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ABSTRACT

Organs dynamically interact with each other through immunomodulation to create a systemic immune response and influence
disease progression. While traditional studies have tended to focus on single-organ immunity, recent studies have placed greater
emphasis on reciprocal immune interactions between organs, such as those between the gut, liver, and brain. However, the
precise mechanisms underlying these interorgan immune interactions remain unclear. Here, we synthesize the molecular and
cellular bases of cross-organ immune regulation in the context of inflammation and neoplasia. Specifically, we describe the
immune coordination between the gut, liver, and brain and how they immunomodulate other organs (including the thyroid, lung,
cardiovascular system, kidney, bone, and skin). In addition, we explore clinical therapies that target these cross-organ immune
modulations, the limitations of the treatments, and the potential benefits for patients. We also conclude by highlighting innovative
technologies such as multiomics analysis, machine learning, and organ-on-a-chip platforms, which are providing unprecedented
insights into interorgan immunity. Elucidating these mechanisms will advance precision medicine and enable the development
of targeted therapies for diseases caused by cross-organ immunity.

1 | Introduction depth study of cross-organ immune regulation can help reveal

the pathogenesis of complex diseases. The immune system not

Cross-organ immunoregulation refers to the process of interac-
tion and regulation of the immune system between different
organs with the aim of maintaining the overall immune balance
of the body. This regulatory mechanism plays a crucial role in
pathological processes such as inflammation and cancer. An in-

only plays a key role in defense against pathogens [1] but also
participates extensively in the functional regulation of multiple
organ systems. The immune system secretes cytokines [2], regu-
lates the activity of immune cells [3], and mediates inflammatory
responses [4] to maintain systemic immune homeostasis.
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Previous studies have focused mainly on the immunoregulatory
mechanisms of organs themselves, with less attention paid
to interorgan immune interactions in the context of inflam-
mation and tumors. Local immune regulation provides key
clues but remains insufficient to fully unravel the systemic
immune dynamics that drive disease progression. Cross-organ
immunomodulation not only enhances specific organ function,
but may also lead to multiorgan damage in pathological states.
Therefore, in-depth analysis of its regulatory mechanisms is
important for the development of intervention strategies for
multiorgan related diseases.

The focus of this review is on how different organs influence
each other through immune signaling, especially under disease
conditions such as inflammation and cancer. Sections 2-5 of
the article respectively introduce: (1) immune crosstalk between
the gut, liver, and brain, and their immune regulation of other
organs such as the cardiovascular system and thyroid; (2) clinical
approaches, side effects, and impacts of immunotherapy; (3)
the role of key technologies such as single-cell sequencing
in studying cross-organ immune regulation; (4) a summary
of the main research findings and proposed future research
directions.

The focus of this review is to explain how immune sig-
nals mediated by immune cells and metabolites maintain
the systemic immune balance, to explore the effects of anti-
inflammatory drugs, metabolic regulators, and immune check-
point inhibitors (ICIs) on distant organs, to describe the
side effects of these treatment methods, and to introduce
the application of cutting-edge technologies such as single-
cell sequencing, spatial transcriptomics, and multiomics anal-
ysis in cross-organ immunology research, highlighting their
potential in promoting precision medicine and personalized
immunotherapy.

2 | Interorgan Regulation of the Immune
Microenvironment
2.1 | Gut-Based Regulation

The microenvironment of the gastrointestinal tract exhibits speci-
ficity and functions as a miniature ecosystem within the human
body. Microorganisms and their metabolites are present in vari-
ous locations within the body, including the gut [5, 6], immune
cells or tissues [7, 8], and the enteric nervous system (ENS) [9].
The presence of these structures enhances the likelihood of the
gut being interconnected with other organs, and maintaining
intestinal homeostasis is crucial for human health. The gastroin-
testinal tract houses the most substantial population of immune
cells within the human body, which actively monitor the luminal
environment [8], facilitating the physiological communication
between the gut and other organs of the body. This crosstalk
has the potential to modulate the immune microenvironment,
influence the host’s immune response, and sustain homeostasis
within the body. A deeper understanding of the interactions
between various organs will enable us to implement interventions
in the gastrointestinal tract to combat diseases and enhance
human health [6].

2.1.1 | Gut-Liver Axis

The gut-liver axis involves a two-way interaction between the
gut, its microbes, and the liver. This relationship is crucial
for maintaining liver health and function. Disruptions in this
axis can lead to chronic liver diseases (CLDs). For example,
alcohol consumption alters the gut microbiome. These changes
promote inflammation, which damages the liver. The gut micro-
biota also drives the progression of nonalcoholic fatty liver
disease (NAFLD). Similarly, it affects autoimmune liver dis-
eases (AILDs). These connections highlight why modifying the
gut microbiota matters. Targeting the microbiome may offer
strategies for treating liver disorders. Managing gut health could
become a key approach in improving liver outcomes.

A bidirectional relationship is established between the gastroin-
testinal tract and its associated microbiota, as well as the liver, a
phenomenon referred to as the gut-liver axis. The gut-liver axis
relies on the portal vein to enable direct transport of gut-derived
substances to the liver. This system also involves a liver-driven
feedback loop that regulates bile and antibody delivery back
to the digestive tract. Additionally, gut microbes are essential
for maintaining the intestinal barrier’s integrity and support-
ing normal liver function. It contributes to nutrient provision,
the maturation of the immune system, and the regulation of
hepatocyte proliferation and differentiation [10]. Therefore, the
regulation of the microbial community is crucial for preserving
the homeostasis of the gut-liver axis and facilitating optimal liver
function [11]. The impact of gut microbiota is significant and
cannot be ignored.

Kim et al. [12] demonstrated that microbial adhesion to
the intestinal epithelium contributes to the regulation of the
balance between proinflammatory and anti-inflammatory T
cell responses by inducing IL-10 through intestinal antigen-
presenting cell subsets. In liver disease, higher serum IL-10 levels
are also associated with higher disease severity [13], Kupffer
cells interact with Toll-like receptor (TLR)2/3 to induce IL-10
production [14], so endogenous IL-10 is critical in maintaining
immune tolerance, while exogenous IL-10 administration can
exacerbate liver inflammation and fibrosis [15], and studies have
shown that IL-10 production by effector CD8+ T cells promotes
their own intrahepatic survival, thereby supporting rather than
inhibiting hepatic immunopathology [15] (Figure 1A). It is there-
fore plausible that the gut may influence liver function within the
immune microenvironment through the action of cytokines.

Alcohol consumption is a major driver of CLD by impairing
the gut-liver axis through multiple pathways. These include
disturbances in the gut microbiome, degradation of the mucus
and epithelial barriers, and reduced antimicrobial peptide (AMP)
synthesis. Such alterations increase microbial translocation to
the liver, promoting inflammation in hepatic tissues. A recent
study has shown that prolonged exposure to alcohol results
in an increased abundance of fungal communities within the
gastrointestinal tract and facilitates the translocation of fungal -
glucan into the systemic circulation. This S-glucan is known to
provoke liver inflammation by interacting with the C-type lectin-
like receptor CLEC7A found on Kupffer cells and other bone
marrow-derived cells in the liver. This interaction subsequently
elevates the expression and secretion of interleukin-1 beta (IL-
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FIGURE 1 |
through intestinal antigen-presenting cell subsets, exacerbating liver inflammation and fibrosis; S-glucan in the gut enters the liver and interacts with

Cross-organ immune regulation by the gut. (A) Gut-liver axis: microbial adhesion to the intestinal epithelium helps induce IL-10

the C-type lectin-like receptor CLEC7A on Kupffer cells and other bone marrow-derived cells, increasing the expression and secretion of interleukin-
1B (IL-1B8), thereby triggering liver inflammation. (B) Gut-brain axis: the gut microbiome communicates with the brain through a variety of pathways,
including the immune system and vagus nerve. Lactic acid strains can affect the expression of central y-aminobutyric acid (GABA) receptors through the
vagus nerve; The gut microbiota also promotes the release of a variety of proinflammatory cytokines from brain immune cells, including tumor necrosis
factor (TNF), interleukin-13 (IL-18), and interleukin-6 (IL-6). (C) Gut-kidney axis: gut microbiota metabolites such as short-chain fatty acids (SCFAs)
and niacinamide, as well as some specific microbiota such as P. Goldsteinii, which plays an important role in the protection of the kidneys; Dysbiosis of

the gut microbiosis can exacerbate kidney damage through mechanisms such as lipopolysaccharide (LPS)-induced oxidative stress.

13), which ultimately leads to hepatocellular injury and plays a
significant role in the pathogenesis of alcohol-related liver disease
[16]. In alcoholic liver disease, the gut microbiota actively shapes
the liver’s immune environment. This interaction drives disease
progression by disrupting immune balance.

Gut microbes play a key role in driving NAFLD. Recent studies
show that a “leaky gut” allows molecules like lipopolysaccha-
rides (LPS), free fatty acids (FFA), and bile acids to enter the
bloodstream. These substances trigger inflammation by activat-
ing proinflammatory signals. This interplay further impacts the
development and progression of NAFLD, highlighting the role of
the gut-liver axis in this condition [17].

In AILDs, a significant association exists between intestinal
inflammation and mucosal immune activation, particularly con-
cerning inflammatory bowel disease (IBD) and primary biliary
cholangitis. Intestinal biological disorders can result in immune
cell dysfunction and abnormal bile acid signaling [18].

Gut microbes can also influence cancer treatment by regulating
the immune system [19]. Through the biliary tract, hepatic
portal vein, and biliary secretions, intestinal bacteria and their
metabolites can be transported to the liver, potentially inducing
liver inflammation and carcinogenesis [20]. There is evidence
that the gut microbiota varies significantly between HCC patients
and normal people, including differences in species, quantities,
and their derivatives [21]. In addition, disturbances in the gut
microbiota lead to the secretion of IL-25, which can subsequently
induce CXCL10, promoting the migration of HCC [22]. It is
evident that the gut can influence the process of HCC through
immunomodulatory mechanisms.

Therefore, the crosstalk between the gut and liver appears to
be a potential target for liver disease and modulating the gut
microbiota may serve as an effective strategy to control the
progression of various liver diseases [23, 24].

2.1.2 | Gut-Brain Axis

The gut microbiome is central to the microbiome-gut-brain
axis. It shapes brain health and behavior through immune
pathways and other mechanisms. Disruptions in gut bacteria can
destabilize mood regulation and worsen diseases, underscoring
why gut health is vital for overall wellness. Additionally, gut-
brain interactions activate the central nervous system (CNS)
during intestinal inflammation. This process may fuel psychi-
atric disorders such as anxiety and depression. These findings
highlight the need for deeper research into how gut dysfunction
contributes to CNS conditions.

The gut microbiome is instrumental in facilitating the bidirec-
tional communication between the gut and the CNS, a relation-
ship commonly referred to as the microbiome-gut-brain axis.
This concept has gained increasing recognition in contemporary
research. The microbiota engages in communication with the
brain via multiple pathways, which encompass the immune
system, tryptophan metabolism, the vagus nerve, and the ENS.
This interaction involves microbial metabolites, including short-
chain fatty acids (SCFAs), branched-chain amino acids, and
peptidoglycan [25, 26]. These microbiota metabolites also influ-
ence the tumor microenvironment and enhance immunity to
tumors, regulating microglia homeostasis, and so on [27, 28]. Gut
microbes and their metabolites can play a key role in nutritional
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interventions to maintain brain health as regulators of blood-
brain barrier (BBB) integrity and brain health [29, 30]. The
lack of probiotics in the gastrointestinal tract not only adversely
affects the gut, but has also been shown to affect the central
hypothalamic-pituitary—adrenal (HPA) axis and monoaminergic
activity, which are associated with the etiology of depression
[31]. After rats were treated with probiotics, the symptoms of
“depression” decreased [31]. Gut microbiota and their metabolites
significantly contribute to the regulation of mood, and dysbiosis
may exacerbate various diseases. In humans, the intestines and
lungs are primary targets of the physiological response elicited
by ischemic attacks. Mucosal microorganisms significantly con-
tribute to immune regulation and metabolic processes, and they
influence the permeability of the BBB. Abnormalities in intestinal
microbiota, alterations in the intestinal microenvironment, lung
infections, chronic diseases, and the use of mechanical ventila-
tion may exacerbate the outcomes of ischemic stroke [32]. Gut
microbiota significantly influence the host’s immune response,
psychological well-being, and overall health of the host [33]. In
addition, the ENS comprises millions of neurons and glial cells
that are embedded within the walls of the gastrointestinal tract,
where these neurons and glial cells play a significant role in
intestinal immunity. It controls important functions of the gut
and, similar to the gut microbiota, has the capacity to interact with
the immune system, gut microbiota, and the gut-brain axis [9], all
of which play a significant role in gut-based cross-organ immune
regulation.

The vagus nerve acts as a key pathway for transmitting signals
from the gut to the brain. Studies has shown that ingested
lactobacillus strains can affect emotional behavior and the expres-
sion of central gamma-aminobutyric acid (GABA) receptors in
murine models via the vagus nerve. Importantly, mice that
underwent vagus nerve resection exhibited no neurochemical
or behavioral changes [34]. In the context of inflammatory
conditions, the intestine activates a response in the CNS via the
vagus nerve [35, 36]. Gut microbiotas promote the release of
several proinflammatory cytokines by immune cells, including
tumor necrosis factor (TNF), IL-15, and IL-6 (Figure 1B). This
process subsequently influences tight junctions, leading to an
increase in barrier permeability [37, 38]. Under conditions of
immune dysregulation, increased intestinal permeability may
mediate functional alterations in the CNS.

Typical effects of intestinal inflammation on the CNS encompass
an exaggerated response of the HPA axis and an imbalance
of serotonergic activity [33]. People with comorbidities charac-
terized by persistent intestinal inflammatory features, such as
irritable bowel syndrome (IBS) and IBD, are at an increased risk
of experiencing anxiety and depression [39, 40]. The impact of
intestinal inflammation on the brain is likely mediated by various
immune factors. Specific inhibitors or antagonists of cytokines
such as cytokines IL-183, IL-6, and TNF can alleviate these CNS
changes caused by intestinal inflammation, such as the use of
cyclooxygenase inhibitors [41] and disruption of vagus nerve
signaling [42].

Investigating the gastrointestinal tract’s involvement in CNS dis-
orders may elucidate mechanisms of host-microbiome crosstalk
and drive the development of innovative prognostic tools and
therapeutic interventions for CNS pathologies.

2.1.3 | Gut-Kidney Axis

Growing evidence highlights the critical contribution of gut
microbial communities to renal disorders. As shown in Figure 1C,
emerging research suggests that these microbial populations con-
tribute to the development and progression of kidney diseases via
diverse pathways, including metabolic regulation and immune
modulation. First, gut microbiota metabolites such as SCFAs
and niacinamide play an important role in renal protection, and
oral probiotics such as Lactobacillus casei can alleviate kidney
damage and delay renal function decline by modulating these
metabolites [43]. Second, intestinal dysbiosis can exacerbate kid-
ney injury through mechanisms such as LPS-induced oxidative
stress, while antibiotic intervention can significantly improve
colitis-related renal inflammation and injury [44]. In addition,
the gut microbiota is closely related to kidney function, and its
interaction is influenced by metabolic states such as diabetes
mellitus [45], and metabolic imbalances due to dysbiosis can
accelerate the progression of chronic kidney disease (CKD) [46].

In specific kidney diseases, the gut microbiota has also shown a
unique role. For example, a decrease in butyrate-producing and
oxalate-degrading bacteria is associated with the development
of calcium oxalate nephrolithiasis [47] and may increase the
risk of transitional cell carcinoma and renal cell carcinoma [48].
In kidney transplant recipients, dysbiosis of the gut microbiota
was significantly associated with quality of life [49], and specific
microbiota such as P. Goldsteinii may exert a renal protective
effect through metabolic regulation [50]. In addition, the gut
microbiota is also involved in regulating the efficacy of drugs,
such as berberine in improving CKD by altering microbiota
composition and inhibiting uremic toxin production [51].

In general, the gut microbiota is involved in the pathophysio-
logical process of kidney disease through mechanisms such as
immune regulation. A better understanding of the mechanism of
action of the gut-kidney axis will provide new perspectives and
strategies for the prevention, diagnosis, and treatment of kidney
diseases.

2.1.4 | Other Gut-Based Axis

In terms of bone metabolism, the gut microbiota is closely related
to bone remodeling and the occurrence and development of
osteoporosis [52, 53]. Restoring intestinal microbiota balance,
transplanting healthy flora, or supplementing with specific cul-
tures may improve bone health [54]. It was found that L-arginine-
mediated enhancement of bone mechanical adaptation is mainly
due to the activation of a positive nitric oxide-calcium feedback
loop in osteocytes, which provides a new antiosteoporotic strategy
for maximizing bone benefits caused by mechanical load through
the microbiota-metabolic axis [55]. These findings highlight
the important role of the gut microbiota in regulating bone
metabolism.

In recent years, a growing body of research has revealed a close
link between the gut microbiota and a variety of skin diseases.
In chronic spontaneous urticaria, changes in the endogenous
microbiota may promote mast cell-driven skin inflammation by
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decreasing SCFAs levels and increasing LPS levels [56]. Similarly,
gut microbial disorders also affect allergic diseases such as
atopic dermatitis (AD) through abnormal immune responses.
However, some bifidobacterial species and strains, such as Bifi-
dobacterium longum CCFM1029, which is able to improve AD
symptoms by modulating immune-microbial interactions. The
mechanism may involve upregulating tryptophan metabolism
and producing indole-3-carboxyaldehyde, thereby activating an
aromatic hydrocarbon receptor-mediated immune response [57].
In the field of cancer, a two-sample Mendelian randomized
analysis using genome-wide association study (GWAS) data has
further highlighted the important role of the gut microbiota in
basal cell carcinoma, melanoma skin cancer, and skin tanning
susceptibility [58]. In addition, fecal microbiota transplantation
(FMT) and anti-PD-1 therapy were able to overcome anti-PD-1
resistance in the PD-1 advanced melanoma subgroup by altering
the structure of the gut microbiome and reprogramming the
tumor microenvironment [59].

Studies in recent years have shown that the gut microbiota is
closely related to the pathogenesis and progression of cardiovas-
cular disease (CVD). In post-ischemia/reperfusion (I/R) injury,
the gut microbiota plays a key role in the inflammatory microen-
vironment. Elimination of intestinal bacterial translocation by
using an antibiotic cocktail can alleviate excessive inflammatory
response and bone marrow cell mobilization, thereby alleviating
myocardial I/R injury [60]. In addition, the gut microbial metabo-
lite phenylacetylgutamine (PAGIn) is closely associated with the
presence and severity of heart failure (HF), and modulating
the gut microbiota, especially the production of PAGIn, may
be a potential strategy for the treatment of HF [61]. Another
study noted that the gut microbial metabolite trimethylamine
N-oxide (TMAO) is also involved in the pathogenesis of CVD
[62]. Therefore, gut bacteria and their metabolic pathways are
gradually receiving more attention as potential targets for CVD
intervention [63].

2.2 | Liver-Based Regulation

The liver is a vital organ that regulates intricate networks of
mediators and modulates interactions among various organs
during inflammatory dysregulation. It plays a central role in
protein synthesis [64], the metabolism of toxins and drugs [65],
as well as the regulation of immunity and host defense [66, 67].

2.2.1 | Liver-Brain Axis

The communication between the liver and the brain is mainly
realized through the liver-brain axis, which is an information
interaction system based on the circulatory system, vagus nerve
[68], immune system [69], neuroendocrine system [70], and
contains a variety of neuroactive substances. Here, we focus on
the immune-regulatory mechanism between the liver and the
brain. Figure 2 illustrates the immunological signaling pathways
through which the liver modulates brain function, thereby con-
tributing to the pathophysiology of hepatic encephalopathy (HE).

As a key immune organ, alterations in the immune status of
the liver can affect the systemic immune response, especially the

Liver-Brain axis
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FIGURE 2 |
liver-derived inflammatory cytokines (e.g., TNF-a, IL-13, IL-6) enter the

Cross-organ immune regulation by the liver to brain:

bloodstream and increase blood-brain barrier (BBB) permeability and
promoting neuroinflammation. Liver cirrhosis and hyperammonemia
upregulate immune-related proteins (e.g., TNF, TNFR1, HSP70, TIMP3,
glutamine synthetase), driving systemic inflammation and altering extra-
cellular vesicles (EVs), which may cross the BBB and contribute to
minimal hepatic encephalopathy (MHE). Additionally, hyperammone-
mia synergizes with inflammation, leading to oxidative/nitrosative stress
in astrocytes via an NMDAR-dependent mechanism, contributing to
astrocyte swelling and neuronal dysfunction.
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brain [71], and lead to HE. Liver disease may trigger systemic
inflammation, where liver immune cells, including macrophages,
dendritic cells, and lymphocytes, release proinflammatory factors
like TNF-a and IL-13, which prompt brain endothelial cells
to release secondary messengers such as prostaglandins and
nitric oxide, inducing intracerebral changes [72]. For exam-
ple, proinflammatory cytokines like TNF-a and IL-13 stimulate
macrophages and brain endothelial cells to produce inducible
nitric oxide synthase (NOS) isoforms through which endothe-
lial and neuronal cells generate nitric oxide via NOS-mediated
oxidation of L-arginine [73].

Activated hepatocytes and leukocytes generate IL-6 that binds
IL-6R to activate Janus kinase (JAK)-signal transducer and
activator of transcription (STAT) signaling and trigger proin-
flammatory responses. These inflammatory factors reach the
brain through the bloodstream, increase brain endothelial cell
permeability, permit the entry of inflammatory molecules, and
induce neuroinflammation [74, 75]. Kupffer cells can produce
and release cytokines such as TNF-a, ILs (IL-13, IL-6), and other
cytokines. These cytokines can reach the brain through the blood
circulation, and at the same time, proinflammatory cytokines
alter the permeability of the BBB [76, 77]. This leads to the entry of
toxins such as ammonia, triggering a proinflammatory response
in the brain [78].

In the pathogenesis of HE, cirrhosis and hyperammonemia cause
an increase in the expression of several immune-related proteins
[79] such as TNF, TNFR1, HSP70, TIMP3, and glutamine syn-
thetase [80]. These changes affect the composition of extracellular
vesicles (EVs) that can enter the brain, and the compositional
changes may be involved in the occurrence of minimal HE.

In addition, ammonia is able to cross BBB in both pro-
tonated (NH,*) and deprotonated (NH;) forms [81], hyper-
ammonemia acts synergistically with inflammation to induce
oxidative/nitrosative stress and contributes to elevated intracel-
lular Ca’** concentrations in astrocytes through an NMDAR-
dependent mechanism [82]. Ca?* overload can be amplified
by the cPLA2-arachidonic acid signaling pathway [83], which
further activates NOX2, promotes superoxide anion (O,—) and
RONS production [84], exacerbates oxidative/nitrative stress, and
reciprocally promotes astrocyte swelling [85, 86]. HE reflects the
clinical outcome of combined pathogenic processes where astro-
cyte osmotic stress interacts with oxidative and nitrosative stress.
The liver drives neuroinflammation and brain dysfunction via
inflammatory mediators, EVs, and metabolite-mediated immune
signaling, forming the central pathological mechanism of HE.

Furthermore, the liver is the body’s primary metabolic organ, and
its metabolites, such as bile acids, can influence the composition
and function of gut microbes, which in turn affects the brain via
the gut-brain axis [87]. The liver is involved in the process of
amyloid-beta (AS) metabolism [88], and imbalances in AS have
been linked to neurodegenerative disorders, such as Alzheimer’s
disease (AD) [89]. Changes in liver functioning may influence
brain health by affecting the rate of clearance of AS.

Consequently, through the production of cytokines and reg-
ulating immune cell activity, the liver affects the immune
environment of the brain and promotes neuroinflammation, and

studying the effects of the liver on the brain can help us better
combat brain diseases.

2.2.2 | Liver-Thyroid Gland Axis

The thyroid and liver are closely related as the liver regulates thy-
roid hormone activity through activation, degradation, transport,
and metabolic processes.

Liver deiodinases metabolize thyroid hormones altering T4 and
T3 plasma concentrations. As an essential component of thy-
roid hormone metabolism, the liver converts T4 to T3 or rT3,
modifying hormone activity and blood levels [90]. Furthermore,
the liver synthesizes the primary transport proteins for thyroid
hormones, including thyroxine-binding globulin, transthyretin,
and albumin, which facilitate a rapid exchange of circulating thy-
roid hormones (Figure 3A). As a result, any impairment in liver
function may lead to significant changes in the bioavailability of
thyroid hormones.

Shen et al. [91] conducted a meta-analysis of 12 studies and found
that the prevalence of antithyroid antibodies was nearly twofold
higher and the prevalence of hypothyroidism was more than
three-fold higher in patients with chronic hepatitis C virus (HCV)
infection compared with controls.

Studies show HCV may disrupt thyroid function by directly
acting on the human MLI thyroid cell line in vitro; this cell line
expresses CD81 on its surface, a receptor essential for HCV entry
[92, 93]. Lymphocyte infections, viral proteins, chromosomal
irregularities, cytokines including IL-8, and microRNA molecules
are thought to connect HCV infection with thyroid disease [94].
Liver diseases including chronic hepatitis C, cirrhosis, hepatocel-
lular carcinoma (HCC), and cholangiocarcinoma affect thyroid
function by changing thyroid hormone levels through altered
production of binding proteins, modified deiodinase activity, and
decreased liver clearance of reverse T3; these changes impact
metabolic and energy balance, highlighting the importance of
careful thyroid function monitoring in liver disease patients [95].

2.23 | Liver-Lung Axis

After hepatocellular injury, the liver may exhibit a reduction in its
clearance capabilities, an elevation in the production of deleteri-
ous substances, and a disruption of the immune response. These
alterations can result in systemic complications, which may
include coagulation disorders, an augmented susceptibility to
infections, hypoglycemia, an intensified inflammatory response,
encephalopathy, and damage to other extra-hepatic organs, such
as the lungs [96]. Hepatic dysfunction is recognized as a key
clinical factor influencing the onset, severity, and progression
of acute respiratory distress syndrome (ARDS) in critically ill
patients. It has also been associated with increased mortality
in this population [72, 97, 98]. Figure 3B clearly illustrates
how the liver influences the lungs through immune mediators.
ARDS is a severe respiratory failure caused by noncardiogenic
pulmonary edema, with a hospitalization mortality rate of 35—
46% [90, 99, 100]. In patients diagnosed with ARDS, hepatic
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organs. (A) Liver-thyroid axis: the liver plays a role in the activation,

Cross-organ immune regulation by the liver to other

inactivation, transport, and metabolism of thyroid hormones, impacting
thyroid function. Chronic HCV infection can directly affect thyroid cell
function and may trigger autoimmune thyroid disease. (B) Liver-lung
axis: illustrating the interaction between the liver and lungs. Activated
Kupffer cells release inflammatory factors (IL-1, IL-6, TNF-a), triggering
pulmonary macrophages to produce APP. This process may lead to
inflammation, increased capillary permeability, alveolar damage, and
potentially ARDS. (C) Liver-cardiovascular axis: secretion factors from
the liver, including albumin and thyroid hormone-binding proteins,
influence cardiovascular inflammation and function. LDSFs can promote
the migration and proliferation of vascular smooth muscle cells (VSMCs)
and endothelial cells (VECs), involving KLF4 and NF-xB pathways.

dysfunction constitutes a key determinant of mortality [101]. Liver
injury activates and enhances inflammation in the pulmonary
vascular compartments and lower respiratory tracts, leading to
important structural and/or functional changes in the lungs,
whereas normal liver function exerts a lung-protective effect and
is necessary for recovery from lung injury [102, 103].

The mononuclear phagocyte system of the liver, particularly the
Kupffer cells, plays a crucial role in the clearance of bacteria
and their byproducts, as well as in mitigating the activation of
pulmonary and systemic inflammatory responses [104]. Inflam-
matory mediators synthesized by the liver, such as IL-1, IL-6, and
TNF-a, activate alveolar macrophages [105], thereby increasing
the inflammatory response in the lungs, and the liver is responsi-
ble for the synthesis of acute-phase proteins (APPs) [106], which
play a crucial role in regulating the systemic and pulmonary
inflammatory response, as well as intermediary metabolism, and
contribute to the restoration of homeostasis after tissue injury.

2.2.4 | Liver-Cardiovascular Axis

CVDs represent the leading cause of morbidity and mortality
worldwide [107], and liver immunity and metabolism also have
a significant impact on the cardiovascular system [108, 109].
Figure 3C depicts the influence of the liver on the cardiovascular
system via immune mediators. In recent years, a growing body
of evidence has indicated that liver-derived secretory factors
(LDSFs) play a significant role in the pathogenesis of CVDs.
LDSFs refer to a group of substances primarily produced and
secreted by the liver, including microbial metabolites, EVs,
proteins, and microRNAs. These factors mainly act on various cell
types, such as vascular endothelial cells, vascular smooth muscle
cells, cardiomyocytes, fibroblasts, macrophages, and platelets.
LDSFs are critically involved in regulating multiple physiologi-
cal processes, including endothelial NOS/nitric oxide signaling,
endothelial function, energy metabolism, inflammation, oxida-
tive stress, and vascular calcification [110]. LDSFs have multiple
cardiovascular effects that can be beneficial or harmful based
on the factor and disease; some LDSFs harm the cardiovascular
system. EVs, for instance, carry miRNAs like miR-1 that inhibit
KLF4 expression and activate NF-xB signaling [111], promoting
vascular smooth muscle cell proliferation/migration and causing
vascular inflammation/atherosclerosis. These EVs also enhance
vascular endothelial cell inflammation and increase microvascu-
lar permeability [112]. In addition, exosome miR-122 secreted by
the liver is involved in metabolic cardiomyopathy by inhibiting
Arl-2 and affecting the function of cardiac mitochondria [113], and
EVs also carry immune regulatory molecules, which are involved
in the recruitment and activation of immune cells. In addition,
TMAO [114, 115, 116, 117, 118, 119], fetuin-B [120, 121], and FXII
[122] have been demonstrated to exert detrimental effects on the
cardiovascular system.

2.3 | Brain-Based Regulation

The interactions among diverse organs within the immune
microenvironment, especially those related to the brain, are
similar to those witnessed in the liver and gastrointestinal tract.
The connection between the nervous system and the immune
system is particularly profound, as the CNS not only produces
and utilizes immune factors but also has a vital role in the
regulation of immune functions [123]. The exploration of cross-
organ interactions within the brain-centered axis is essential for
promoting our understanding of the relationship between the
nervous system and the immune system.
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Cross-organ immune regulation by the brain. (A) Brain-spleen axis: the brain directly interacts with the splenic nerve through hormone

transmission, thereby participating in T cell-dependent splenic nerve regulation, regulating the production of antibodies by splenic plasmacytes (SPPCs);

In addition, dysfunction within the brain may affect the interaction of colony-stimulating factor 1 receptor (CSF1R) with transcription factor PU.1 (SPI1)

in the spleen through the brain-spleen axis. (B) Brain-gut axis: the brain influences the composition of the gut microbiota through the hypothalamic-
pituitary-adrenal axis, while regulating intestinal immune cell activity. For example, under stressful conditions, the production of interleukin-17A (IL-
17A), L-6, and chemokine (C-C motif) ligand 2 (CCL2) in the gut increases, leading to intestinal inflammation.

2.3.1 | Brain-Spleen Axis

The spleen acts as a crucial location for the initiation of the
adaptive immune response. In the spleen, numerous immune
processes occur, such as antigen presentation, T cell activa-
tion, and the differentiation of B cells into antibody-producing
splenic plasmacytes (SPPCs). The splenic nerve governs spleen
immunity and is functionally linked to neurons that generate
corticotropin-releasing hormone (CRH), which originate from
two specific forebrain regions, namely, the central amygdala
and the paraventricular nucleus of the hypothalamus and are
implicated in the body’s response to stress and threat. Zhang
et al. [124] carried out surgical removal of the splenic nerve
in mice, and the results showed that the abundance of SPPC
was notably reduced after immunization in the denervated mice.
On the contrary, the activation of neurons led to an increase
in the production of SPPCs [124] (Figure 4A). Evidence exists
suggesting that the brain conveys information to the splenic nerve
through the vagus nerve, eventually reaching the terminal organ
and enabling communication with the spleen [125]. It is highly
probable that the brain directly interacts with the splenic nerve
through hormonal transmission, thus taking part in the T cell-
dependent regulation of the splenic nerve in the modulation of
antibody production.

The colony-stimulating factor 1 receptor (CSF1R) plays an essen-
tial role in regulating the proliferation, differentiation, and
survival of microglia and macrophages. Additionally, it has the
capacity to interact with the transcription factor PU.1 (SPI1). In
a study carried out by Zhang et al., [126] the protein expression
levels of CSFIR and SPI1 were evaluated in samples from patients
diagnosed with major psychiatric disorders such as major depres-
sive disorder (MDD), schizophrenia, and bipolar disorder. The
results disclosed abnormal expression patterns of CSF1R and SPI1
in the spleens of individuals with these psychiatric conditions.

This indicates that dysfunction in the brain might influence
splenic function through the brain-spleen axis (Figure 4A).

In the effect of the brain on the spleen, brain/nervous system
activity may directly control the adaptive immune response of
lymphoid organs such as the spleen, thereby giving immune
system feedback and regulating immune system function, which
plays an important role in the immune microenvironment.

2.3.2 | Brain-Gut Axis

The brain—gut crosstalk, apart from the aforesaid intestinal
impact on the brain, the gut-brain crosstalk is also significant in
regulating various functions of the human body. The subsequent
discourse will focus on the axis governing the connection between
the intestine and the brain (Figure 4B).

In the efferent pathway of the microbiome-gut-brain axis, the
HPA axis affects the composition of the gut microbiota and the
body’s immune function. It coordinates the release of glucocor-
ticoids by the adrenal glands to restore homeostasis or accelerate
intestinal dysfunction through regulating the activity of intestinal
immune cells, intestinal function, and others [26]. Stress-induced
dyspepsia has the potential to result in intestinal inflammation
via the TH17 cell-mediated release of IL-17A [127]. A considerable
amount of research has demonstrated that stress can influence
the stability of the microbiota, possibly leading to bacterial
translocation. In a study on adult mice exposed to a social stressor
called social disruption, which raises circulating cytokine levels
and enhances the reactivity of the innate immune system, the
results imply that chronic stress is related to a decrease in the
relative abundance of specific bacterial species and an increase
in clostridial species within the cecum. Moreover, this exposure
is connected to the activation of the immune system, as shown
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by the increased production of IL-6 and chemokine (C-C motif)
ligand 2 (CCL2) [128]. The levels of neuropeptide neurotensin
(NT) and CRH found in the brain and intestine are elevated in the
serum of children with autism. Additionally, NT was significantly
correlated with the existence of gastrointestinal symptoms [129].
In stressful conditions, the brain has the capacity to modify
intestinal motor function through the activation of corticotropin-
releasing factor receptors [130]. This evidence indicates that
inflammatory processes or pathological circumstances taking
place within the brain might have an influence on gastrointestinal
function and immune responses.

The cholinergic anti-inflammatory pathway (CAIP) has been
recognized as a significant mechanism through which the brain
governs the immune response of the spleen via the vagus nerve.
The a7 nicotinic acetylcholine receptor (¢7nAChR) is a notable
subtype of acetylcholine receptor within the CNS, having a crucial
role in neurotransmitter release and the inflammatory response,
and functioning as a key regulator of the CAIP. Matteoli et al.
[131] showed that the vagus nerve interacts with cholinergic mus-
cle neurons close to muscle macrophages. Additionally, it was
found that the activation of a7nAChR modulates ATP-induced
Ca** responses in resident macrophages of the small intestine
[131]. The brain possesses the ability to regulate the resident
macrophages within the intestinal muscles expressing a7nAChR
through the vagus nerve, thereby subsequently affecting the
functionality of the intestinal muscles.

Furthermore, a variety of immune and nonimmune cells exist
in the brain/CNS, including the main resident immune cells,
microglia, astrocytes, leukocytes, and so on. These cells form a
complex interaction network that is capable of modulating the
inflammatory response of the gastrointestinal tract [132] and may
lead to intestinal immune cell activation.

2.3.3 | Other Brain-Based Axis

The brain and other organs communicate through various means,
such as brain-derived circulating factors entering the periphery
via the meningeal-lymphatic system and outgoing vagus nerve
signals, as well as indirect interactions mediated by the HPA
axis [132]. The brain utilizes the hypothalamus, a core regula-
tory structure, to exert its influence on peripheral organs and
tissues (such as lungs and pancreas) through sympathetic and
parasympathetic nerves. This procedure involves the regulation
of immune responses and the preservation of homeostasis, among
other functions. Recent experimental investigations have shown
that isolated acute brain injury (ABI) can lead to considerable
dysfunction of peripheral extracranial organs and systems [133].
Moreover, it has been noticed that a sympathetic rush, which
takes place in reaction to a sudden increase in intracranial
pressure, causes a temporary increase in intravascular pressure,
eventually leading to the deterioration of the alveolar-caudal
membrane [134]. The brain and nervous system have a vital
part to play in inflammatory circumstances, which can exert a
significant influence on peripheral organs, especially the lungs,
in ABI situations.

The hypothalamus acts as a central regulatory center within
the cerebral cortex, supervising visceral activities and serving as

the regulatory core for both sympathetic and parasympathetic
efferent fibers. These efferent innervations have a vital role in
regulating the functions of peripheral organs and tissues, such
as the pancreatic islets, adipose tissue, and liver [135]. This
regulation promotes the cerebral innervation and supervision of
these peripheral organs and tissues. The upregulation of bone
marrow production triggered by the sympathetic nervous system
mediates the proinflammatory element of leukocyte CTRA (con-
served transcriptional response to adversity) dynamics and might
contribute to a heightened risk of inflammation-related diseases
associated with adverse social circumstances. In reaction to
demanding living conditions, mammalian immune cells exhibit
CTRA, marked by an upregulation of proinflammatory gene
expression. The study conducted by Powell et al. [136] revealed an
enhanced myelogenesis output of Ly-6¢ (high) monocytes and Ly-
6¢ (intermediate) granulocytes in mice that experienced repeated
social defeats, and these effects were hindered by pharmacolog-
ical antagonists of S-adrenergic receptors and the myelogenesis
growth factor GM-CSF. The parasympathetic nervous system has
an impact on insulin secretion from the pancreas by releasing
acetylcholine. Insulin secretion is regulated by various hormones
and neurotransmitters, among which acetylcholine, the main
neurotransmitter of the peripheral parasympathetic nervous sys-
tem, has a considerable role. Gautam et al. [137] showed that
the M3 muscarinic acetylcholine receptor in pancreatic 3 cells is
essential for the control of insulin release and the maintenance of
glucose homeostasis.

In cases of inflammation or tumors, the brain and CNS can
have an impact on other organs through the innervation of
sympathetic and parasympathetic nerves. The neurotransmitters
released by the brain can promote tumor progression by altering
the tumor microenvironment. This phenomenon is governed
by a balance defined by the principles of yin and yang [138].
Adrenergic and cholinergic nerves promote the advancement of
prostate tumors [139], innervation also leads to the formation of
gastric tumors through M3 receptor-mediated Wnt signaling in
stem cells [140], and the neurotransmitter dopamine secretion is
locally increased in HCCs, and promotes HCC cell proliferation
and metastasis [141]. As a result, neurological interventions could
act as an efficient way for handling disease treatment.

3 | Drugs, Side Effects, Revelations in Cross-Organ
Therapy
3.1 | Drugs Have an Immunizing Effect on Other

Organs by Acting on the Gut

The gut microbiota is central to the regulation of the systemic
immune response, especially when the gut is subjected to phar-
macological treatments. Recent studies have shown that drugs
targeting the gastrointestinal tract may alter the integrity of the
intestinal barrier, microbial composition, and metabolite produc-
tion, which can have a profound impact on immune function in
distant organs by remodeling immune signaling pathways, and
that continued research into these mechanisms may result in new
strategies for modulating the immune response in various organ
systems. In Figure 5A, the diagram illustrates how the specific
drug acts on the intestine, thereby exerting downstream effects
on the liver.
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FIGURE 5 | Drugs act on the gut, liver, and brain to affect other organs. (A) Drugs act on the gut to affect other organs: Gut microbiota and its
metabolites regulate liver inflammation in NASH. Prebiotics, probiotics, antibiotics, and fecal microbiota transplantation (FMT) modulate gut microbiota
composition, influencing the production of various metabolites such as short-chain fatty acids (SCFAs), tryptophan metabolites, and secondary bile
acids. Certain SCFAs promote type 3 innate lymphoid cells (ILC3) to produce IL-22, which induces AMPs, contributing to an anti-inflammatory effect.
Additionally, GLP-1 and FGF-19 alleviate NASH. (B) Drugs act on the liver to affect other organs: Previous clinical reports have shown that sorafenib
can significantly lower blood glucose levels in patients with diabetic hepatocellular carcinoma. Sorafenib effectively blocks IL-12-induced Thl cell
differentiation and indirectly inhibits JAK2 activation in a dose-dependent manner in the treatment of hepatocellular carcinoma in NOD mice with
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hepatocellular carcinoma treatment, the cytotoxic CD8 t producing IFN-y and granzyme B activation of cell populations can make patients more
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contribute to diseases like type 2 diabetes and drug-induced liver injury. Additionally, fluoxetine has been shown to inhibit SARS-CoV-2 replication at
low concentrations.
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3.1.1 | Clinically Currently Known Drugs

3.1.1.1 | Microbiota Modulators. Gut flora and systemic
immune responses are tightly linked [142]. The mechanisms
through which the microbiota regulates the immune response
primarily involve the production of metabolites and activation of
pattern recognition receptors. After acting in the gastrointestinal
tract, pharmaceuticals can influence the immune response of
various organs throughout the body by modulating intestinal
metabolites [143, 144].

SCFAs, tryptophan metabolites, and bile acid derivatives are
metabolites with immunoprotective effects [145, 146]. SCFA
induce the production of AMPs and mucus by specialized intesti-
nal epithelial cells, which aid in the maturation and proliferation
of colonic regulatory T-cells, thus reducing local inflammatory
responses to the intestinal microbiota [147]. SCFAs are essential
for the maintenance of the epithelial barrier and intestinal
homeostasis, and they also stimulate cell proliferation and differ-
entiation to aid in gut repair [148]. Acetate and propionate activate
the Ffar2 receptor, which drives the expansion of CCR6* ILC3s
and raises IL-22 production. IL-22 boosts antimicrobial activity
in epithelial cells by increasing proteins like Reg3a, Reg3f, and
Reg3y that support mucus formation and defense. This response
reinforces gut barrier strength. The Ffar2 signaling pathway
involving the AKT-STAT3 axis maintains IL-22 levels and helps
ILC3s survive in the gut [149].

In addition, intestinal epithelial cells secrete AMPs [150, 151]
which are innate immune effector molecules exhibiting bacte-
ricidal, anti-inflammatory, and antiendotoxin properties [152].
Limiting pathogen-epithelial interactions, their expression may
be downregulated by specific pathogens. This downregulation
is closely associated with the development of innate immune
responses [145, 153].

Drugs targeting the gut microbiota have significant hepatic
therapeutic effects; intervening in the gut signaling pathway sig-
nificantly contributes to the alleviation of hepatic inflammation
due to the anatomical and functional specificities of the “gut-
liver axis” [11]. Studies have shown that the gut-liver axis is
the key to the transfer of inflammatory mediators—including
fatty acids, carbohydrates, amino acids, trimethylamine, ethanol,
and other bacterial metabolites, as well as bacterial antigens
such as LPS—which are critical for transporting these sub-
stances to the liver via the portal vein, primarily affecting liver-
resident macrophages: the Kupffer cell [154, 155]. Conversely,
the gut affects hepatic function by generating diverse media-
tors; it modulates immune responses through anti-inflammatory
factors that benefit liver function. These include gut-derived
hormones like glucagon-like peptide-1 (GLP-1), fibroblast growth
factor 19 (FGF-19), and its murine equivalent FGF15, alongside
microbiota-produced secondary bile acids and anti-inflammatory
metabolites such as tryptophan-derived indoles [154, 156]. Strate-
gies using prebiotics/probiotics/antibiotics or fecal microbial
transplants to correct gut dysbiosis in NAFLD may reduce inflam-
matory signals, repair intestinal barrier dysfunction (thereby
lowering portal vein endotoxin levels), and boost endogenous
production of beneficial mediators like FGFs, GLP-1, and sec-
ondary bile acids. While preclinical evidence strongly supports
microbiota-based interventions to diminish NAFLD-associated

hepatic inflammation, clinical trials have yet to establish long-
term anti-inflammatory or antifibrotic benefits [11]. Cutting-edge
microbiota-targeted therapies—including engineered bacteria,
postbiotics, and phages—offer promising avenues for developing
more personalized treatment approaches for NAFLD-associated
inflammation [157].

Hormone analogs including GLP-1 receptor agonists semaglutide
and liraglutide, along with GLP-1/GIP dual agonists such as
tirzepatide, are used clinically to manage metabolic diseases.
Their effects on liver inflammation and fibrosis are indirect,
occurring mainly through reduced energy supply and improved
hepatocyte metabolism—changes that also regulate immune
cell function. For instance, GLP-1 receptor agonists modify
macrophage phenotype and lower proinflammatory cytokine
production, thereby affecting inflammatory and fibrotic processes
in NAFLD [158]. Phase II trials [159] show GLP-1 agonism aids
nonalcoholic steatohepatitis (NASH) regression; this mechanism
is now being fully investigated in larger studies.

In a similar vein, FGF-19-like hormones, including aldafermin,
demonstrate both anti-inflammatory and antifibrotic properties
by emulating the function of FGF-19 and modulating bile acid
synthesis, as well as glucose and lipid metabolism [160]. These
agents are currently undergoing clinical development for the
treatment of NASH.

3.1.1.2 | Microbiome-Centered Therapies. Microbiome-
centered precision therapies, including engineered bacteria,
probiotics, and phages [161], may offer a promising approach
for the individualized treatment of inflammation associated
with NAFLD [157]. Prebiotics are nondigestible elements found
in food that exert beneficial effects on the host by selectively
enhancing the proliferation and/or activity of specific bacterial
populations within the colon [162]. Typical prebiotics include
human milk oligosaccharides (HMOs), inulin, oligofructose,
and oligogalactose; certain dietary fibers like beta-glucan,
arabinoxylan (AX), pectin, and resistant starch—though
not classified as traditional prebiotics—also show prebiotic
properties. Both prebiotics and these specific fibers foster
beneficial gut bacteria proliferation by serving as fermentation
substrates, while suppressing pathogenic microorganism growth
through ecological niche exclusion. SCFA modulate immune
function and reduce the risk of infectious diseases, and their
interactions with epithelial and immune cells contribute to
the prevention of infections. For example, §-glucan and AX
trigger the activation of the C-type lectin receptor Dectin-1 on
intestinal epithelial cells, a mechanism that has been implicated
in enhancing the immune response to prevent secondary
infections [163, 164, 165]. In addition, HMO, AX, and pectin can
bind to TLRs and inhibit excessive TLR signaling in intestinal
epithelial cells by inducing a tolerogenic subpopulation, thereby
enhancing dendritic cell function—a process that protects
the gastrointestinal tract and reduces inflammation following
infection [166, 167, 168, 169].

In addition to the individual application of prebiotics and
probiotics, there exist nutritional strategies that integrate both
components into symbiotic formulations. Symbiotics have shown
promise in clinical studies and may represent a viable therapeutic
alternative in the future [170].
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Furthermore, FMT has been explored as a potential approach for
restoring gut microbiota balance, involving the transfer of fecal
microbiota from a healthy donor into the gastrointestinal tract of
the patient [171], has shown certain efficacy in the treatment of
ulcerative colitis, IBS, and HE [172].

3.1.2 | Limitations

GLP-1 receptor agonists, including semaglutide, may pose sev-
eral risks, including hypoglycemia, gastrointestinal side effects,
cardiovascular effects, acute kidney injury, an increased risk of
diabetic retinopathy, and allergic or injection site reactions [173].
The use of probiotics, similar to other medications, is associated
with the potential for considerable side effects [174]. There have
been reports indicating that the availability of probiotics, such as
Lactobacillus rhamnosus (LGG), may result in immunocompro-
mise, bacteremia, or sepsis in both children and adults suffering
from acute severe colitis [175].

3.1.3 | Implications for patients

Nutrition significantly affects the composition of the gut micro-
biota and the immune system [176, 177]. The Western Diet is
characterized by excessive fat intake, which is usually associated
with overeating, frequent snacking and a long digestion time
after meals [178]. The consequences of a high-fat diet include
dysbiosis of the microbiota, damage to the intestinal barrier,
increased intestinal permeability, and the entry of harmful
bacterial metabolites into the circulatory system, and it is also
associated with an intensified inflammatory response [179]. This
study deepens our understanding of the relationship between
the gut microbiota and host responses, thereby providing more
possibilities for regulating the relationship between the two.
Nutritional intervention can be used to maintain intestinal
homeostasis and enhance resistance to infection [180]. It must be
recognized that various dietary components, including minerals,
carbohydrates, vitamins, lipids, and proteins, due to their respec-
tive characteristics, directly or indirectly affect the interaction
between the host and the pathogen through the microbiome in
different ways. Clarifying its mechanism of action will provide
new ideas for improving health [181]. Dietary intervention should
be regarded as an important strategy for regulating the risk
of infectious diseases, preventing the invasion of pathogenic
microorganisms, reducing the severity of infections and sup-
porting the treatment of infectious diseases [176]. Increasing the
intake of dietary fiber, adopting a diverse diet and taking an
appropriate amount of prebiotics, probiotics and omega-3 fatty
acids can promote the balance of intestinal flora, thereby having a
positive impact on the immune function of various organs in the
human body.

3.2 | Drugs Have an Immunizing Effect on Other
Organs by Acting on the Liver
3.21 | Clinically Currently Known Drugs

Primary liver cancer is the second leading cause of mortality
globally [182]. Despite significant advancements in treatment

modalities over the years, the clinical prognosis for this condition
remains unsatisfactory [183]. Various pharmacological agents
are available for the management of different stages of HCC;
however, these treatments may also exert immunological effects
on other organs throughout the therapeutic process.

The current first-line treatment for late-stage conditions con-
tinues to be predominantly characterized using sorafenib [184].
Sorafenib is a tyrosine kinase inhibitor (TKI) that impedes tumor
angiogenesis by targeting hepatocyte cytokine receptors, vascular
endothelial growth factor receptor 2 (VEGFR2), and platelet-
derived growth factor receptor [185]. In addition, sorafenib
inhibits tumor proliferation primarily by targeting RAF-1, B-
Raf, and the kinase activities within the Ras/Raf/MEK/ERK
signaling pathway [186]. Although sorafenib affects not only
normal hepatocytes but also other cell types, it may alter the
distribution and functional states of peripheral blood B cells,
T cells, and NK cells in patients [187]. However, these effects
primarily result from the direct action of sorafenib on systemic
cells and are largely confined to immune responses, such as
skin toxicity [188], rather than immune interactions between
organs following its action on the liver. A detailed discussion
of these adverse effects will be provided in the corresponding
subsection of this section. Furthermore, given that tumor cells
exhibit significantly higher proliferative and metabolic activity
than normal cells, HCC cells may be more sensitive to sorafenib.
Therefore, in the context of primary liver cancer, the effects of
sorafenib on other organs can be considered a consequence of its
primary action on the liver.

Retrospective analyses have reported a notable reduction in blood
glucose levels following sorafenib administration in both diabetic
and nondiabetic cancer patients [189]. Previous clinical reports
have indicated that sorafenib significantly reduces blood glucose
levels in patients with diabetic HCC [190]. Beyond metabolic
effects, emerging data suggest that sorafenib may interfere with
immune regulation. Specifically, it has been shown to inhibit IL-
12-mediated Th1 cell differentiation in a dose-dependent manner
and indirectly downregulate JAK2 activation [191] (Figure 5B).
Such immunomodulatory actions have been linked to a decrease
in Thl cell accumulation and pancreatic cytokine expression and
may partially explain sorafenib’s observed ability to prevent or
reverse type 1 diabetes in NOD mouse models [192].

Transarterial chemoembolization is recognized as the preferred
therapeutic approach for HCC in intermediate to advanced stages
[193] (Figure 5B). Cisplatin, recognized as a critical therapeutic
agent, exerts its effects through direct interaction with DNA,
leading to the induction of apoptosis and inflicting damage
on mitochondrial structures [194, 195]. TACE-induced ischemia
leads to hypoxia in hepatocytes and liver tissue [196], caus-
ing localized inflammation and promoting TNF-« [197] and T
lymphocyte activation [198]. This cascade ultimately leads to
the activation of various inflammatory cells, resulting in renal
epithelial cell damage.

Furthermore, ICIs are extensively utilized in the management
of HCC [199]. ICIs can reactivate T cell receptor-mediated
cytotoxicity and promote CD8" T cell proliferation by acting
on the corresponding ligands and receptors [200], enabling the
autoimmune system to recognize and kill tumor cells [201].
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However, ICIs produce a variety of inflammatory toxicities col-
lectively known as immune-related adverse events (irAEs) [202].
During HCC treatment, activated cytotoxic CD8" T cells produce
IFN-y and granzyme B, which may increase the susceptibility
of certain patients to intestinal inflammation, such as colitis
[203]. a-Myosin is also a direct target of cytotoxic CD8+ T
cells, which act on the heart through the patient’s peripheral
bloodstream to cause myocarditis [204]. An increasing body of
evidence indicates that B cell-mediated humoral immunity may
contribute to thyroid dysfunction, including thyroiditis, following
ICIs therapy [205].

Hepatitis B virus (HBV) infection remains a major global health
burden. As of 2019, an estimated 296 million individuals tested
positive for hepatitis B surface antigen, corresponding to a global
prevalence of approximately 3.5% [206]. Chronic HBV infection
can lead to prolonged liver inflammation and alterations in the
immune microenvironment, making it a major cause of cirrhosis
and HCC [207, 208].

Recent evidence indicates that nucleoside analogs (NAs) serve as
the principal therapeutic approach for hepatitis B. These nucle-
oside (acid) analogs are increasingly recognized as a safer treat-
ment alternative that has the potential to reduce the incidence of
severe hepatitis [209]. NAs alleviate the systemic inflammatory
response triggered by hepatitis by inhibiting HBV replication and
reducing liver inflammation [210]. In the context of hepatitis-
related chronic inflammation, NAs improve platelet activation
and thrombosis formation by modulating the P2x7-mediated
NLRP3 inflammasome [211], This provides a protective effect on
the vasculature and indirectly improves cardiovascular health
[212]. Additionally, with the improvement of liver inflammation,
the overactivation of the spleen may be suppressed, thereby
reducing the occurrence of secondary immune dysregulation.

Interferon (IFN) remains an important therapeutic option in
chronic hepatitis B management [213]. Mechanistically, IFN acti-
vates the JAK-STAT signaling pathway, leading to the induction
of IFN-stimulated genes (ISGs) [214], which are essential for
antiviral defense and immune regulation. The expression of these
ISGs further regulates viral replication and the immune response.
However, during treatment, exogenous IFN is metabolized by
the liver and recruits inflammatory cells [215] to promote T-
cell activation by enhancing MHC II expression, DC maturation,
upregulation of costimulatory molecules, and antigen presenta-
tion [216] to stimulate a systemic immune response [216]. These
immunostimulatory effects are not confined to the liver: in the
kidney, IFN-induced chemokines such as CXCL9 and CXCL10
can contribute to immune-mediated nephritis. Moreover, IFN
enhances immunosurveillance by increasing the expression of
TNF-related apoptosis-inducing ligand [217], which may play
a role in tumor suppression, particularly in cases where viral
hepatitis coexists with colorectal cancer [218]. Interestingly, this
antitumor potential may be partly attributed to IFN’s inhibitory
effects on angiogenesis within the tumor microenvironment.

3.2.2 | Limitations

First, TKIs such as sorafenib have been shown to modulate
immune responses through multiple mechanisms. One notable

effect is the inhibition of VEGFR signaling, which can disrupt reg-
ulatory T cell (Treg) function and enhance autoimmune activity.
This dysregulation is thought to contribute to common derma-
tologic toxicities observed in clinical practice, including hand-
foot skin reaction [219]. Additionally, the suppression of B cell
function by sorafenib may impair antibody-mediated immune
responses, causing immune-related hematological abnormalities,
such as thrombocytopenia, in some patients [220].

ICIs activate self-reactive T cells that infiltrate the myocardium
leading to myocarditis outbreaks [221]. CTLA-4 expression in nor-
mal pituitary cells may promote the toxicity associated with anti-
CTLA-4 therapy, leading to pituitary inflammation [222]. ICIs
also activate inflammatory factors and the microbiome, resulting
in elevated baseline levels of IL-17, which is strongly associated
with poor colitis prognosis [223]. A retrospective analysis of
190 HCC patients treated with pembrolizumab monotherapy
[224] showed that 18.4% had elevated transaminases, followed
by diarrhea (14.2%), dermatosis (13.2%), and thyroid dysfunction
(13.2%).

Second, hepatotoxicity is also inevitable during treatment. Cis-
platin, a chemotherapeutic agent against HCC, causes oxidative
stress in hepatocytes by increasing the production of reactive
oxygen species (ROS), inducing hepatocyte degeneration [225]
which leads to severe liver injury. Although cisplatin is primarily
eliminated via renal excretion, its accumulation within renal
tubular epithelial cells contributes to marked nephrotoxicity
[226].

Finally, drug resistance is also a challenge to treatment. ICIs
improve the prognosis of a subset of patients with HCC, but
eventual drug resistance in 20-30% of patients leads to tumor
recurrence and progression [227] that may be related to mutations
in key antitumor pathways [228] and the overall microbial
community composition of patients [229]. Moreover, the efficacy
of IFN-based therapies may decline over time due to progressive T
cell exhaustion, further complicating dosing strategies in clinical
settings.

3.2.3 | Implications for Patients

Cisplatin increases the production of ROS thus leading to liver
injury, and patients can reduce oxidative stress by consum-
ing more antioxidant foods in their daily diet. In addition, a
healthy and regular diet is beneficial for the patient’s overall
microbiota to remain stable, thus improving resistance to ICIs.
Oral corticosteroids combined with high-dose vitamin B6 can
be used to treat or prevent hand-foot syndrome induced by
TKIs.

3.3 | Drugs Have an Immunizing Effect on Other
Organs by Acting on the Brain

3.3.1 | Currently Clinically Known Drugs

MDD is increasingly recognized as a considerable global public

health concern. The World Health Organization predicts that
MDD will become the second leading cause of disability world-
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wide in the present year [230]. Depression is a chronic and
recurrent state that might require lifelong treatment via diverse
approaches. A considerable portion of people diagnosed with
MDD are still undertreated [231]. In Figure 5C, the diagram illus-
trates how specific drugs—particularly antidepressants—affect
other organs through actions on the brain.

Selective serotonin reuptake inhibitors (SSRIs) are a newer type
of antidepressant. Doctors have used them since the 1980s after
clinical testing. Six SSRIs are widely prescribed: fluoxetine, ser-
traline, paroxetine, fluvoxamine, citalopram, and escitalopram.
These drugs work by blocking serotonin reuptake in the brain.
They target specific transporters on nerve cell membranes. This
action boosts serotonin levels between cells. SSRIs have little
effect on norepinephrine. Their impact on dopamine is even
smaller. Though developed decades ago, SSRIs remain a first-
line treatment. They are still the most common medications for
depression today [232].

New research reveals how antidepressants affect brain. Both older
drugs like fluoxetine and newer fast-acting antidepressants like
ketamine work through similar pathways. These medications
activate TrkB receptors in the brain. Brain-derived neurotrophic
factor (BDNF) plays a key role in neural plasticity and mood
regulation [233]. The antidepressant fluoxetine, together with
other psychotropic drugs showing similar effects, might act as
exogenous damage-associated molecular patterns that directly
trigger the activation of the NLRP3 inflammasome. This process
is related to the activation of caspase-1, the secretion of IL-
18, and the induction of pyroptosis mediated by Gasdermin
D [234]. The dysregulation of NLRP3 inflammasome activity
leads to uncontrolled inflammation, which is a contributing
factor for various diseases, including type 2 diabetes [235] and
drug-induced liver damage [236]. The reduction of IL-13 in the
rat prefrontal cortex induced by fluoxetine is involved in both
transcriptional and posttranscriptional regulatory mechanisms.
Moreover, it demonstrates that the activation of the microglial
NLRP3 inflammasome acts as a mediator of IL-13-associated
neuroinflammation within the CNS during chronic stress periods
[237]. Ketamine, which is acknowledged as a prophylactic agent
for stress-induced depression-like behavior, has been demon-
strated to suppress the NLRP3 inflammasome-driven signaling
pathway at higher doses [238]. Moreover, the combination of
ketamine and other pharmacological substances might alleviate
the side effects related to each drug. The neuropsychiatric disor-
ders associated with the COVID-19 pandemic could be connected
to inflammatory and immune response mechanisms [239]. It
is notable that fluoxetine has been demonstrated to markedly
inhibit SARS-CoV-2 at a concentration of 0.8 ug/ml, leading to
a decrease in the expression of viral proteins [240]. The research
findings suggest that SSRIs, particularly fluoxetine hydrochloride
and fluvoxamine maleate, are associated with a decrease in the
severity of COVID-19 [241]. The combination of itraconazole and
fluoxetine constitutes a promising initial strategy for therapeu-
tic interferences aimed at handling SARS-CoV-2 infection and
alleviating the severe advancement of COVID-19 [242].

Different types of antidepressants have the possibility to change
the composition of the gut microbiota. Particularly, rumen cocci
have been associated with the relief of depressive-like behav-
iors [243]. Furthermore, it has been shown that medications

like fluoxetine and amitriptyline can cause changes in both
the gut microbiota and the functional dynamics of the gut
microbiome in rat models [244]. Atypical antipsychotics, such as
risperidone, have been linked to the emergence of drug-induced
metabolic syndrome, along with weight increase, obesity, and
glucose intolerance [245]. Antipsychotic drugs have been linked
to elevated circulating levels of leptin [246], which might play
a role in the emergence of metabolic syndrome. This syndrome
is marked by dysfunction in the operation of the pancreas, liver,
adipose tissue, muscle, and endocrine system. Additionally, the
bioaccumulation of gut bacteria could be a common mechanism
through which drug efficacy and bacterial metabolism are altered.
This occurrence has the capacity to affect microbiota composi-
tion, pharmacokinetics, adverse reactions, and individual drug
responses [247].

3.3.2 | Limitations

Elevations in alanine aminotransferase levels exceeding three
times the upper limit of normal were observed in patients receiv-
ing treatment with SSRIs, indicating the possibility for clinically
significant drug-induced liver injury (DILI) [248]. Furthermore,
prolonged use of SSRIs may result in hyperpigmentation of the
skin and nails [249], as well as alterations in platelet aggregation
[250].

3.3.3 | Implications for patients

The administration of SSRIs and serotonin-norepinephrine reup-
take inhibitors is commonly linked to a variety of adverse effects.
Commonly reported adverse effects include nausea, diarrhea,
indigestion, gastrointestinal bleeding, and abdominal pain [251].
Additionally, these medications may contribute to weight gain
and metabolic disorders [252], urinary retention [253], sexual
dysfunction [254], hyponatremia [255], and other detrimental
symptoms [256].

3.4 | Drug-Related Clinical Studies with
Cross-Organ Therapeutic Effects

We have compiled a table summarizing clinical studies related
to the trans-organ immune axis, covering studies in the liver—
brain, liver-intestinal, liver-skin, brain-cardiac, brain-hepatic,
brain-genital organ, and brain-intestinal axes. The table includes
the type of study, study population, immune-related pathways
and targets involved, mechanism of action, interventions (drug
and dosage), key findings and conclusions, and the focus of
the study revolves around immune regulation, intestinal flora,
metabolic pathways, and the effects of inflammatory factors on
different organs. For example, rifaximin in the liver-brain axis
improved HE, while GLP-1 receptor agonists modulate metabolic
function and reduce hepatic fat deposition in the liver-gut axis.
In addition, the table mentions potential adverse effects of some
drugs, such as irAEs with anti-PD-1 therapy and DILI with
antidepressants. Overall, the table demonstrates the immune and
metabolic modulatory effects of multiple drugs across different
organs, providing clinical evidence in support of cross-organ
therapies (Table 1).
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4 | Perspectives of Cross-Organ Immune
Regulation

4.1 | Evolving Insights into Systemic Immune
Interactions

Knowledge pertaining to the organization of immune processes
across multiple organs has dramatically been evolved in the era
of postgenome science. The immune systems with regard to
intestinal tract, liver system, and nerve cell system were assumed
to act autonomously at the beginning of immunology, to regulate
immune mechanisms within themselves. The latest research has
revealed that these living organisms communicate with each
other via a kind of ongoing back and forth in which an immuno-
logical event that takes place in one region of the intestine can
trigger a measurable change in the immune scenery of the brain.
This major shift in perspective has come because it was realized
that there are complex biochemical messenging pathways that
can drive coordinated activities between the immune system
regions residing at disparate locations, that is, cellular processes
that can mediate the immune system’s communication over
longer distances (over one cell layer), substantially changing our
perception regarding the integrated immunological ecology of the
whole body.

Recent studies validate that proinflammatory molecules emanat-
ing from the gastrointestinal tract-microbiota-specific bioactive
molecules play regulatory roles in liver immune function [270]
and in brain immunoregulation [271]. Immune molecules from
the liver has been shown to show the ability to globally prime
the whole immune system beyond the local microenvironment
within the liver [272]. Despite immunological role of the CNS
being for a long time concealed behind the BBB and the blood-
retina barrier, the recent work outlines the significance of the
CNS in systemic inflammatory response (including the so-called
neuro-immune response cascades with system-level effect) [273].

The traditional, organ-specific approaches toward drug devel-
opment are in the process of paradigm shift, as novel phar-
macotherapies targeting specific organs seem to reveal, unex-
pectedly, trans-organ immune modulatory functionality. This
understanding of the interdependence of local and systemic
immune communication fueled the design of multiorgan-
immune-modulating approaches exploiting anatomical crosstalk
pathways toward therapeutic benefit.

These observations have stimulated a revolution in interrogating
biological networks and are certainly reframing immunology’s
primary questions. Clearly, understanding intertissue signaling
logic is immunology’s new primary aim. Likewise, it is also
becoming quite evident that designing novel informatics infras-
tructure to track the transmission of immune signals between
different organs is less of an aspiration and much more of a
requirement to explore uncharted areas to address multiorgan
immunopathologies.

4.2 | Exploring Techniques for Cross-Organ
Immune Regulation

Modern approaches like multiomics approaches, big data analy-
sis, and organ-on-a-chip modelling are key tools in understanding

the immune system working in diverse organs, which will also be
able to illuminate the key molecular mechanisms and guide the
exploration for novel therapeutic strategies.

4.2.1 | Multiomics Approaches

With the advent of multiomics technologies (e.g., genomics,
transcriptomics, proteomics, and metabolomics), the organ
communication has been unraveled in-depth. Among those,
metabolomics seems most beneficial to characterize the gut-
liver axis, as shown in Wang et al. [274] (using metabolomic
analysis to identify the gut-derived metabolites that significantly
contribute to the liver dysfunction in regulating the pathogenesis
of the NAFLD and liver fibrosis). In a series of their findings, the
investigators highlighted the roles of products such as SCFAs and
bile acids in such mechanisms and proposed them as potential
targets in liver disease treatment [274]. In a different work, Zhang
et al. [275] investigated how the bile acids regulate gut-liver
communication, particularly in their role as mediators of driving
liver inflammation and liver diseases.

Other than metabolomics, proteomics has been also used to
further our understanding of immune regulation in organs. Guo
etal. used proteomic analysis of the gut-brain axis and pinpointed
gut microbiota impacted proteins in relation to the formation of
neurodegenerative disease [276]. Similarly, Zundler et al. [277]
showed how an integrative omics, consisting of transcriptomics,
proteomics, and metabolomics, can offer further knowledge
of the gut-liver axis. Such a multilevel framework allowed to
identify key molecular circuits linking gut-related inflammation
to liver damage [277], while a recent targeted multiomics study
investigated the routes along which gut microbiota affects host
immunity and metabolism via cross-organ networks [278]. With
the help of spatial transcriptomics, single-cell RNA sequencing
and targeted bile acid metabolomics, researchers reported that
absence of the microbiota resulted in abnormal B cell, myeloid
cell, and T/NK cell distributions; bile acid circulation; and
lipid metabolism balance. We conclude that multiomics alone
will allow for a distinct appreciation of the host-microbiota-
immune-metabolic interactions in distinct organs and is poised
to generate novel insights on new pathways targeting the
microbiota-immune-metabolic cross-talk [279].

4.2.2 | BigData Analytics and Machine Learning

Big data analytics and machine learning are gaining relevancy asa
means to manage the vastness of the data produced by multiomics
studies. Such sophisticated tools highlight the bidirectional organ
communication pathways, in particular those of a gut microbiota
modulating cerebral functioning via an enteric-neural pathway.
Xu et al. [280]. applied big data methods to microbiome data sets
that reported associations of specific microbial communities to
the neuroinflammatory process in the brain They suggest that this
result can direct potential cures for neurodegenerative disease.
In an analogous work, Yan et al. [71] used machine learning
techniques to model communications of the gut-brain-liver axis
by using microbiota composition and metabolite measurements
to infer disease progression. They argue this can be a useful
approach toward personalized cures.
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Kim and Sung [281] employed machine learning to analyze mul-
tiomics data regarding gut-liver axis, which identified important
biomarkers associated with liver diseases and paved the way for
predictive disease progression models. Within the same research
field, in a second study they employed eight different machine
learning algorithms to analyze the alcohol-gut microbiota-liver
axis and early-stage HCC detection with an outstanding AUC
of 0.932. In this investigation, Guo et al. [282] identified key
microbial players who mediated and moderated the role of
alcohol in risk of HCC, thus demonstrating the power of machine
learning to deconvolve the host-microbiota axis across organs.
Guo et al. [276] also noted machine learning as an approach to
uncover associations between gut microbes and brain function,
in the specific example of microbial signatures associated with
cognitive decline.

4.2.3 | Organ-on-a-Chip Models

Organ-on-a-chip has been considered as an alternative in vitro
platform for testing organ-organ communication in a confined
environment. Microfluidic devices are capable of simulating
physiological conditions of human organs and facilitates interor-
gan observation in real-time. Kim et al. [283] established gut-
brain chip to identify how microbial metabolites trigger neu-
roinflammations. They identified some metabolites that could
either exacerbate or minimize inflammation, thus giving possible
targets for neurological disease treatments [283]. Another study
by Bauer et al. [284] employed the gut-liver chip, and studied how
signals sent by the gut, can influence the function of the liver par-
ticularly during liver fibrosis. Their results were able to shed some
light on the intricate interaction between the gut and liver [284].

Zhang et al. [285] used a multiorgan chip model to study the
gut-liver-brain axis, showing that inflammation starting in the
gut can affect both liver and brain function—contributing to
conditions like AD and liver cirrhosis. Recently, the devel-
opment of the gut-on-a-chip (GOC) systems has remarkably
enhanced our capability to simulate gastrointestinal operations.
Such microfluidic systems offer a better representation of the
dynamic gut environment and thus are believed to be more
appropriate tools to model drug absorption and metabolism
than static cultures or animal models. GOC systems were found
particularly valuable in the field of drug development: they
were used to evaluate the oral drug bioavailability as well as to
model a disease state. GOCs can be combined with other organ
chips to model multiorgan interactions in order to better predict
behaviors of drugs throughout systems and systemic toxicities
[286]. In addition to drug testing, GOCs now permit the coculture
of synthetic gut microbiomes to conduct thorough research
into how dietary intake impacts gut microbiomes. Such models
enable testing of microbiota interactions, probiotic activity, and
control of pathogenic bacteria in a physiologically relevant gut-
like environment. By integrating bacterial consortia with varied
nutrients, researchers gain new insights into how diet shapes
microbiota composition and metabolism—advancing strategies
for managing gut health through nutrition [287]. Furthermore,
developments in organ-on-a-chip techniques have facilitated to
construct multiorgan systems that enable to get a better grasp
on how multiorgan communication can be involved in the
development of disease [277].

5 | Conclusion

The immune connections between organs are complex and
profound, playing a key role in the progression of diseases such
as inflammation and cancer. In recent years, cross-organ immune
regulation has become a research hotspot. Numerous pieces of
evidence indicate that the interaction between organs is of great
significance for maintaining the overall balance of the body and
determining the outcome of diseases. An in-depth exploration of
these organ axes can reveal how the immune response of one
organ widely affects the pathophysiological processes of another
organ, and analyze how the immune response overcomes spatial
barriers to achieve precise regulation between distal tissues,
thereby triggering protective physiological effects or pathological
changes. A comprehensive analysis of these complex interac-
tion mechanisms will help develop more comprehensive and
integrated treatment strategies, which is expected to improve
treatment outcomes and minimize adverse reactions to the
greatest extent.

In conclusion, driven by technological progress, the field of cross-
organ immunomodulation is undergoing significant evolution.
This helps to clarify more thoroughly the complex network
of immune communication among various organs, and the
prospects for developing comprehensive treatment strategies
are becoming increasingly optimistic. Looking ahead, a deeper
understanding of cross-organ immune regulation mechanisms
is crucial for addressing the systemic characteristics of many
diseases and improving patient prognosis through more person-
alized and comprehensive treatment approaches.
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