force field to reasonably constrain fluoroquinolone molecules before
and after modification to achieve accurate simulation of its system in virtual space. The Chemistry
at HARvard Macromolecular Mechanics (CHARMM) force field can obtain good results for
various simulation systems, such as small molecules and solvated large biological systems [17].

(3) Solvent effect: A solvent environment was added to the dynamics simulation process to make it
more realistic. Generally, physiological saline is the most frequently added solvent environment,
therefore it was also chosen for this research.

(4) Minimization of initial structure: After initial system preparation, minimization of system energy
was required to eliminate unreasonable molecular contact in the initial structure.

(5) Dynamics simulation: This simulation consisted of three main processes, heating, equilibration,
and production. The system before and after modification with fluoroquinolone was gradually
heated to reach the target temperature set in the system simulation. In the equilibration process,
the main parameters such as changes in plasma protein structure and temperature were monitored,
and the process provided support for system simulation. In the production process, the motion
trajectories of individual particles were calculated according to the Newtonian mechanics theory
and the predetermined interparticle interaction potential.

3. Results and Analysis

3.1. Establishment and Evaluation of Quinolone Plasma Protein Binding Rate 3D-QSAR Model

3.1.1. Establishment of 3D-QSAR Model Based on Plasma Protein Binding Rate

Logf b, the experimental value of the plasma protein binding rate of 16 quinolones, was used as
the data source. Thirteen quinolones were randomly included in the training set, and the remaining
3 quinolones were included in the test set to establish the 3D-QSAR model. By using SYBYL-X2.0,
the lowest-energy conformation of a molecule was selected as the dominant stable conformation,
and the geometries of these compounds were subsequently optimized using the Tripos force field with
Gasteiger–Hückel charges. Repeated minimizations were performed using the Powell method with
the maximum number of iterations set to 10,000 to obtain an energy convergence gradient value of
0.005 kJ/mol [18,19]. The optimized molecules were stored in the database for alignment. By selecting
the widely used trovafloxacin (TRO) as a template molecule, all molecules were aligned based on the
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pharmacophore characteristic elements as the common framework, as labelled in Figure 1. By using
the CoMSIA module, a QSAR model suitable for predicting the plasma protein binding rate (logf b) of
quinolones was established.
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3.1.2. Evaluation of 3D-QSAR Model of Quinolones’ Plasma Protein Binding Rate

The optimum number of components (n) of the CoMSIA model was found to be seven, and the
cross-validated correlation coefficient q2 was 0.677, indicating the good predictive ability of the model
(it is generally considered that a model has reliable predictive ability when q2 > 0.5) [20]. In addition,
the non-cross-validation correlation coefficient R2 was 0.998 (i.e., >0.9 and close to 1.0) [21,22]. q2 and
R2 represent predictive ability and self-consistency. [23–25] SEE was 0.013, and test value (F) was
471.679, indicating the good fitting and predictive abilities of the CoMSIA model [26].

Golbraikh and Tropsha [27] confirmed that strict QSAR model validation procedures should
include internal and external validation. The proposed model could not be evaluated using only
internal validation parameters such as q2, so the external validation method was applied to evaluate the
predictive ability of the proposed model. Moreover, the overall predictive ability of the CoMSIA model
was verified externally by predicting the activity of the independent test set compounds. The predictive
ability of the model is denoted by r2

pred, and it can be calculated as follows:

r2
pred = 1−

PRESS
SD

(1)

where SD is the sum of the squares of the deviations between the experimental values of the test
set compounds and the average of the experimental values of the compounds in the training set,
and PRESS is the sum of the squared deviations between the experimental values and the predicted
values of the compounds in the test set.

The activity of the test set was predicted using the established CoMSIA model (Table 1). According
to the experimental values and those predicted using the CoMSIA model, the correlation coefficient of
the test set prediction is 0.6879 (>0.6), indicating that the established 3D-QSAR model has a higher
external prediction ability [28].

3.2. Molecular Modification of Fluoroquinolone with Low Plasma Protein Binding Rate Based on Contour Maps

In the CoMSIA model, the contributions of the steric field (S), electrostatic field (E), hydrophobic
field (H), hydrogen bond donor field (D), hydrogen bond acceptor field (A) were respectively18.30%,
23.00%, 33.60%, 7.00%, and 18.10%. The results showed that logfb values of quinolones were affected
by the spatial effect, electrical distribution, hydrophobicity of groups and hydrogen bond donors
and receptors.
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Table 1. Experimental and model-predicted value of Logf b.

No. Compounds Experiment Predicted Relative
Error (%)

1 a Nalidixic acid 1.968 1.966 −0.13%
2 a Oxolinic Acid 1.886 1.893 0.35%
3 a Cinoxacin 1.833 1.830 −0.14%
4 b Rosoxacin 1.908 1.871 −1.96%
5 a Norfloxacin 1.415 1.417 0.14%
6 a Enoxacin 1.544 1.551 0.45%
7 a Ciprofloxacin 1.362 1.364 0.17%
8 a Enrofloxacin 1.544 1.526 −1.17%
9 a Difloxacin 1.531 1.536 0.30%

10 a Temafloxacin 1.447 1.438 −0.63%
11 b Ofloxacin 1.398 1.623 16.10%
12 a Levofloxacin 1.380 1.394 1.00%
13 b Rufloxacin 1.785 1.708 −4.33%
14 a Fleroxacin 1.462 1.457 −0.37%
15 a Sparfloxacin 1.362 1.362 0.02%
16 a Trovafloxacin 1.748 1.749 0.05%

a Training set; b Test set.

In this study, we selected trovafloxacin as the target molecule. In the contour maps generated
using the CoMSIA model (Figure 2), the steric field represented by the green region is distributed near
the 1-, 2-, 3-, 4-, and 5- substituents, indicating that the introduction of small groups at positions 1-, 2-,
3-, 4-, and 5- reduced the logf b values of the quinolones and reduced their binding rates to plasma
protein. The electrostatic field represented by the blue region is distributed near position 5-, indicating
that the introduction of electropositive groups at position 5- could reduce the logf b values of the
quinolones. The white region representing the hydrophobic fields was distributed at the 1- substituent,
indicating that the introduction of a hydrophobic group at position 1- could reduce the logf b values
of the quinolones. The hydrogen bond donor field represented by the cyan region is distributed at
positions 1- and 2-, indicating that the introduction of the hydrogen bond donor at positions 1- and 2-
could reduce the logf b values of the quinolones. The red region representing hydrogen bond acceptors
is distributed at the position 1- substituent, indicating that the introduction of the hydrogen bond
acceptor at position 1- could reduce the logf b values of the quinolones.
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Comprehensive analysis of the contour maps obtained using the CoMSIA model revealed that
position 1- was in the green, white, cyan, and red regions; position 2- was in the green and cyan regions;
positions 3- and 4- were in the green region; and position 5- was in the green and blue regions. Position
1- was affected by the steric field, hydrophobic field, and hydrogen bond acceptor field. In other words,
the introduction of small, hydrophobic, and hydrogen bond acceptor groups at this position was
advantageous for reducing the logf b values of the quinolones. Position 2- was influenced by the steric
and hydrogen bond donor fields, and the introduction of small and hydrogen bond receptor groups
at this site could reduce the logf b values of the quinolones. Positions 3- and 4- were affected by the



Int. J. Environ. Res. Public Health 2020, 17, 6626 6 of 18

steric field, and the introduction of small groups at these positions proved beneficial for reducing the
logf b values of the quinolones. The introduction of small and electronegative groups at this position
could reduce the logf b values of the quinolones, on account of position 5- was affected by the steric
and the electrostatic fields. Therefore, combining with the characteristics of trovafloxacin while not
affecting its main structure, sites 1- and 5- were modified in this study to replace CH3 (site 1-) with five
hydrophobic groups (-NO2, -C2H5, -C3H7, -SH and -OCH3) and H (site 5-) with two electronegative
groups (-SiH3 and -PH2). Finally, a total of 16 TRO derivatives were produced (Table 2).

Table 2. Predicted results of logf b and pLOEC of TRO derivatives.

No. Structure logf b Pred. f b Pred. Relative
Error (%) pLOEC Relative

Error (%)

Derivative-1 1-NO2-Trovafloxacin 1.738 54.702 −2.32% 8.102 4.89%
Derivative-2 1-C2H5-Trovafloxacin 1.738 54.702 −2.32% 8.203 6.20%
Derivative-3 1-C3H7-Trovafloxacin 1.724 52.966 −5.42% 8.445 9.33%
Derivative-4 5-SiH3-Trovafloxacin 1.722 52.723 −5.85% 9.374 21.36%
Derivative-5 5-PH2-Trovafloxacin 1.721 52.602 −6.07% 9.166 18.67%
Derivative-6 1-NO2-5-SiH3-Trovafloxacin 1.746 55.719 −0.50% 8.830 14.32%
Derivative-7 1-OCH3-5-SiH3-Trovafloxacin 1.735 54.325 −2.99% 9.008 16.62%
Derivative-8 1-OCH3-5-PH2-Trovafloxacin 1.736 54.450 −2.77% 8.650 11.99%
Derivative-9 1-SH-5-PH2-Trovafloxacin 1.733 54.075 −3.44% 8.856 14.66%
Derivative-10 1-C2H5-5-PH2-Trovafloxacin 1.628 42.462 −24.18% 8.594 11.26%
Derivative-11 1-C3H7-5-PH2-Trovafloxacin 1.648 44.463 −20.60% 8.821 14.20%
Derivative-12 1-H-Trovafloxacin 1.778 59.979 7.11% 7.684 −0.52%
Derivative-13 1-CH3-Trovafloxacin 1.769 58.749 4.91% 8.023 3.87%
Derivative-14 1-C2H3 -Trovafloxacin 1.756 57.016 1.82% 8.061 4.36%
Derivative-15 1-OCH3 -Trovafloxacin 1.772 59.156 5.64% 8.012 3.73%
Derivative-16 1-SH -Trovafloxacin 1.770 58.884 5.15% 8.156 5.59%

3.3. Evaluation of Functionality, Environmental-Friendliness, and Stability of TRO Derivatives Based on
HQSAR and QSAR Models

3.3.1. Functional Evaluation of TRO Derivatives Based on QSAR Model

The 3D-QSAR model of plasma protein binding rate constructed in this study and the HQSAR
model of fluoroquinolone genotoxicity (pLOEC), both established by Zhao et al. [14], were used
to evaluate the functional characteristics (plasma protein binding rate and genotoxicity) of 16 TRO
derivatives (Table 2).

The plasma protein binding rates of 11 TRO derivatives decreased by different extents
compared with that of trovafloxacin. The plasma protein binding rates of derivative-10
(1-C2H5-5-PH2-Trovafloxacin) and derivative-11 (1-C3H7-5-PH2-Trovafloxacin) decreased significantly
by 24.18% and 20.60%, respectively. In addition, the genotoxicity (pLOEC) of the 11 TRO derivatives
increased by different amounts compared to that of trovafloxacin (range of increase was 4.89–21.36%).
Genotoxicity means that quinolones selectively inhibit two enzymes that play a role in DNA synthesis
in bacteria, namely topoisomerases II and IV. This prevents replication, transcription, and repair of
bacterial DNA, thus making it impossible for bacteria to grow and multiply. Therefore, increased
genotoxicity can improve the medicinal effect of the drug.

In summary, the 11 TRO derivatives designed in this study have two beneficial effects on the
human body, first they reduced the adverse effects (plasma protein binding rate), then they also
enhanced the pharmacological effects (genotoxicity).

3.3.2. Evaluation of Environmental Friendliness of TRO Derivatives Based on 3D-QSAR Model

The QSAR model of bioconcentration (logKow) and photodegradation (logt1/2) of fluoroquinolones
constructed by Zhao et al. [15,16] was used to predict the bioconcentration and photodegradation of 11
TRO derivatives screened here (Table 3).
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Table 3. Predicted logKow and logt1/2 values of quinolone derivatives using QSAR models.

No. logKow Relative Error (%) logt1/2 Relative Error (%)

Trovafloxacin 2.436 2.267
Derivative-1 0.940 −61.41% 1.801 −20.56%
Derivative-2 1.537 −36.90% 1.994 −12.04%
Derivative-3 1.226 −49.67% 1.819 −19.76%
Derivative-4 1.319 −45.85% 2.001 −11.73%
Derivative-5 1.173 −51.85% 1.988 −12.31%
Derivative-6 0.991 −59.32% 1.806 −20.34%
Derivative-7 1.490 −38.83% 2.031 −10.41%
Derivative-8 1.412 −42.04% 2.062 −9.04%
Derivative-9 1.396 −42.69% 2.006 −11.51%

Derivative-10 1.166 −52.13% 2.023 −10.76%
Derivative-11 1.182 −51.48% 2.032 −10.37%

The bioconcentration of 11 TRO derivatives decreased by 36.90–61.41%, while their
photodegradability increased by 9.04–20.56%. The 11 TRO derivatives were less prone to enrichment
than trovafloxacin in the environment, and the residual parts were more easily photodegraded.

3.3.3. Evaluation of Stability of TRO Derivatives Based on Density Functional Theory

The binding rate to the plasma protein of 11 TRO derivatives designed by using the CoMSIA
model decreased to different amounts, and these decreases were beneficial from the viewpoint of
human health. To further achieve the derivatization of fluoroquinolones, it is necessary to characterise
the stability (stability in the environment) of the derivatives and to evaluate the difficulty of the reaction.

The positive frequency value of a molecule can directly reflect whether the molecule can remain
stable in the environment. When the positive frequency value of a molecule is greater than zero, it can
remain stable in the environment; otherwise, it cannot [29]. Therefore, density functional theory was
used to calculate the positive frequency values of 11 TRO derivatives to test their stability [30] (Table 4).

Table 4. Positive frequency calculations of quinolone derivatives.

No. Frequency Value (cm−1) No. Frequency Value (cm−1)

Derivative-1 15.16 Derivative-7 14.6
Derivative-2 13.77 Derivative-8 15.14
Derivative-3 13.79 Derivative-9 15.29
Derivative-4 18.05 Derivative-10 9.69
Derivative-5 14.25 Derivative-11 14.81
Derivative-6 18.65

According to Table 4, the positive frequency values of all the 11 TRO derivatives are greater than
zero, so the 11 derivatives designed herein can remain stable in the environment.

In addition to calculation of the positive frequency values of the TRO derivatives, the pathways
of substitution reaction between the 7 substituents (-SH, -C2H5, -C3H7, -SiH3, -NO2, -PH2, -OCH3)
and trovafloxacin were inferred (Figure 3). The Gibbs free energy change (∆G) of the 11 substitution
reactions were calculated using Formula (2) to judge the possibility of occurrence of the substitution
reaction pathways [31,32] (Table 5).

∆G =
∑

G(Product) −
∑

G(Reactant) (2)
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Table 5. Gibbs free energy change (∆G) of quinolones’ substitution reaction paths.

Reaction Paths
Gibbs Free Energy/(a.u.)

∆G/(kcal·mol−1)
For Reactants For Products

Path 1 −1704.0287 −1720.0301 −10,041.0544
Path 2 −1578.1252 −1594.1148 −10,033.6265
Path 3 −1617.4133 −1633.4027 −10,033.5255
Path 4 −1790.2267 −1806.2479 −10,053.4834
Path 5 −1841.3928 −1858.0118 −10,428.5490
Path 6 −1995.2549 −2011.2238 −10,020.6509
Path 7 −1905.2647 −1921.2198 −10,011.9674
Path 8 −1956.4308 −1972.9852 −10,388.0100
Path 9 −2240.1455 −2256.6822 −10,376.9232

Path 10 −1920.5175 −1937.0769 −10,391.2134
Path 11 −1959.8056 −1976.3648 −10,391.0352

The ∆G values of the 11 substitution reaction pathways were less than 0, indicating that the
substitution reactions can proceed spontaneously, and that the inferred substitution reaction pathways
were reasonable.

3.3.4. ADMET Prediction of Trovafloxacin Derivatives

DS software was used to predict the absorption (A), distribution (D), metabolism (M), excretion (E)
and toxicity (T) of TRO and its derivatives [33–37]. The aqueous solubility, human intestinal absorption,
blood–brain barrier penetration, cytochrome P450 2D6 inhibition, hepatotoxicity and plasma protein
binding rate were measured. Among them, the aqueous solubility of the molecule is closely related to
the distribution and delivery of the drug in the body, and is one of the key factors for the preparation of
a drug. Human intestinal absorption and blood–brain barrier can respectively influence the absorption
of drugs from the intestines and enter the brain tissue to exert their drug effects. Cytochrome P450
is the main metabolic enzyme of drugs and other internal and external sources. Its activity may be
inhibited or induced by drugs, which is essential for the metabolism of drugs in the body. In addition,
the liver is an important organ for drug metabolism and is easily damaged by drugs; drugs will bind
to plasma proteins at a certain ratio after being taken, so drugs are divided into bound and free types
in the body, and only the free type has drug activity, that is, drugs are not combined with plasma
protein [38].

Good drugs should have suitable aqueous solubility, good blood–brain barrier penetration,
low toxicity and no inhibition of cytochrome P450, and mainly present the free type in plasma and
have good intestinal absorption [39]. Through the prediction of TRO, derivative-10 and derivative-11,
it was found that the 25 ◦C water solubility (the level is 2, low) and the human intestinal absorbability
(the level is 0, good) of derivative-10 and derivative-11 relative to TRO were unchanged in the level.
It showed that derivative-10 and derivative-11 have good solubility and intestinal absorption, and meet
the standards of drug preparations. The blood–brain barrier penetration of the two derivatives
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was improved relative to TRO, hepatotoxicity was reduced, and there was no inhibitory effect on
cytochrome P450 (Bayesian score was less than 0.162). However, the plasma protein binding rate
of derivative-11 increased relative to TRO, while derivative-10 (level 0, good) remained unchanged.
Therefore, among all derivatives, derivative-10 has the most characteristics of a new drug and is better
than the target molecule TRO.

3.4. Analysis of Mechanism of Decrease in TRO Derivatives’ Plasma Protein Binding Rate Based on
Molecular Docking

The target molecule and the 11 TRO derivatives were docked with plasma protein (ID:5NU7) by
using Discovery Studio [40], and the relationship between the scoring function and the binding rate
was further discussed (Table 6).

Table 6. Docking results of target molecule and TRO derivatives with plasma protein.

No. Libdock Scores Relative
Error (%)

Trovafloxacin 74.7975
Derivative-1 81.1813 8.53%
Derivative-2 65.8328 −11.99%
Derivative-3 67.9220 −9.19%
Derivative-4 66.0899 −11.64%
Derivative-5 63.7173 −14.81%
Derivative-6 64.7691 −13.41%
Derivative-7 66.6251 −10.93%
Derivative-8 68.0351 −9.04%
Derivative-9 64.7427 −13.44%

Derivative-10 56.5253 −24.43%
Derivative-11 61.4623 −17.83%

Except for derivative-1, the scores of the other fluoroquinolone derivatives were lower than that of
trovafloxacin, and the level of decrease was consistent with the decrease in the plasma protein binding
rate. For example, the plasma protein binding rates of derivative-10 and derivative-11 were 24.18% and
20.60% lower than that of trovafloxacin, respectively, and the corresponding docking results decreased
by 24.43% and 17.83%. The above results further confirmed that the binding ability to plasma protein
of the 11 TRO derivatives was reduced which compared with that of the target molecule.

3.4.1. Qualitative Analysis of Mechanism of Decrease in Plasma Protein Binding Rate of TRO
Derivatives Based on Changes in Amino Acid Residue

Fluoroquinolones as antigens can bind to plasma proteins and stimulate the body to produce drug
antigen-specific antibodies, thus reducing the number of white blood cells. The plasma protein binding
rate and docking score of derivative-10 decreased significantly. Therefore, we subjected molecular
docking results of derivative 10 to mechanism analysis mainly by studying the polarity and number of
amino acid residues that play major roles in the acceptor molecule when derivative-10 binds to plasma
protein (Table 7 and Figure 4).

When trovafloxacin was docked with plasma protein, the amino acid residues making interactions
could be divided into two categories; hydrophobic amino acids represented by Leu, Val, Phe, Met, Ala,
Tyr, and hydrophilic amino acids represented by Gln and Arg. There were nine hydrophobic amino
acid residues and three hydrophilic amino acid residues. When derivative-10 was docked with plasma
protein, the hydrophobic amino acids were mainly Leu, Val, Pro, Ala, and Tyr, that is, a total of six
amino acid residues, while the hydrophilic amino acid residues were mainly Gln, Lys, and Arg, that is,
a total of five amino acid residues. This indicated that when quinolones enter into plasma protein
composed of hydrophilic amino acids, the interaction between the receptor protein and the donor
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molecule weakens, and the decrease in the docking function score and the plasma protein binding rate
are related to changes in amino acid residues.

Table 7. The number of hydrophilic/hydrophobic amino acid residue that trovafloxacin and derivative-10
bound to plasma protein.

Amino Acid Residues Character
Number of Amino Acid Residues

Trovafloxacin Derivative-10

Leu hydrophobic 2 1
Val hydrophobic 2 2
Phe hydrophobic 1 0
Met hydrophobic 1 0
Ala hydrophobic 2 1
Tyr hydrophobic 1 1
Gln hydrophilic 2 2
Arg hydrophilic 1 2
Lys hydrophilic 0 1
Pro hydrophobic 0 1
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3.4.2. Quantitative Analysis of the Decrease in Plasma Protein Binding Rate of TRO Derivatives

To explore the effect of hydrophilicity on the binding force between derivative-10 and plasma
protein, the distances between substitution site 1- of Trovafloxacin and derivative-10 and the hydrophilic
amino acid residues at the active site were measured and averaged (Figure 5 and Table 8).

Table 8. Distances between trovafloxacin and derivative-10 and hydrophilic amino acid residues at the
plasma protein binding site.

Compounds Hydrophilic Amino Acid Residues Distance from 1-Substituent (Å) Average Distance (Å)

Trovafloxacin
Gln149 5.9

7.2Gln156 7.6
Arg153 8.2

Derivative-10

Gln149 6.2

10.2
Gln156 9.0
Arg153 12.1
Arg166 17.5
Lys150 6.1
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Figure 5. Binding conformation of trovafloxacin and derivative-10 with plasma protein ligand in
binding domain.

The bond lengths between the NH2 substituent at site 1 of trovafloxacin and the hydrophilic
amino acid residues Gln149, Gln156, and Arg153 at the active site of the plasma protein were 5.9 Å,
7.6 Å, and 8.2 Å, respectively, and the average distance was 7.2 Å. The bond lengths between the C2H5

substituent at site 1 of derivative-10 and the hydrophilic amino acid residues Gln149, Gln156, Arg153,
Arg166, and Lys150 at the active site of the plasma protein were 6.2 Å (>5.9 Å), 9.0 Å (>7.6Å), 12.1Å
(>8.2 Å), 17.5 Å, and 6.1 Å, respectively, with an average distance of 10.2 Å. The binding rate and
docking scoring function of trovafloxacin to plasma protein in Tables 2 and 6 are higher than those of
derivative-10. It was concluded that the further the average distance between the substituent of site 1-
and the hydrophilic amino acid residue, the weaker is the hydrophilic effect between fluoroquinolone
and plasma protein, and the smaller is the binding force between them. Therefore, the average distance
between substituent 1- and the hydrophilic amino acid residue is negatively correlated with the binding
force between fluoroquinolone and plasma protein, as well as with the plasma protein binding rate
of fluoroquinolone.

The further the distance (average distance) between substitution site 1- of derivative-10 and the
hydrophilic amino acid residues at the plasma protein binding site is, the more difficult it is to form a
strong hydrophilic interaction between fluoroquinolone and plasma protein. Therefore, the weaker the
binding force between fluoroquinolone and plasma protein, the lower is the plasma protein binding
rate of fluoroquinolone. Thus, this study further explains the reason for the difference in binding
between TRO derivatives and plasma protein.

3.5. Interaction Analysis between TRO Derivative and Plasma Protein Based on Molecular Dynamics Simulation

Molecular dynamics simulations [41,42] mainly employ the basic principles of Newtonian
mechanics, taking molecular motion as the main simulation object and studying the dynamic process
of the motion state of all particles in the system with time. Molecular dynamics simulations can
provide detailed information about changes in protein structure with time. Moreover, the calculation
results of molecular dynamics simulations are very similar to real experimental results in many aspects,
and they can be used to test the rationality of statistical mechanics theory and to study the effect
of microscopic forces on macroscopic properties. Since Mccammon et al. [43] first used molecular
dynamics simulations to study the dynamic properties of bovine insulin inhibitors in 1977, this method
has been used to study drugs, protein molecules, and in other fields [44–46].

3.5.1. Analysis of Molecular Trajectories of TRO Derivatives Based on RMSD and RMSF

Molecular dynamics simulations of the complexes of trovafloxacin and derivative-10 with plasma
protein were performed, and their trajectories were analysed based on root mean square deviation
(RMSD) and root mean square fluctuation (RMSF).
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RMSD refers to the root mean square deviation of each atom between the protein conformation
and its initial conformation. Each conformation has an RMSD value. The smaller the RMSD value
is, the lighter is the motion amplitude of each atom in the protein and the higher is its stability [47].
Figure 6a shows that the RMSD trajectories of trovafloxacin and derivative-10 are essentially identical,
which means that during molecular dynamics simulation, trovafloxacin and derivative-10 can be
thought to have exhibited good stability. In addition, in the first 40 conformations, the motion trajectory
showed a significant downward trend, and as a result, the trajectories of the complexes fluctuate
greatly at this stage. When the simulation system reached the 40th conformation, the RMSD value of
the entire system was low, and the fluctuation amplitude was small. As a result, all systems tended to
be balanced at this time.
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The RMSF value refers to the root mean square fluctuation of amino acid residues, which reflects
the conformation of each amino acid residue in the molecular dynamic trajectory. A high RMSF
value indicates a less stable conformation of amino acids and vice versa [48]. According to Figure 6b,
the RMSF trajectories of trovafloxacin and derivative-10 with the plasma protein complexes are
essentially identical. With a small number of amino acid residues, the RMSF value of trovafloxacin
was slightly higher than that of derivative-10. Therefore, compared to trovafloxacin, derivative-10
can be considered more stable. Moreover, the amino acid residues of trovafloxacin and derivative-10
fluctuated widely in the initial stage, which might be caused by the fact that the interaction area at this
stage was an unstable region of plasma protein. Then, exhibited a staged decline trend wax, indicating
that the entire system tended to stable. The lowest fluctuation of amino acid residues occurred in the
range of 100–120, indicating that the stability of the complexes was the highest in this stage.

3.5.2. Qualitative and Semi-quantitative Analysis of the Molecular Trajectories Based on Potential
Energy and Total Energy

Energy simulation was performed for the complexes of trovafloxacin and derivative-10 with
plasma protein (Figure 7).

Because of the interaction force between molecules, energy is related to their relative positions,
namely molecular potential energy and total energy [49]. The motion trajectory of potential energy
(Figure 7a,c) showed that the potential energy of trovafloxacin varied between −73,375 kcal/mol and
−72,625 kcal/mol, and its average potential energy was approximately −73,100 kcal/mol. However,
the potential energy of derivative-10 ranged from−73,875 kcal/mol to−73,250 kcal/mol, and the average
potential energy was approximately −73,500 kcal/mol. Therefore, the range of potential energy and
average potential energy of the combination of derivative-10 and plasma protein were lower than
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those of trovafloxacin combined with plasma protein. This result indicates that the interaction between
derivative-10 and plasma proteins was weaker.
Int. J. Environ. Res. Public Health 2020, 17, x 15 of 18 

 

 
Figure 7. Potential energy and total energy trajectory of trovafloxacin and derivative-10 binding to 
plasma protein. (a): potential energy of trovafloxacin; (b): total energy of trovafloxacin; (c): potential 
energy of derivative-10; (d): total energy of derivative-10. 

Because of the interaction force between molecules, energy is related to their relative positions, 
namely molecular potential energy and total energy [49]. The motion trajectory of potential energy 
(Figure 7a,c) showed that the potential energy of trovafloxacin varied between −73,375 kcal/mol and 
−72,625 kcal/mol, and its average potential energy was approximately −73,100 kcal/mol. However, 
the potential energy of derivative-10 ranged from −73,875 kcal/mol to −73,250 kcal/mol, and the 
average potential energy was approximately −73,500 kcal/mol. Therefore, the range of potential 
energy and average potential energy of the combination of derivative-10 and plasma protein were 
lower than those of trovafloxacin combined with plasma protein. This result indicates that the 
interaction between derivative-10 and plasma proteins was weaker. 

In addition to studying changes in the potential energy of trovafloxacin and derivative-10, we 
further analysed the total energy in the simulated system (Figure 7b,d). The total energy of 
trovafloxacin combined with plasma protein varied between −60,250 kcal/mol and −59,500 kcal/mol, 
and the average total energy was approximately −59,875 kcal/mol. The total energy change of 
derivative-10 after binding to plasma protein ranged from −60,500 kcal/mol to −59,875 kcal/mol, with 
an average total energy of approximately −60,250 kcal/mol. Therefore, the total energy variation range 
and the average total energy of derivative-10 were lower than those of trovafloxacin. 

The interaction energy between derivative-10 and plasma protein was lower than that between 
trovafloxacin and plasma protein in the molecular dynamics simulation system, further explained 
the decrease in the binding rate of trovafloxacin derivatives to plasma proteins. 

4. Conclusions 

Based on the 3D-QSAR model, a variety of environmentally friendly trovafloxacin derivatives 
with low plasma protein binding rates were designed in this study. Moreover, the density functional 
theory, molecular docking, and molecular dynamics simulation methods were used to analyse the 
reason for the decrease in the plasma protein binding rate of trovafloxacin derivatives. In this manner, 
the findings of this study can provide theoretical support for discovering novel antibiotic drug 
molecules that cause little harm to the environment and human health. 

Author Contributions: Conceptualization, Y.H.; Data curation, Y.Z.; Formal analysis, Y.H.; Methodology, Y.H.; 
Resources, Y.Z.; Visualization, Y.Z. and Y.L.; Writing—original draft, Y.H. All authors have read and agreed to 
the published version of the manuscript. 

Figure 7. Potential energy and total energy trajectory of trovafloxacin and derivative-10 binding to
plasma protein. (a): potential energy of trovafloxacin; (b): total energy of trovafloxacin; (c): potential
energy of derivative-10; (d): total energy of derivative-10.

In addition to studying changes in the potential energy of trovafloxacin and derivative-10,
we further analysed the total energy in the simulated system (Figure 7b,d). The total energy of
trovafloxacin combined with plasma protein varied between −60,250 kcal/mol and −59,500 kcal/mol,
and the average total energy was approximately −59,875 kcal/mol. The total energy change of
derivative-10 after binding to plasma protein ranged from −60,500 kcal/mol to −59,875 kcal/mol,
with an average total energy of approximately −60,250 kcal/mol. Therefore, the total energy variation
range and the average total energy of derivative-10 were lower than those of trovafloxacin.

The interaction energy between derivative-10 and plasma protein was lower than that between
trovafloxacin and plasma protein in the molecular dynamics simulation system, further explained the
decrease in the binding rate of trovafloxacin derivatives to plasma proteins.

4. Conclusions

Based on the 3D-QSAR model, a variety of environmentally friendly trovafloxacin derivatives with
low plasma protein binding rates were designed in this study. Moreover, the density functional theory,
molecular docking, and molecular dynamics simulation methods were used to analyse the reason for
the decrease in the plasma protein binding rate of trovafloxacin derivatives. In this manner, the findings
of this study can provide theoretical support for discovering novel antibiotic drug molecules that cause
little harm to the environment and human health.
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