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Machine learning-based tissue of origin
classification for cancer of unknown primary
diagnostics using genome-wide mutation features
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Cancers of unknown primary (CUP) origin account for ∼3% of all cancer diagnoses, whereby

the tumor tissue of origin (TOO) cannot be determined. Using a uniformly processed dataset

encompassing 6756 whole-genome sequenced primary and metastatic tumors, we develop

Cancer of Unknown Primary Location Resolver (CUPLR), a random forest TOO classifier that

employs 511 features based on simple and complex somatic driver and passenger mutations.

CUPLR distinguishes 35 cancer (sub)types with ∼90% recall and ∼90% precision based on

cross-validation and test set predictions. We find that structural variant derived features

increase the performance and utility for classifying specific cancer types. With CUPLR, we

could determine the TOO for 82/141 (58%) of CUP patients. Although CUPLR is based on

machine learning, it provides a human interpretable graphical report with detailed feature

explanations. The comprehensive output of CUPLR complements existing histopathological

procedures and can enable improved diagnostics for CUP patients.

https://doi.org/10.1038/s41467-022-31666-w OPEN

1 University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands. 2 Hartwig Medical Foundation, Science Park 408, 1098 XH
Amsterdam, The Netherlands. ✉email: e.cuppen@hartwigmedicalfoundation.nl

NATURE COMMUNICATIONS |         (2022) 13:4013 | https://doi.org/10.1038/s41467-022-31666-w |www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-31666-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-31666-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-31666-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-31666-w&domain=pdf
http://orcid.org/0000-0003-2788-6625
http://orcid.org/0000-0003-2788-6625
http://orcid.org/0000-0003-2788-6625
http://orcid.org/0000-0003-2788-6625
http://orcid.org/0000-0003-2788-6625
http://orcid.org/0000-0002-6570-1452
http://orcid.org/0000-0002-6570-1452
http://orcid.org/0000-0002-6570-1452
http://orcid.org/0000-0002-6570-1452
http://orcid.org/0000-0002-6570-1452
http://orcid.org/0000-0002-0400-9542
http://orcid.org/0000-0002-0400-9542
http://orcid.org/0000-0002-0400-9542
http://orcid.org/0000-0002-0400-9542
http://orcid.org/0000-0002-0400-9542
mailto:e.cuppen@hartwigmedicalfoundation.nl
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Cancers of unknown primary (CUPs) is an umbrella term
for advanced-stage metastatic tumors for which the tumor
tissue of origin (TOO) cannot be conclusively determined

based on routine diagnostics (typically via histopathology1), and
there is also a significant fraction of patients with indeterminate
or differential diagnoses, especially with poorly differentiated
tumors2. Patients with uncertain TOO diagnoses suffer from a
lack of therapeutic options as primary cancer type classification is
a dominant factor in guiding treatment decisions3.

Thus far, TOO classifiers have been developed on data from a
wide range of molecular methods including DNA sequencing
(targeted4, whole exome5, and whole genome6,7), RNA profiling
(from coding RNA8, microRNA9–11, as well as whole tran-
scriptome profiling12,13), and methylation profiling14. Driven by its
ability to comprehensively capture actionable biomarkers that
enable precision medicine15, whole-genome sequencing (WGS) is
maturing rapidly as a diagnostic tool16 and is increasingly adopted
in clinical systems in various countries17–19, and could thus be an
interesting basis for diagnostic TOO classifiers. Recently developed
WGS-based classifiers6,7 were shown to outperform targeted or
whole-exome sequencing-based approaches4,5 due to being able to
utilize mutations from all genomic regions. The main features
employed by these classifiers included mutational signatures which
are patterns of somatic mutations resulting from exogenous or
endogenous mutational processes (e.g., C > T mutations due to
ultraviolet radiation exposure in melanoma)20, as well as regional
mutational density (RMD) which represents the genomic dis-
tribution of somatic mutations that are associated with tissue type-
specific chromatin states, whereby late-replicating closed chroma-
tin regions show increased mutation rates21. However, not all
WGS-based features are yet fully explored for TOO classification
including complex mutagenic features such as viral DNA integra-
tions, driver gene fusions, and other complex structural events (e.g.,
chromothripsis), as well as non-mutagenic features such as gender,
all of which have been shown to be correlated with specific tumor
type(s). Indeed, human papillomavirus (HPV) sequence insertions
are specifically and frequently found in cervical and head and neck
cancer14, KIAA1549-BRAF fusions in pilocytic astrocytomas13, and
liposarcomas frequently harbor FUS-DDIT3 fusions15 as well as
chromothripsis events22.

Here we describe the development of CUPLR (Cancer of
Unknown Primary Location Resolver), a TOO classifier that
integrates current state-of-the-art WGS-based mutation features,
including complex structural variant (SV) features. CUPLR
comprises an ensemble of binary random forest classifiers that
each discriminate one of 35 cancer types with an overall recall of
90%. We find that while RMD and mutational signatures were
highly predictive of cancer type (in line with existing
classifiers6,7), the incorporation of SV features improves predic-
tion performance for cancer types that currently lack highly
informative features. Furthermore, we have ensured that the
output of CUPLR, namely the prediction probabilities and the
features supporting each prediction, are humanly interpretable to
facilitate diagnostic use and clinical decision-making
with CUPLR.

Results
Extraction of genomic features. To develop CUPLR, we con-
structed a harmonized dataset from two large pan-cancer WGS
datasets from the Hartwig Medical Foundation (Hartwig) and
Pan-Cancer Analysis of Whole Genomes consortium
(PCAWG)23. The raw sequencing reads were analyzed with the
same mutation calling pipeline to construct a catalog of uniformly
called simple and complex mutations. The harmonized dataset
consisted of tumors from 6756 patients across 35 different cancer

types (Fig. 1a, Supplementary data 1). In contrast to many pre-
viously published papers4–7, this dataset includes a large pro-
portion of samples taken from metastatic lesions, which is
relevant for TOO classification as CUP samples are by definition
from patients with metastatic cancer.

A wide range of features (n= 4131) were extracted for
classifying cancer types based on driver/passenger and simple/
complex mutations (Fig. 1c). First, we determined the presence of
gain of function (amplifications and activating mutations) and
loss of function (deep deletions and biallelic loss) events in 203
cancer-associated genes. These genes were selected based on
having enrichment of gain and/or loss of function events in at
least one cancer type (see methods). Second, we calculated the
mutational load of single base substitutions (SBS), double base
substitutions (DBS), and indels for each sample. Third, we
determined the number of contributing mutations to the SBS,
DBS, and indel signatures from the COSMIC catalog20. Fourth,
the number of SBSs in each 1Mb bin across the genome
(n= 3071) was calculated to determine the RMD24. Mutational
signatures and RMD were normalized by the mutational load of
the respective mutation type to account for differences in
mutational load across samples. Fifth, copy number data was
used to infer the genome ploidy, diploid proportion, whole-
genome duplication status, and gender for each sample25. Sixth,
for each sample, we determined the copy number change of each
chromosome arm relative to the genome ploidy26. Lastly, we
parsed the called simple and complex SVs to determine: (i) the
total SV load per sample; (ii) the number of deletions,
duplications stratified by length; (iii) the number of complex
events stratified by size; (iv) the size of the largest complex event,
(v) the number of long interspersed nuclear element (LINE)
insertions and double minutes; and (vi) the presence of gene
fusions and viral sequence insertions25,27.

Classifier training. The extracted genomic features were then
used to develop CUPLR, a classifier consisting of two components
(Fig. 1d). The first component is an ensemble of binary random
forest classifiers each discriminates one cancer type versus other
cancer types (i.e., one-vs-rest). We chose to use an ensemble of
binary classifiers as opposed to one multiclass classifier so that
feature selection could be performed per cancer type, since dif-
ferent features are important for each cancer type. Additionally,
we chose to use random forests over other algorithms (e.g., neural
networks) as they can natively handle different feature types
(continuous, boolean, categorical, etc) without requiring feature
values to be scaled, which also improves model interpretability.
The second component of CUPLR is an ensemble of isotonic
regressions to calibrate the probabilities produced by each ran-
dom forest. Random forests tend to be overconfident at prob-
abilities towards 0 and underconfident at probabilities towards 1,
and this bias varies between random forests28. The calibration we
have performed here ensures that probabilities are comparable
between random forests. Furthermore, calibration allows for the
probabilities to have the following intuitive interpretation: a
probability of e.g., 0.8 means that there is an 80% chance of a
prediction being correct (this relationship does not hold for the
raw “probabilities” from random forests).

We used 6082 samples for training and held out 674 samples as
an independent test set, with both having the same cancer type
and cohort proportions (Supplementary data 2). Training of the
main random forest ensemble involved several steps (Supple-
mentary figs. 1 and 2). Briefly, due to the sheer number of and
sparsity of the RMD bins (3071), non-negative matrix factoriza-
tion (NMF) was performed on the RMD bins for each cancer type
to reduce the bins to 46 cancer type-specific RMD profiles. Then,
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for each cancer type, univariate feature selection was performed
(to remove irrelevant features) with 511 features ultimately being
selected (232 numeric and 279 boolean; Supplementary data 3).
This was followed by class resampling (to alleviate imbalances in
the number of samples for each cancer type), and subsequently
training of the binary random forest itself. The above training
procedure was applied to all samples of the training set to
produce the final random forest ensemble. The random forest
ensemble training procedure was then subjected to stratified 15-
fold cross-validation to obtain cancer type probabilities for the
training samples. These probabilities were then used to train the

ensemble of isotonic regressions for calibrating the random forest
probabilities (Fig. 1b, Supplementary fig. 3). Calibration resulted
in less biased reliability curves (Supplementary fig. 4) and
improved recall, especially for cancer types with few training
samples (Supplementary fig. 5).

Performance of CUPLR. To assess the performance of CUPLR,
we used the cancer type predictions based on the isotonic
regression calibrated cross-validation (CV) probabilities, as well
as the predictions upon applying CUPLR to the held-out test set
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Fig. 1 Cancer of Unknown Primary Location Resolver (CUPLR) classifies 35 different cancer types using features derived from all mutation types.
a CUPLR was developed using whole-genome sequencing data 4391 metastatic tumors from the Hartwig Medical Foundation (Hartwig) and 2365 primary
tumors from the Pan-Cancer Analysis of Whole Genomes (PCAWG) consortium, totaling 6756 samples across 35 different cancer types. b 6082 samples
were used to train CUPLR and 674 were held out as an independent test set. The whole training set was used to train the final random forest ensemble. 15-
fold cross-validation was performed to obtain the random forest cancer type probabilities on the training set, which were then used to train the ensemble of
isotonic regressions (for probability calibration). CUPLR is composed of the random forest and isotonic regression ensembles as shown in d. The
performance of CUPLR was assessed using the calibrated cross-validation probabilities as well as probabilities obtained by applying CUPLR to the test set.
c A summary of the genomic features extracted from the whole-genome sequencing data and used by CUPLR. Detailed descriptions of each feature can be
found in Supplementary data 3. The names of the published classifiers refer to the following studies: ICOMS Inferring Cancer Origins from Mutation
Spectra, Dietlen et al.4, TumorTracer Marquard et al.5, Salvadores-SVM support vector machine by Salvadores et al.7, PCAWG-NN PCAWG neural
network by Jiao et al.6. Cancer type abbreviations: CNS central nervous system, CNS_Medullo medulloblastoma, CNS_PiloAstro pilocytic astrocytoma, NET
neuroendocrine tumor, Sarcoma_GIST gastrointestinal stromal tumor, Sarcoma_Leiomyo leiomyosarcoma, Sarcoma_Lipo liposarcoma, Sarcoma_Osteo
osteosarcoma, Sarcoma_Other sarcomas other than leiomyosarcoma, liposarcoma or gastrointestinal stromal tumors. Other abbreviations: RF random
forest, IsoReg isotonic regression, CV cross-validation, SBS single-base substitutions, DBS double base substitutions, SV structural variants, DEL structural
deletions, DUP structural duplications, LINE long interspersed nuclear element.
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(Fig. 1b). Both the training set (n= 6082) and the held-out test
set (n= 674) had the same cancer type and cohort distribution
(Supplementary data 2). CUPLR could predict TOO with 90%
(CV) and 89% (test set) overall recall, and 90% (CV) and 89%
(test set) overall precision (Fig. 2b, c). Differences between CV
and test set recall and precision in certain cancer types were due
to low sample sizes in the test set (Fig. 2a, b, Supplementary
fig. 6).

High misclassification rates for certain cancer types could likely
be explained by shared cancer type characteristics (Fig. 2c). This
could be due to a common developmental origin, such as with
Uterus being misclassified as Ovarian (CV: 7%, test: 29%) due to
both being gynecological cancers29, and Biliary being misclassi-
fied as Pancreas (CV: 24%, test: 42%) and Liver (CV: 9%) due to
being cancers of the foregut30,31. Cancer subtypes were also often
misclassified as other subtypes, which was the case for
Lung_SmallCell towards Lung_NonSmallCell (CV: 40%, test:
60%); Kidney_Papillary towards Kidney_ClearCell (CV: 38%,
test: 67%); and Sarcoma_Leiomyo (CV: 35%, test: 43%) and
Sarcoma_Osteo (CV: 17%) towards Sarcoma_Other (sarcomas
other than leiomyo-/lipo-/osteosarcomas or gastrointestinal
stromal tumors). Neuroendocrine tumor (NET) subtypes were
occasionally misclassified as each other, such as NET_Lung
towards NET_Gastrointestinal (CV: 9%) and NET_Pancreas (CV:
9%, test: 33%), and NET_Gastrointestinal towards Pancreas (CV:
6%) which may (at least partially) reflect cancer type misannota-
tion amongst these samples due to neuroendocrine tumors having
similar morphological features32. Likewise, HeadAndNeck_Sali-
varyGland samples that were misclassified as breast (CV: 23%,
test: 33%) were potentially misannotated due to being adenoid
cystic carcinomas (i.e. salivary gland-like cancers) of the breast33.

Thus far, we have mainly assessed performance based on whether
the highest probability cancer type is the correct cancer type (i.e.
recall; Fig. 2b, c). However, if we consider whether the correct
cancer type is amongst the top-2 highest probabilities (top-2 recall;
Fig. 2b), overall recall increases from 90% to 95% (CV) and 89% to
94% (test set), with the greatest increases being for the cancer
subtypes including Lung_SmallCell (CV: 50% to 83%, test: 40% to
100%), Kidney_Papillary (CV: 62% to 79%, test: 33% to 100%),
Sarcoma_Leiomyo (CV: 56% to 89%, test: 57% to 86%) and
Sarcoma_Other (CV: 63% to 89%, test: 54% to 77%). A large gain in
recall was also observed for the Biliary (CV: 52% to 73%, test: 42%
to 83%) which was often misclassified as Pancreas. Similar increases
in the recall were seen based on predictions on the test set. The top-
2 (and even top-3) probabilities of CUPLR can be particularly useful
for differential diagnosis purposes to narrow down potential TOOs
when routine diagnostics are not fully conclusive.

Added predictive value of SV related features. When examining
the most important feature types from each random forest within
CUPLR (Fig. 3a), RMD profiles (‘rmd’) were consistently the
most predictive of cancer type (in line with the findings from Jiao
et al. 20206), as well as mutational signatures (‘sigs’) including
those with known cancer type associations such as SBS4 (asso-
ciated with smoking20) in lung cancer (Fig. 3b). As these muta-
tion features are derived from genome-wide SBSs and indels, we
assessed whether the presence of certain confounding factors that
affect the SBS and indel genomic landscape (including DNA
repair deficiencies34,35, chemotherapy treatment36,37, smoking
history38) may lead to more incorrect predictions. However, these
confounding factors showed minimal impact on classification
performance (Supplementary Note 1, Supplementary table 1,
Supplementary fig. 13).

In addition to RMD profiles and mutational signatures, gender
(as expected) was highly important for predicting cancers of the

reproductive organs including breast, cervical, ovarian, prostate,
and uterine cancer (Fig. 3b, Supplementary fig. 7). Notably, SV-
related features were important for classifying certain cancer
types (Fig. 3b). This included known cancer type-specific gene
fusions such as TMPRSS2-ERG for Prostate39, EML4-ALK for
Lung_NonSmallCell40, KIAA1549-BRAF for CNS_PiloAstro
(pilocytic astrocytomas)41, and FUS-DDIT3 for Sarcoma_Lipo42.
We also find known viral DNA integrations as important
features, including from human papillomavirus (viral_ins.HPV)
in Cervix and HeadAndNeck_Other (non-salivary gland head
and neck cancers)43, Epstein-Barr virus in
HeadAndNeck_Other44, hepatitis B virus (viral_ins.HBV) in
Liver45, and Merkel cell polyomavirus (viral_ins.MCPyV) in
Skin_Carcinoma46. Lastly, the largest complex SV cluster (i.e., by
number of breakpoints) (sv.COMPLEX.largest_cluster) which we
use as a proxy for the presence of chromothripsis was also
predictive for liposarcomas, which are known to frequently
harbor chromothripsis events. However, in contrast to the
features mentioned above, the presence of chromothripsis alone
is not sufficient for classifying a tumor as liposarcoma as
chromothripsis is also highly prevalent in other tumor types22.

To further assess the added value of SV-related features, we
excluded entire feature types from the training and examined the
decrease in classifier performance (Supplementary fig. 8). Indeed,
removal of the viral integration features (‘viral_ins’) led to a
decreased recall for Skin_Carcinoma (70% to 61%) and Cervix
(89% to 83%), likely due to loss of the viral_ins.MCPyV and
viral_ins.HPV features respectively. Removal of the simple and
complex SV features (‘sv’) resulted in a drop in recall for
Sarcoma_Leiomyo (56% to 49%), likely as the size of the largest
complex SV cluster (sv.COMPLEX.largest_cluster) can discrimi-
nate Sarcoma_Lipo and Sarcoma_Osteo from Sarcoma_Leiomyo
(Supplementary fig. 7). Lastly, removal of the gene fusion features
(‘fusion’) resulted in a large decrease in recall for Lung_SmallCell
(50% to 38%) likely as EML4-ALK fusions are characteristic of
non-small cell (but not small cell) lung cancer.

When compared to existing WGS-based CUP classifiers5–7,
CUPLR is able to classify more cancer (sub)types and showed
improved recall and precision (Supplementary figs. 9 and 10) for
cancer types where SV-related features were important, including
for CNS_PiloAstro, Lung_NonSmallCell, and Prostate. Overall,
CUPLR achieved a similar recall to existing classifiers for the
remaining cancer types (except for head and neck, myeloid,
pancreatic neuroendocrine, and thyroid cancers). Likewise,
precision was also similar to other classifiers for the remaining
cancer types (except for head and neck, myeloid, thyroid, and
uterine cancers).

In summary, the incorporation of all feature types resulted in
the best performance, with SV-related features being important
for specific cancer types.

Graphical prediction report. Aside from cancer type prob-
abilities, CUPLR also outputs explanations as to which features
support these probabilities. These allow one to verify the pre-
dictions based on existing knowledge, and could be included in
diagnostic reports to support decision making, e.g., in molecular
tumor boards. The feature explanations are based on feature
contribution calculations which enable feature importance
determination at the sample level (rather than at the cohort level
as in Fig. 3). Specifically, feature contributions represent the total
gain (or loss) in probability upon passing a feature through a
random forest47. To ease the interpretation of CUPLR’s output,
we have implemented a graphical report (Fig. 4) which can be
generated per patient that shows the cancer type probabilities (left
panel), feature contributions for the top features for the top
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a

b

c

Recall = confusion
matrix diagonal

Fig. 2 Performance of CUPLR. a The total number of samples for each cancer type for the training set (left columns) and held out test set (right columns).
Note that the y axis of a is truncated to better visualize cancer types with small sample sizes. b, c also have the same left/right column layout
corresponding to the training set cross-validation and test set performance. b Summary of performance metrics. Recall: % of correctly classified samples
per cancer type, and is equivalent to the diagonal values in c. Top-2 recall: % of correctly classified samples when considering the 2 highest probability
cancer types as correct. Precision: % of correctly classified samples amongst samples predicted as a particular cancer type. Overall performance metrics
(i.e. under the ‘All’ column) are micro-averages. c Confusion matrix showing the performance of CUPLR where columns represent the % of samples in a
cancer type cohort predicted as a particular cancer type. The diagonal represents the % of samples correctly predicted as a particular cancer type
(equivalent to recall). Raw data for performance metrics and confusion matrix in b, c can be found in Supplementary data 4. Cancer type abbreviations:
CNS central nervous system, CNS_Medullo medulloblastoma, CNS_PiloAstro pilocytic astrocytoma, NET neuroendocrine tumor, Sarcoma_GIST
gastrointestinal stromal tumor, Sarcoma_Leiomyo leiomyosarcoma, Sarcoma_Lipo liposarcoma, Sarcoma_Osteo osteosarcoma, Sarcoma_Other sarcomas
other than leiomyosarcoma, liposarcoma or gastrointestinal stromal tumors.
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cancer types (middle panel). Also shown are the corresponding
feature values in the patient in relation to the average feature
value amongst patients in the training set (right panel).

We will use patient HMF004048A as an exemplary demonstra-
tion of the graphical report (Fig. 4a). Since the Lung_NonSmall-
Cell probability (0.96) was much higher than the probability of
other cancer types, only one cancer type (i.e. panel row) is shown.
Up to three panel rows can be shown when more than one cancer
type probability is high (such as for patient DO7304; Fig. 4b).
One of the top features for HMF004048A was the presence of an
EML4-ALK fusion (middle panel) which is on average found in
∼4% of Lung_NonSmallCell patients (pink label), but only ∼0.1%
in all other patients (blue label). Since this feature is of boolean
type, a feature value of 1 (red label) indicates the presence of the
EML4-ALK fusion in HMF004048A (whereas a feature value of 0
would indicate absence). Additionally, the contribution of the
non-small cell lung cancer RMD profiles (rmd.Lung_NonSmall-
Cell.2) as well as the contribution of the APOBEC-associated

signatures SBS2 and SBS1320 in HMF004048A (red labels) is
higher than in Lung_NonSmallCell patients (pink labels), but also
compared to all other patients (blue label). Whether a feature
value in the patient of interest is higher or lower than that in all
other patients is also indicated in the text in the feature
contribution panel (middle panel) for non-boolean features.

Patient DO7304 (Fig. 4b) is an example of a situation where
more than one cancer type probability is high, with the
probability of Lymphoid being 0.78 and CNS_PiloAstro being
0.75 (Fig. 4b). Here, two feature panels are shown for both of
these cancer types to aid with resolving this uncertainty. Since
IGLL5 loss is specific to lymphomas48, we can confirm that the
likely correct prediction is indeed Lymphoid.

This graphical report presents the detailed machine learning-
based classification output of CUPLR in a human-readable
format. We acknowledge that the output is highly detailed, which
is inevitable due to the large amounts of data used by the
algorithm. However, as these details may not be necessary for all

a b

Fig. 3 Features most predictive of cancer type. a Maximum feature importance per feature type for each cancer type random forest from CUPLR. See
Supplementary data 3 for the descriptions as well as feature importance values for each feature. b Feature importances from the top 15 features for
selected cancer type random forests. Feature names are in the form {feature type}.{feature name}. Feature type abbreviations: rmd regional mutation
density profiles, sigs mutational signatures, mut_load total number of single base substitutions, double base substitutions or indels, gene presence of gene
gain or loss of function events, chrom_arm chromosome arm copy number fold change versus overall genome ploidy, genome genome properties including
genome ploidy, diploid proportion, whole-genome duplication status, gender sample gender as determined by copy number data, sv structural variants,
fusion presence of gene fusions, viral_ins presence of viral sequence insertions. Cancer type abbreviations, CNS central nervous system, CNS_Medullo
medulloblastoma, CNS_PiloAstro pilocytic astrocytoma, NET neuroendocrine tumor, Sarcoma_GIST gastrointestinal stromal tumor, Sarcoma_Leiomyo
leiomyosarcoma, Sarcoma_Lipo liposarcoma, Sarcoma_Osteo osteosarcoma, Sarcoma_Other sarcomas other than leiomyosarcoma, liposarcoma or
gastrointestinal stromal tumors.
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circumstances, we have implemented the option in the software
to hide the feature contribution and/or feature value panels in the
final graphical output.

Feature contributions aid in clarifying the primary tumor
location of CUPs. To showcase how CUPLR could be used in a
real-life clinical setting, we applied CUPLR to 141 tumors with a
CUP diagnosis from the Hartwig dataset. From these, we could
confidently (n= 68) or partially (n= 14) resolve the cancer type
for 82 (58%) patients by examining the top predicted cancer types

and corresponding top contributing features for each patient
(Supplementary data 5).

Of the 68 patients with fully resolved cancer types, 44 exhibited
features with well-known cancer type associations in combination
with high contribution of respective cancer type RMD profile.
This included: four patients predicted as Breast with breast
cancer-specific driver mutations (in CHD1, GATA3, PIK3CA,
and/or ZNF703)49; 7 patients predicted as Colorectal with APC
mutations50 and/or the presence of the colibactin signature
(SBS88)51; 5 patients predicted as Gastroesophageal with the ROS
damage signature SBS1720, LINE insertions52, and/or FHIT

HMF004048A (actual cancer type: Lung_NonSmallCell)

DO7304 (actual cancer type: Lymphoid)

a

b

Fig. 4 Graphical report for CUPLR predictions. Example reports are shown for two patients from the holdout set: a HMF004048A, annotated as having
non-small cell lung cancer (Lung_NonSmallCell), and b DO7304, annotated as having lymphoma (Lymphoid). The leftmost panels show the predicted
cancer type probabilities. In the middle panels, contributions of the top features are shown for the top predicted cancer types. When there is uncertainty in
the cancer type probabilities such as in b, more feature contribution panel rows are shown. In the rightmost panel, the feature values in the patient (red
label) are plotted in relation to the average feature value amongst patients in the training set with the target cancer type (pink label) as well as all other
samples not belonging to the target cancer type (blue label). For a full description of each feature, see Supplementary data 3. Feature type abbreviations:
rmd regional mutation density profile, sigs mutational signatures, mut_load total number of single base substitutions, double base substitutions or indels,
gene presence of gene gain or loss of function events, genome genome properties including genome ploidy, diploid proportion, whole-genome duplication
status, fusion presence of gene fusions.
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deletions53; 21 patients predicted as Lung_NonSmallCell with
signatures of smoking (SBS4, DBS2 and/or ID320); 3 patients
predicted as Pancreas with KRAS mutations50; 1 patient predicted
as Prostate with a TMPRSS2-ERG fusion39; 2 patients predicted as
Urothelial with TERT mutations54; and 1 patient predicted as
Uterus with a PIK3R1 mutation55. The remaining 24 patients
with a top cancer type probability ≥0.8 were likely correctly
classified as most of these patients were predicted as high recall
cancer types (>0.9, Fig. 2) with highly specific RMD profiles
respective to each cancer type, including Breast Colorectum,
Gastroesophageal, Kidney_ClearCell, Liver, Kidney_ClearCell,
and Ovarian (Supplementary data 5, Supplementary fig. 11).

For the 14 patients with partially resolved cancer types, we
could only determine the cancer supertype. For example, four
patients had >0.6 probability of both Lung_NonSmallCell and
Lung_SmallCell and exhibited smoking signatures SBS4, DBS2,
and/or ID320, indicating that these patients most likely had lung
cancer, though the subtype remains uncertain. Likewise, we could
narrow down the TOO to 2 probable cancer types for 3 patients.
For example, patient HMF002806A had >0.5 probability of
Uterus and Breast, and had mutations in PIK3CA and PTEN
which are common in both these cancer types50. This is indicative
of gynecological cancer which often is treated in a similar
manner56,57.

We thus demonstrate that CUPLR can potentially clarify the
TOO for over half of patients with CUP. It is important to note
that even if the TOO is only partially resolved for a patient, such a
patient could now potentially have more treatment options.
However, for the CUP patients discussed above, additional
evidence would be required for validation and final diagnosis,
which could for example be based on histopathological examina-
tions. These were unfortunately not available for the retro-
spectively analyzed samples included here, but such information
would be readily available in routine diagnostics.

Discussion
Here, we have developed a tissue of origin classifier (CUPLR) for
the analysis and diagnostics of CUPs using a large uniformly
processed WGS dataset of both primary and metastatic tumors.
Our classifier incorporates genomic features derived from SVs, as
well as provides human interpretable explanations alongside each
prediction which allows for manual resolving of CUPs, especially
in cases of lower-scoring samples or for samples for which
multiple tumor types are suggested by CUPLR.

Current state-of-the-art WGS-based classifiers, including those
by Jiao et al.6 and Salvadores et al.7, achieve high recall (≥80%) for
over three-quarters of the cancer types they predict by primarily
employing RMD and mutational signatures as features, which are
derived from simple mutations. CUPLR builds upon these clas-
sifiers, with the inclusion of SV and driver gene-related features
improving performance for certain cancer types, such as pilocytic
astrocytoma and prostate cancer. Of note, genomic-based TOO
classifiers published thus far have only used data from primary
tumors4–7. However, since CUPs are by definition metastatic
tumors, the inclusion of 4391 metastatic tumors with known
tissue of origin for training CUPLR may make it a more suitable
tool for the purpose of clarifying CUPs. We do acknowledge
however that the metastatic tumor data used here may harbor
treatment effects that are absent in treatment-naive CUPs, such as
driver mutations in AR58 or ESR159 conferring resistance to
therapy or the presence of characteristic mutations induced by for
example 5-fluorouracil36 or radiotherapy37,60. Identification and
removal of such treatment-associated features could potentially
improve TOO classification. Additionally, CUPLR is able to
distinguish the largest number of cancer (sub)types (35 cancer

types) compared to existing WGS-based classifiers, with the Jiao4

and Salvadores5 classifiers discriminating 24 and 18 cancer types
respectively, and also more than a recently published whole his-
tology slide image-based classifier which discriminates 18 cancer
types61. We do acknowledge that discriminating even more
cancer types is warranted, but this is currently limited by the
number of available training samples that were sequenced and
uniformly bioinformatically analyzed. For example, thymic can-
cer had too few (<15) samples to be included as a separate class
for training (Supplementary data 1). Furthermore, certain cancer
types could be divided into their subtypes, such as Myeloid
(currently only with 34 samples in total; Fig. 2a) into acute
myeloid leukemia and multiple myeloma62, and sarcomas in a
broader range of subtypes63. The availability of more WGS data
for less frequent, but also (ultra-)rare cancers would allow for the
training of an updated CUPLR model that classifies additional
cancer types and subtypes.

While CUPLR achieved overall excellent recall (90%) which is
similar to or better than other WGS-based classifiers (Supple-
mentary fig. 9), it should be noted that this is driven by several
large sub-cohorts of common cancer types (e.g., breast and col-
orectal cancer) and that performance for certain cancer types is
still suboptimal. For cancer subtypes that CUPLR has difficulty
discriminating, such as small cell versus non-small cell lung
cancer and papillary versus clear cell renal carcinoma, additional
information from histopathological stainings could be used to
clarify these cases. Here, the application of artificial intelligence-
based histology image analysis61 could further improve the pre-
diction performance and reliability of resolving CUPs. Clinical
metadata, such as biopsy location and metastasis grade64, when
used together with CUPLR can also aid in clarifying primary
tumor location. For instance, there may be uncertainty as to
whether a tumor with human papillomavirus DNA integration
was a head and neck cancer or cervical cancer based on CUPLR
predictions (e.g., DO51592 with a probability of Cervix= 0.754
and HeadAndNeck_Other= 0.310; Supplementary data 5), since
human papillomavirus DNA integration is characteristic of these
two cancer types43. However, in clinical practice, it will always be
known if the tumor biopsy was taken from the upper body and if
the lesions were local, and with this information, one can con-
clude that this tumor can only be of head and neck origin.

Given that RMD6,7, mutational signatures65, and SVs27,66 are still
active areas of research, we expect improvements to these features
could also lead to better TOO classification. Here, we have
demonstrated that extraction of cancer type-specific RMD profiles is
possible from raw mutation counts, similar to what was done for
mutational signatures20. However, CUPLR does not heavily rely on
RMD profiles for the classification of certain cancer types such as
liposarcoma and non-melanoma skin cancer (Fig. 3b), potentially
because more training samples are required to extract more stable
and informative RMD profiles which could improve classification
for these cancer types. Improvements to TOO classification may also
come from the extraction of more comprehensive mutational sig-
natures, for example by incorporating information on mutation
timing or genome localization67,68. Development of more sophisti-
cated signature extraction methods may also allow for quantification
of low signal tissue type-specific signatures, such as SBS88 (asso-
ciated with colibactin-induced DNA damage in the colon) which has
only been extracted from colon healthy tissue51,69 but not cancer
tissue likely because other mutational processes in cancer tissue
mask the presence of this signature (Supplementary figs. 7 and 11).
Lastly, while CUPLR uses a wide range of features derived from SVs
(including gene fusions, viral DNA integrations, LINE insertions,
structural deletion and duplication size, and chromothripsis), there
is still an opportunity to explore other SV-related features to
improve TOO classification, such as SV signatures66.
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Given that WGS is rapidly maturing and is now slowly being
adopted in routine diagnostics for comprehensive molecular
diagnostics15,16, CUPLR serves as a viable complementary tool to
standard procedures for determining TOO (e.g., histopathological
stainings). CUPLR can be run from the output of open source
tools and is freely available as an R package [https://github.com/
UMCUGenetics/CUPLR]. The trained model as well as the code
for generating the input features are provided to enable prediction
on new samples and for facilitating diagnostic use.

Methods
Datasets. We have matched tumor/normal whole-genome sequencing data from
cancer patients from two cohorts: the Hartwig Medical Foundation (Hartwig)
cohort and the Pan-Cancer Analysis of Whole Genomes (PCAWG) cohort.

The Hartwig cohort included 4902 metastatic tumor samples from 4572
patients. The data was provided under data request DR-104 from the Hartwig
Medical Foundation. All patients in this resource have given consent for the reuse
of their genomic and clinical data for research purposes. For patients with multiple
biopsies that were taken at different timepoints, patient IDs were suffixed by ‘A’ for
the first biopsy, ‘B’ for the second biopsy, etc (e.g., HMF001423A, HMF001423B).
Normal samples (blood) had a mean read coverage of ∼30× while tumor samples
had coverage of ∼90×70. Only a single sample of each patient was used for this
study. To do this, we selected the tumor sample with the earliest biopsy date, and if
this information did not exist we selected the sample with the highest tumor purity.
However, some Hartwig patients had biopsies from different primary tumor
locations. In these cases, we kept at least one sample from each primary tumor
location, and when there were multiple samples from the same primary tumor
location, we applied the aforementioned biopsy date and tumor purity filtering
criteria.

The PCAWG cohort consisted of 2835 patient tumors. Access to raw sequencing
data for these tumors was granted via the Data Access Compliance Office (DACO)
Application Number DACO-1050905 on 6 October 2017 and via the Cancer
Genome Collaboratory download portal [https://console.cancercollaboratory.org]
on 4 December 2017. Normal samples (blood, adjacent tumors, or distant tumors)
had a mean read coverage of 39×, while tumor samples had a bimodal coverage
distribution with modes at 38× and 60×50. Samples with <0.2 tumor purity were
excluded from this study as somatic variant calling was not reliable for these
samples. PCAWG samples that were gray- or blacklisted by the PCAWG
consortium were also excluded [https://dcc.icgc.org/releases/PCAWG/donors_and_
biospecimens].

For both cohorts, we only kept samples with ≥50 SNVs/indels, and removed an
additional set of samples for several reasons including failed variant calling,
insufficient informed consent for use of the WGS data, and one duplicate PCAWG
sample (DO217844) that was already included in the Hartwig cohort. Lastly, we
only selected samples from cancer types with at least 15 samples. Ultimately, we
selected 4391 Hartwig samples and 2365 PCAWG samples for training, as well as
141 Hartwig CUP samples for the CUP analysis (Supplementary data 1).

Variant calling. Somatic mutation data of the CPCT, DRUP, and WIDE projects
were kindly shared by Hartwig on 6 February 2020 with an update received on 20
October 2021. To exclude technical noise from PCAWG and Hartwig somatic
variant calling workflows, we have reanalyzed the PCAWG samples with the
Hartwig pipeline for somatic variant calling [https://github.com/hartwigmedical/
pipeline5] which was hosted on the Google Cloud Platform using Platinum
[https://github.com/hartwigmedical/platinum]23. Details of the full pipeline are
described by Priestley et al.70 as well as in the Hartwig pipeline GitHub page.
Briefly, reads were mapped to GRCh37 using BWA (v0.7.17). GATK (v3.8.0)
Haplotype Caller was used for calling germline variants in the reference sample.
SAGE (v2.2) was used to call somatic single and multi-nucleotide variants as well as
indels. GRIDSS (v2.9.3) was used to call SVs. PURPLE combines B-allele frequency
(BAF) from AMBER (v3.3), read depth ratios from COBALT (v1.7), and structural
variants from GRIDSS to estimate copy number profiles, variant allele frequency
(VAF), and variant clonality. Additionally, PURPLE also determines the gender
(based on sex chromosome ploidy), the proportion of the genome that is diploid, as
well as the presence of whole-genome duplication in a sample. LINX interprets SVs
(to identify simple and complex structural events) from PURPLE, and also detects
gene fusions, viral DNA integrations, and homozygously disrupted genes. Impor-
tantly, we ensured that mutation (simple and complex) filtering and annotation
tools were run with the same versioning for PCAWG and HMF cohort. For
PURPLE we relied on v2.53 whereas for LINX we used v1.17.

Extraction of features
Regional mutational density. RMD was defined as the number of somatic SBSs in
each 1Mb bin across the genome (n= 3071), normalized by the total number of
SBSs in the sample. Extraction of RMD profiles from these RMD bins was per-
formed within the CUPLR training procedure (Supplementary fig. 1a) using non-
negative matrix factorization (NMF). This is described in detail in the “CUPLR

training procedure” methods section. See Supplementary data 6 for a visualization
of each RMD profile.

Mutational signatures. The number of somatic mutations falling into the 96 SBS, 78
DBS and, 83 indel contexts (as described in COSMIC: [https://cancer.sanger.ac.uk/
signatures/]) was determined using the R package mutSigExtractor [https://github.
com/UMCUGenetics/mutSigExtractor], v1.23). To obtain the mutational signature
contributions for each sample, the mutation context counts were fitted to the
COSMIC catalog of mutational signatures using the nnlm() function from the
NNLM R package.

The contributions of the child signatures SBS7a, SBS7b, SBS7c, and SBS7d were
summed to yield the parent signature SBS7. Similarly, SBS10a-d and SBS17a-b were
merged to yield SBS10 and SBS17. Lastly, the SBS, DBS, and indel signature
contributions were normalized by the total number of SBSs, DBSs, and indels
respectively.

Chromosome arm ploidy. Chromosome arm ploidies were determined in a similar
method as described by Taylor et al. 201826.

Somatic copy number (CN) segments (called by PURPLE) were split by their
respective chromosome arms. Only chr1-22 and chrX were included. All
chromosomes have p and q arms, except for chr13, chr14, chr15, chr21, and chr22
which are considered to only have the q arm. For each chromosome arm, the CN
values of each segment were converted to integer values. The arm coverage of each
CN integer value was then determined (e.g., 70% of the arm has a CN of 2, 20% a
CN of 1, and 10% a CN of 3). The CN with the highest coverage was assigned as the
preliminary arm CN. The most common CN across all arms was assigned as the
genome CN.

Two filtering steps were then performed to obtain the final arm CN values. For
each arm, if the CN with the highest coverage has <50% coverage, and if any of the
CN values equal the genome CN, then assign that CN as the final CN of the arm.
Else, assign the genome CN as the final CN of the arm.

To determine the CN gains and losses of each arm, the fold change between the
arm CN and genome CN was calculated.

Features extracted from LINX output. LINX combines simple mutations (point
mutations and indels), structural variants, and copy number variants to resolve
simple and complex structural rearrangements, and subsequently identify gene
driver events, and gene fusions and detect viral DNA integrations.

The presence of 4 types of gene driver events was determined from the output
of LINX: (i) amplifications, (ii) deep deletions, (ii) biallelic loss, and (iv)
monoallelic hits (pathogenic mutation in one allele). Amplified genes were marked
as likelihoodMethod==’AMP’ by LINX. Genes with deep deletions were marked
as likelihoodMethod==’DEL’. Genes with biallelic loss were marked as
biallelic==TRUE. Genes with a monoallelic pathogenic mutation were marked as
biallelic==FALSE and driver==”MUTATION”, and we selected only those with
driverLikelihood ≥ 0.9 (referring to the likelihood of the mutation being impactful
as determined by the dndscv R package71). LINX determines the presence of driver
events for 462 genes. Thus, there are 462 genes × 4 driver types = 1848 gene driver
features in total. We then performed preliminary feature selection to reduce the
computational resources required for training CUPLR. Here, one-sided Fisher’s
exact tests were performed and Cramer’s V values were calculated. Only genes
where at least one driver type had a p value <0.01 and Cramer’s V ≥ 0.1 were kept
(203 genes × 4 driver type = 812 gene driver features).

Gene fusions belonged to 3 categories: (i) well-known fusion pairs (e.g.,
TMPRSS2-ERG), (ii) immunoglobulin heavy chain (IGH) locus fusions, and (iii)
fusions with promiscuous gene partners (e.g., BCR). IGH fusions were grouped into
a single feature as these are characteristic events in lymphoid cancers72. Fusions
with one promiscuous gene partner were grouped by gene (e.g., RUNX1_ETS2 and
RUNX1_RCAN1 would both fall under the RUNX1_* feature). Fusions with two
promiscuous gene partners were split into two separate features (e.g.,
SLC45A3_MYC would become the features SLC45A3_* and *_MYC). Only fusions
that were marked as reported==TRUE by LINX (i.e., reported in the literature)
were selected. We then performed preliminary feature selection due to a large
number of possible fusions present in our dataset (n= 512). Here, one-sided
Fisher’s exact tests were performed and Cramer’s V values were calculated. Only
fusions with p value <0.01 and Cramer’s V ≥ 0.1 were kept (46 fusions).

For the viral DNA integrations present in our dataset, we merged virus strains
into nine virus categories: adeno-associated virus (AAV), Epstein-Barr virus (EBV),
hepatitis B virus (HBV), hepatitis C virus (HCV), human immunodeficiency virus
(HIV), human papillomavirus (HPV), herpes simplex virus (HSV), human
T-lymphotropic virus (HTLV), and Merkel cell polyomavirus (MCPyV). For
example, human papillomavirus type 16 and human papillomavirus type 18 would
be both grouped as human papillomavirus.

LINX chains individual SVs into SV clusters and classifies these clusters into
various event types. Clusters can have one SV (for simple events such as deletions
and duplications), or multiple SVs. We defined SV load as the total number of SV
clusters. We quantified the presence of several SV types including: (i) deletions and
duplications (ResolvedType is ‘DEL’ or ‘DUP’) stratified by length (1–10 kb,
10–100 kb, 100kb–1Mb, 1–10Mb, >10Mb), (ii) complex SV clusters
(ResolvedType==’COMPLEX’) stratified by the number of clusters (0–25, 25–50,
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50–100, 100–200, 200–400, 400–800, >800), (iii) long interspersed nuclear element
(LINE) insertions (ResolvedType==‘LINE’), and double minutes
(ResolvedType==’DOUBLE_MINUTE’). Lastly, we also determined the number
of breakends for the complex cluster with the most breakends.

CUPLR training procedure
Extraction of regional mutational density profiles. To extract the cancer-specific
RMD profiles from the 3071 RMD bins, a multistep procedure involving non-
negative matrix factorization (NMF) (Supplementary fig. 2) was performed prior to
classifier training (Supplementary fig. 1ai).

All NMF runs described below are performed with the nnmf() function from
the NNLM R package (v0.4.4) with the parameters loss= ’mkl’ and max.iter=2000.

For each cancer type cohort, an NMF rank search was done to determine the
optimum rank (i.e. number of RMD profiles) (Supplementary fig. 2a). For ranks 1
to 10, NMF was performed 50 times on a random subset of 100 samples from the
cohort (or if the cohort contained less than 100 samples, all samples from that
cohort were used) with 10% of the values randomly removed. The missing values
were then imputed and the mean squared error (MSE) of these imputed values was
calculated. This method of calculating MSE is described by the authors of the
NNLM R package73. The median of the MSE across the 50 NMF iterations was
then calculated. The rank search thus results in 10 MSE values across the 10 ranks
searched. The optimum rank was the rank before the increase in log10(MSE) was
>0.2%, and NMF was then performed using the optimum rank and without
removing random values to produce the RMD profiles for the cancer type cohort
(Supplementary fig. 2b).

The above procedure thus yields a different set of RMD profiles for each cancer
type cohort. However, some RMD profiles across related cancer types (e.g.,
pancreas and biliary cancer) may actually be equivalent RMD profiles. Hierarchical
clustering (using Pearson correlation as a distance measure) was thus performed to
group similar RMD profiles across all cancer-type cohorts. The resulting
dendrogram was cut at a height of 0.1 (using the R function cutree()), whereby
RMD profiles under this height were grouped and considered the same profile.
From each of the groups, one profile was greedily selected to yield the final set of
RMD profiles (Supplementary fig. 2c).

To obtain the RMD profile contributions for each sample, the RMD bins were
fitted to the RMD profiles using the nnlm() function from the NNLM R package.

Random forest ensemble training. The main component of CUPLR comprises an
ensemble of binary random forests that each discriminates one cancer type
(Supplementary fig. 1aii). The below text describes the training procedure for each
cancer type random forest.

First, univariate feature selection was performed to remove irrelevant features
(Supplementary fig. 1aiii). Pairwise testing was done to compare feature values
from samples of the target cancer type (case group) versus the remaining samples
(control group). For numeric features, p values were determined using Wilcoxon
rank-sum tests, and effect sizes were calculated using Cliff’s delta. For boolean
features, p values were determined using Fisher’s exact tests, and effect sizes were
calculated using Cramer’s V. Depending on the feature, alternative hypotheses for
the Wilcoxon rank-sum tests and Fisher’s exact tests were one or two-sided. See
Supplementary Data 3 for details on which features are numeric or boolean, as well
as which alternative hypothesis was used. Features were kept which had p < 0.01
and effect size ≥0.1. The number of features kept was capped to 100 features.

Second, random oversampling was performed for the case group which always
contained fewer samples than the control group, which was randomly undersampled
(Supplementary fig. 1aiv). A grid search was performed to determine the optimal pair
of 5 oversampling and 5 undersampling ratios. These ratios were automatically
determined as follows: i) calculate the geometric mean between the case and control
group sample sizes; ii) the resampling ratios are logarithmically spaced between the
geometric mean and the case group sample size or the control group sample size. For
each over-/undersampling ratio pair, stratified 10-fold cross-validation (CV) was
performed, after which the area under the precision-recall curve (AUPRC) was
calculated. The pair with the highest AUPRC was chosen and the resampling was
applied. CV and AUPRC calculations were performed using the mltoolkit R package
[https://github.com/UMCUGenetics/mltoolkit].

Lastly, a random forest was trained (Supplementary fig. 1av) using the
randomForest R package (v4.6-14) with default settings. A filter is applied to the
probabilities produced by the random forest based on sample gender, where breast,
ovary and cervix probabilities are set to 0 for male samples, and prostate
probabilities are set to 0 for female samples. Local increments were calculated for
the random forest using the rfFC R package (v1.0) to enable downstream
calculation of feature contributions47.

Isotonic regression training. The entire random forest ensemble training procedure
was then subjected to stratified 15-fold cross-validation which allows every sample
to be excluded from the training set in order to obtain cancer type probabilities for
the training samples (Supplementary fig. 1b). These cross-validation probabilities
were then used to train an ensemble of isotonic regressions using the isoreg() R
function (one per cancer type random forest) to calibrate the probabilities pro-
duced by the random forest ensemble (Supplementary figs. 1c and 3).

Random forests tend to be overconfident at probabilities towards 0 and
underconfident at probabilities towards 128, and this bias varies between random
forests (Supplementary fig. 4). In other words, a probability of e.g., 0.8 from one
random forest does not correspond to a probability of 0.8 from another random
forest. Probability calibration greatly reduced this bias ensuring that predictions
across the random forests are comparable (Supplementary fig. 4).

Performance evaluation. To assess the performance of CUPLR, we used the cancer
type predictions based on the isotonic regression calibrated cross-validation
probabilities, as well as by applying the final model to a validation set whereby 10%
of samples were held out from the full training set (Supplementary fig. 1). Per-
formance metrics per cancer type were defined as follows (using ‘Breast’ as an
example):

Recall = Fraction of Breast samples predicted as Breast
Top-2 recall = Fraction of Breast samples where the 1st or 2nd top prediction
was Breast
Precision = Amongst samples predicted as Breast, the fraction of samples
predicted as Breast

Overall performance metrics were micro-averages of the per-cancer-type
metrics and defined as follows:

Micro-averaged recall = Accuracy = Fraction of all samples correctly predicted
Micro-averaged top-2 recall = Top-2 accuracy = Fraction of all samples where
the 1st or 2nd highest probability prediction was correct
Micro-averaged precision = Micro-average of per-cancer-type precision

Precision and recall curves for each binary random forest classifier within
CUPLR are shown in Supplementary fig. 12.

We used predictions based on calibrated cross-validation probabilities to assess
the effect of excluding feature types on recall (Supplementary fig. 8); compare the
recall of CUPLR to other classifiers (Supplementary fig. 9); assess the effect of
confounding factors on recall (Supplementary table 1, Supplementary fig. 13,
Supplementary Notes); as well as to show that 30× coverage is sufficient for reliable
CUPLR predictions for most cancer types, with ≥ 60× coverage giving the most
reliable predictions (Supplementary fig. 14, Supplementary Note 2).

Lastly, we showed that there was likely minimal overfitting on the Hartwig and/
or PCAWG data sets (i.e., batch effects) by training a CUPLR-like model solely on
Hartwig samples and another model solely on PCAWG samples, and thereafter
determining performance by testing on the opposite data set (Supplementary
fig. 15, Supplementary Note 3).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
For the Hartwig cohort, WGS data and corresponding metadata have been obtained from
the Hartwig Medical Foundation and provided under data request number DR-104. Both
WGS data and metadata are freely available for academic use from the Hartwig Medical
Foundation through standardized procedures and request forms which can be found at
[https://www.hartwigmedicalfoundation.nl]. Somatic variant calls, gene driver lists, copy
number profiles, and other core data of the PCAWG cohort generated by the Hartwig
analytical pipeline are available for download at [https://dcc.icgc.org/releases/PCAWG/
Hartwig]. Researchers will need to apply to the ICGC data access compliance office
[https://daco.icgc-argo.org] for the ICGC portion of the dataset. Authentication of NIH
eRA commons is required to access the TCGA portion of the dataset via [https://icgc.
bionimbus.org]. Additional information on accessing the data, including raw read files,
can be found at [https://docs.icgc.org/pcawg/data/]. Metadata for PCAWG samples (e.g.,
sample whitelisting) can be found at https://dcc.icgc.org/releases/PCAWG. The extracted
features for each sample and used to develop CUPLR are available at https://doi.org/10.
5281/zenodo.593980574. All other processed and raw data can be found in
the Supplementary Data files.

Code availability
The Hartwig Medical Foundation pipeline [https://github.com/hartwigmedical/pipeline5],
hosted on the Google Cloud Platform using Platinum [https://github.com/hartwigmedical/
platinum], was used for germline and somatic variant calling, as well as post-processing
procedures such as identification of simple and complex structural rearrangements,
annotation of driver gene mutation events, and detection of gene fusions and viral DNA
integrations. CUPLR can be run from the output of this pipeline, and is available as an R
package on GitHub ([https://github.com/UMCUGenetics/CUPLR]; https://doi.org/10.
5281/zenodo.663769375). This repository also contains the code for data processing and
generating the figures in this paper. CUPLR depends on some custom code, including
mutSigExtractor for extraction of mutational signatures [https://github.com/
UMCUGenetics/mutSigExtractor] and mltoolkit (only required for classifier training
and not for running CUPLR; https://github.com/UMCUGenetics/mltoolkit).
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