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Nitrite and sulfite play important roles in human health and environmental science, so it is
desired to develop a facile and efficient method to evaluate NO2

- and SO3
2-

concentrations. In this article, the use of green alternatives with the potential of multi-
functionality has been synthesized to detect nitrite and sulfite based on fluorescent probe.
The carbon dots (CDs) with starch as only raw materials show fluorescence turn “on-off-
on” response towards NO2

- and SO3
2- with the limits of detection of 0.425 and 0.243 μN,

respectively. Once nitrite was present in the solution, the fluorescence of CDs was
quenched rapidly due to the charge transfer. When sulfite was introduced, the
quenching fluorescence of CDs was effectively recovered because of the redox
reaction between NO2

- and SO3
2-, and thus providing a new way for NO2

- and SO3
2-

detection. Owing to their excellent analytical characteristics and low cytotoxicity, the “on-
off-on” sensor was successfully employed for intracellular bioimaging of NO2

- and SO3
2-.
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INTRODUCTION

Nitrogen oxide is one of the primary pollutants from fuel combustion (Boningari and
Smirniotis, 2016). The nitrite was thought to be inert end product of endogenous
metabolism of nitric oxide (Lundberg et al., 2008). As food additives to inhibit the growth
of microorganisms in cured and processed meats, excessive intake of nitrite ions with food or
water can seriously endanger human health (Kalaycioglu and Erim, 2019). With potentially
carcinogenic effects (Forman et al., 1985), nitrite can oxidize ferrous iron to trivalent iron to
cause the formation of methemoglobin and has been listed as a highly toxic substance by The
World Health Organization (Cockburn et al., 2013; ZhaoW. et al., 2019). In addition, as a toxic
air pollutant, sulfur dioxide is the main precursors of acid rain. Inhaled sulfur dioxide could be
hydrated to produce it derivatives sulfite and bisulfite. Sulfite is considered as a restricted food
additive in various food preservatives and excessive amounts of sulfite in food and drinking
water have been major concerns for public health (Zhang et al., 2014; Wang et al., 2021b). It
can cause harmful effects on tissue and has been found to be associated with asthma,
hypotension, chronic obstructive pulmonary diseases, cardiovascular and gastrointestinal
pain (Joseph et al., 2015; Pan, 2019; Asaithambi and Periasamy, 2020; Heaviside et al., 2021).
In terms of the United States Food and Drug Administration (USFDA), the limit of sulfite
residue in food is 10–100 ppm (Khan and Lively, 2020). Therefore, developing a rapid, highly
selective and water-soluble probe to realize the sequential detection of nitrite and sulfite ions is
of great importance.
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In recent years, several analytical procedures including digital
microfluidic platform, ion-exchange chromatography, ion-pair
phase HPLC technique and capillary electrophoresis have been
developed for the determination of these ions (Zuo and Chen,
2003; Iammarino et al., 2010; Della Betta et al., 2014; Gu et al.,
2020; Zhang et al., 2021). However, these methods either require
tedious sample preparation procedures, or are difficult to be
widely used due to economic factors. Thus, a simple and
inexpensive strategy to sense nitrite ions and sulfite ions with
favorable sensitivity is highly desirable. There are many
researches on sensing based on fluorescent nanocrystals. For
example, lanthanide-doped fluoride nanocrystals are used for
temperature sensing with ultrahigh relative sensitivity (Wang
et al., 2021c; Wang et al., 2021d). However, their application may
be hampered by complicated sample preparation procedure and
sometimes the need for toxic raw materials. Carbon dots (CDs),
on the other hand, can serve as a promising candidate in this field.

CDs, as these carbon-based fluorescent nanoparticles
(typically less than 10 nm) has attracted the tremendous
interest of researchers because of their unique properties
such as low toxicity, excellent photostability, tunable
emission spectra, easy surface functionalization, good
biocompatibility and facile synthesis (Sun et al., 2006; Langer
et al., 2021; Nazri et al., 2021). Because of these excellent
properties, CDs have been applied in bioimaging, sensing,
photocatalysis and drug delivery (Wang R. et al., 2018; Wang
J. et al., 2019; Tosic et al., 2019; Yue et al., 2019; Jin et al., 2021).
For instance, Qu et al. have synthesized bifunctional ibuprofen-
based carbon dots for simultaneous bioimaging and anti-
inflammatory (Qu et al., 2020). Jiao et la. have developed
nitrogen-doped carbon dots for the ratiometric detection of
sliver ions and glutathione (Jiao et al., 2019). Yarur et al. have
demonstrated the synthesis of ratiometric fluorescence carbon
dots for the detection of heavy metal ions with high selectivity
and sensitivity (Yarur et al., 2019). As for detection nitrite ions
in water, Zan et al. have reported green emission CDs for
detection of nitrite ions and bioimaging (Zan et al., 2020).
Another CDs synthesized by citric acid and amine were used
for determining nitrite with a detection limit of 9.6 μg/L (Li
et al., 2020). Chemical heteroatoms doping is an effective
method to regulate the intrinsic properties of CDs. Jiang
et al. have prepared polymer carbon dots doped with
nitrogen and phosphorus to detect nitrite ions and the
detection limit was as low as 0.55 μM(Jiang et al., 2019).
Unlike nitrite sensors, the work of sulfite ions detected by
fluorescence probes based on CDs have been rarely reported.
The green fluorescence of upconversion nanoparticles was
restored in the presence of sulfite or bisulfite and the limit of
detection is 0.14 μM(Wang S. et al., 2018). Another method is
the introduction of Cr (IV) into CDs and sulfite was successfully
detected by the electron-exchange between Cr (IV) and CDs.
The fluorescence of CDs was recovered when Cr (IV) was
reduced by sulfite with the detection limitation 0.35 μM
(Fang et al., 2017). Although fluorescent probes based on
carbon dots have been developed to detect nitrite ions or
sulfite ions, there are no reports using carbon dots for the
sequential detection of nitrite ions and sulfite ions.

In this paper, we developed a CDs-based probe which can
detect NO2

- and SO3
2- separately through a “on-off-on”

mechanism. CDs were prepared using starch as raw material
through one-step hydrothermal method, which is simple,
environmentally friendly and suitable for large-scale
production. The fluorescence intensity was quenched in the
presence of nitrite ions and recovered with addition of sulfite
derivatives (Figure 1). Taking advantage of fast response, stable
fluorescence properties and favorable biocompatibility, CDs have
been developed for the sensitive detection and imaging of nitrite
ions and sulfite ions with the limits of detection of 0.425 and
0.243 μN. In addition, the “on-off-on” detection systems for
nitrite ions and sulfite display high sensitivity and selectivity,
demonstrating the great potential of CDs in sensing,
environmental science and food safety.

MATERIALS AND METHODS

Materials
Starch, L-cysteine (Cys), glycine (Gly), urea, glucose (Glu),
calcium chloride (CaCl2), sodium chloride (NaCl), copper
chloride (CuCl2), potassium chloride (KCl), iron (III) chloride
(FeCl3), glutathione (GSH), sodium sulfate (Na2SO4), sodium
nitrate (NaNO3), sodium sulfite (Na2SO3), sodium phosphate
(Na3PO4), sodium bisulfite (NaHSO4) and sodium nitrite
(NaNO2) were purchased from Sinopharm Chemical Reagent
Company (China). Dulbecco’s modified Eagle’s medium
(DMEM) medium and fetal bovine serum (FBS) were
purchased from HyClone (United States). WST assay kits were
purchased from Energy Chemical (China). All regents were not
processed or purified prior to use.

Structure Characterization
Fluorescence spectra were recorded on a fluorescent
spectrophotometer (F97Pro, China). UV-vis absorption spectra
were recorded on a U-3010 spectrophotometer (Hitachi, Japan).
Fluorescence lifetime measurements were carried out on
photoluminescence Spectrometer (FLS 1000,
United Kingdom). An AXIS ULTRA DLD spectrometer was
used to detect X-ray photoelectron spectroscopy (XPS). Freeze
dryers (Scientz-10N, CHINA) was used to obtain CDs solid
powders. Transmission electron microscopy (TEM, JEOL Ltd,
Japan) was used to characterize the morphology of the CDs. Nano
ZS/ZEN3690 (Malvern, United Kingdom) was used to investigate
the particle size distribution and surface potential of the CDs.
Fourier transform infrared (FT-IR) spectra was acquired using an
FT-IR spectrometer (Agilent Cary 660, United States).

Synthesis of CDs
The synthesis of CDs was similar to our reported method
(Wang et al., 2021a). Typically, 0.5 g starch was dissolved in
30 ml ultrapure water, stirred and ultrasonic vibrated for
10 min, and then heated at 200°C in a 100 ml stainless
steel autoclave lined with polytetrafluoroethylene for 10 h.
After the solution was cooled to room temperature,
centrifuged at 10,000 rpm for 10 min to remove
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precipitate, filtered by a 0.22 μm filter membrane to further
detach the aggregates and then dialyzed against pure water
through a dialysis membrane (Mw � 1,000 Da) for 8 h. The
product was lyophilized to obtain dark brown CDs and
exhibited strong fluorescence under UV irradiation.

NO2
- and SO3

2- Fluorescence Assay and
Selectivity Studies
To detect of NO2

-, different concentrations of NO2
- solutions

(10 mM, final concentration 0–700 μM) were added
systematically into 3 ml aqueous solutions of CDs (20 μL;
the final concentration is 20 μg ml-1), then the sample was
oscillated for 5 min at room temperature with a small oscillator
at 1,000 rpm. Finally, the emission spectrum of the sample was
measured by fluorescence spectrometer at the excitation
wavelength of 360 nm. To verify detection selectivity of CDs
toward NO2

-, other ions solutions were examined in a similar
way. For the assay of SO3

2-, various concentrations of SO3
2-

(10 mM, final concentration 0–700 μM) were obtained by
diluting the stock solution with ultrapure water. The
subsequent experimental procedure is consistent with the
NO2

- detection process.

Relative Fluorescence Quantum yields
The fluorescence quantum yield is the efficiency of converting
absorbed photons into emitted photons (Grabolle et al., 2009).
For the unknown sample relative fluorescence quantum yield, we
can according to the known absorption and emission of relatively
perfect quantum yield standard such as rhodamine 101, quinine
sulfate and rhodamine 6G to obtain (Wurth et al., 2013). The QY
of CDs was measured using quinine sulfate (55%) as standard
(Olmsted, 1979) and was calculated using following equation:

QYs � QYst(Ast/Ax)(Ix/Ist)(ηs/ηst)
2

Where Ast refers to the absorbance of the standard, Ax is the
absorbance of the sample to be tested, I represent the emission
intensity integral, η represents the refractive index of the
solution. The subscript st represents the standard (quinine
sulfate), and s represents the sample to be tested (CDs). For
more reliable results and to minimize errors, As and Ast were
less than 0.05.

Cytotoxicity Assay
In briefly, HeLa cells were cultured in 0.4% penicillin
streptomycin and 10% fetal bovine serum for 24 h in a 5%
CO2 incubator at 37°C, and then the cells were diffused into
96-well plates (100 μL per well, 5,000 cells) and treated with
CDs at different concentration (0–500 ug mL-1). After
incubation for another 24 h, cytotoxicity of the CDs for
HeLa cells was evaluated via a WST assay. The absorbance
of each well was measured by a microplate reader at 450 nm
after 4 h.

Cell Fluorescence Imaging
HeLa cells were seeded on the coverslips in 6-well plates and
incubated at 37°C under 5% CO2 in DMEM medium containing
10% FBS and 1% penicillin-streptomycin for 24 h. Subsequently,
HeLa cells were treated CDs (200 μg ml-1) for a period of 24 h and
washed three times with PBS for imaging. For the detection of
NO2

- and SO3
2-, these cells were incubated with 500 μMNO2

- for
0.5 h. In order to restore the intracellular fluorescence, SO3

2-

(500 μM) was added and incubated for another 0.5 h. After
washing the cells three times with PBS, the fluorescence
images of the samples were observed using a confocal laser
microscopy.

FIGURE 1 | Scheme of synthesizing CDs and schematic illustration for the CDs detection of NO2
-and SO3

2- in cells.
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RESULTS AND DISCUSSION

The Characterization of CDs
The morphology, surface functional groups, structure and
composition of the CDs were investigated by transmission
electron microscope (TEM), Fourier transform infrared
spectroscopy (FT-IR), Particle size analyzer (ZS nano 90) and
X-ray photo-electric spectrometry (XPS). As illustrated in
Figure 2A, the TEM image and the corresponding histogram
of size distribution (Supplementary Figure S1) illustrated that
CDs with the average particle size of 5.6 nm were uniformly
dispersed and spherical shape, indicating they were water-soluble.
High resolution TEM image (insert in Figure 2A) showed that
the particles have a lattice structure and lattice constant is
0.18 nm. In the FT-IR spectrum of the CDs (Figure 2B), the
broad peak at 3,360 cm-1is the telescopic vibration from O-H, the
peak at 2,922 cm-1 corresponds to the stretching vibration peak of
C-H and the peak at 1710 cm-1 comes from the stretching
vibration of C�O (Ge et al., 2015; Li et al., 2015). The
characteristic peak at 1,522 cm-1, 1,202 cm-1 and 1,022 cm-1

corresponds to the stretching vibration peak of C�C bond,
C-C bond and C-OH bond (Zhi et al., 2018), indicating the

existence of hydroxyl and various other moieties (such as C-H,
C�O and C�C) in the CDs.

Then, XPS was performed to further identify the structural
information of CDs. The XPS full scan spectrum in Figure 3A
contains two distinct peaks at 284.8 (C 1s) and 532.8 eV (O 1s).
Further, the major peaks at 284.5, 285.7 and 287.2 eV in the high-
resolution C 1s spectrum are respectively the signal peaks of C-C/
C�C, C-O and C�O groups. The O 1s XPS spectrum of CDs can
be decomposed into peaks at 531.8 and 532.9 eV corresponded to
the C�O and C-OH groups. These results further confirm that the
presence of carboxyl and hydroxyl functional groups on surface
of CDs, which is consistent with the results of the FT-IR
spectrum.

To further investigate the optical properties of CDs, UV-vis
absorption and fluorescence spectroscopy were also performed.
Figure 4 exhibits an intense absorption peak at 284 nm, which is
mainly originated from the π-π transition of C-C bond.
Moreover, the maximum fluorescence emission intensity of
CDs is located at 435 nm and excitation wavelength at
360 nm. In addition, CDs preserved stable fluorescence in
solution with a wide range of pH values from 1 to 10. As
demonstrated in Figure 4, the fluorescence intensity of CDs

FIGURE 2 | (A) TEM image and HRTEM of CDs (B) FT-IR spectrum of CDs sample.

FIGURE 3 | XPS spectra of CDs (A) Full-scan spectrum and high-resolution spectrum of C 1s (B) and O 1s (C).
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changed slightly by 5% under extreme acidic conditions, which
may be due to a large number of hydroxyl groups on the surface of
CDs. However, strong alkaline conditions can seriously affect the
intensity of CDs. The NO2

- and SO3
2- detections in this work

were all performed under natural conditions. Besides, the stability
of the fluorescence intensity of CDs solution after storage for
different time periods was also evaluated. The fluorescence
intensity of the CDs solution decreased by only 13% during 6-
days storage period, which indicate the good fluorescence stability
of the CDs. And the relative quantum yield of CDs is 12.2% by
using quinine sulfate as a reference. The robust fluorescence
stability makes the CDs suitable for further bioimaging
applications.

Fluorescence and Selectivity Response of
CDs Toward NO2

- and SO3
2-

The “on-off-on” fluorescent probes based on CDs were developed to
detect NO2

- and SO3
2-. As shown in Figure 5A, CDs have a specific

binding ability with NO2
- and the emission fluorescence intensity of

CDs at 435 nm was gradually quenched along with the increasing
concentration of NO2

-. Also, the fluorescence intensity of CDs was
quenched over 60% after adding of NO2

- at the concentration of
400 μN, and then, the downward trend slows down with the NO2

-.
Furthermore, it is worth to point out that there was an excellent linear
relationship (R2 � 0.999) between the fluorescence ratio (F0-F)/F0 and
the concentration of NO2

-, where F0 and F are the fluorescence
intensities of the CDs in the absence and presence of NO2

-. In
addition, the limit detection of CDs for NO2

- was 0.425 μN (LOD
� 3σ/S, where σ is the standard deviation of the blank and s is the slope
of the linear calibration plot). With the addition of SO3

2-, the
fluorescence intensity of CDs gradually recovered. As shown in
Figure 5B, the emission intensities of this probe at 435 nm were
recorded at 15min after adding various concentration of SO3

2-, which
showed good linear relationship (R2� 0.998) between the fluorescence
ratio (F-F0)/F0 and the concentration of NO2

- in the range of
200–600 μN. The limit detection for SO3

2- was determined to be
0.243 μN. The detection performance of CDs based “on-off-on”
fluorescent sensor was comparable to previous reports (Table 1),
articulating the availability and simplicity of the proposed sensing

FIGURE 4 | (A) UV-vis absorption spectrum (blank line), fluorescence excitation (blue line) and emission spectra (red line) of CDs (B) Influence of the pH on the
fluorescence intensity of CDs.

FIGURE 5 | (A) Fluorescence spectra of CDs in the presence of different concentrations of NO2
-. Insert: Linear relationship between (F0-F)/F0 and the concentration

of NO2
- (B) Fluorescence recovery of the CDs with various SO3

2- concentrations. Insert: Fitted line between (F-F0)/F and the concentration of SO3
2-.
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probe. Therefore, the results show that CDs can be considered as a
good fluorescent probe for monitoring the concentration of NO2

- and
SO3

2- with excellent sensitivity.
In order to evaluate the selectivity in sensing response of CDs,

various metal ions (Cu2+, Fe3+, Ca2+, K+, Na+), anions (NO3
-, PO4

3-,
SO4

2-, SO3
2-) and organic molecules (Gly, GSH, Cys, Urea) were

considered. Figure 6A displays the fluorescence intensities of CDs in
the presence of NO2

- as compared to multiple interfering ions. The
fluorescence intensity was reduced by 90% by NO2

- (500 μN).
Therefore, CDs show desirable selectivity for the detection of
NO2

-. Although, Fe3+ affect the fluorescence intensity of CDs.
Fortunately, the concentration of Fe3+ in plasma is low
(Supplementart Table 2) and the false signals can be effectively
shield by triethanolamine. Thus, CDs have potential for directive and
selective detection of NO2

- ions. Moreover, to evaluate the selectivity
in sensing response of CDs to SO3

2-, various metal ions (Ca2+, K+,
Na+), anions (SO4

2-, HSO3
2-) and organicmolecules (Gly, GSH, Glu,

Cys, Urea, Suc) were investigated for their impact on the
fluorescence intensity of CDs/NO2

-. As illustrated in Figure 6B,
the fluorescent responses and the corresponding luminescence
variations of organic molecules and metal ions was negligible
compared to the presence of SO3

2-. The degree of fluorescence

intensity recovered by HSO3
2- was equivalent to 57.8% fluorescence

recovered by SO3
2-. Therefore, the results confirmed that CDs had

great potential for specifically detecting NO2
- and SO3

2-.

Mechanism of the Fluorescence Response
of CDs to NO2

- and SO3
2-

To understand the fluorescence quenching mechanism of CDs,
fluorescence lifetime decay, zeta potential, UV-vis absorption
(Supplementary Figure S2) and electrochemical behaviors
(Supplementary Figure S3) were investigated. After adding
NO2

- and SO3
2-, signals of UV-vis absorption were almost

unchanged and these results were consistent with observation
in the cyclic voltammogram (CV) after adding NO2

- and SO3
2-

(Supplementary Figure S3). The CV of CDs just showed a
reversible redox reaction. Moreover, the fluorescence lifetimes
were respectively 1.8 ns (CDs only), 2.03 ns (in the presence of
NO2

-) and 2.55 ns (in the presence of NO2
- and SO3

2-) in the
Supplementary Figure S4, which displayed no obvious change
and it is different from a dynamic fluorescence quenching
mechanism, suggesting a static fluorescence quenching effect
occurred. In detail, the zeta potential of CDs solution was

TABLE 1 | Performance comparison of different fluorescence probes for the detection of SO3
2- and NO2

-

Materials Ions detected Limitation (μN) Reference

Ammonium citrate (CDs) SO3
2- 0.35 Fang et al. (2017)

Gold nanoclusters SO3
2- 12 Sachdev et al. (2019)

NIR-SO2-TP HSO3
2- 1.06 Zhao et al. (2019c)

Corn HSO3
2- 0.5 Zhao et al. (2019a)

Fluorescein SO3
2- 1.74 Zhang et al. (2016)

Indole SO3
2- 0.57 Venkatachalam et al. (2020)

Ru-CHO HSO3
2- 0.52 Zhang et al. (2018)

Nicotinic acid, folic acid NO2
- 21.2 Gan et al. (2020)

Citric acid, phenylenediamine NO2
- 0.65 Jia et al. (2019)

Tris, urea NO2
- 13.5 Karali et al. (2018)

Sodium phytate, Na2SO4 NO2
- 0.3 Wang et al. (2019b)

Starch NO2
-, SO3

2- 0.425,0.243 This work

FIGURE 6 | (A) Selective test of the assay toward NO2
- (B) Selectivity in the sensing response of CDs/NO2

- toward SO3
2-.
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measured as -36.85 mV, which indicates that the nucleus of CDs
is positively charged and the surface is rich in anions. After the
introduction of NO2

-, it replaces the anions on the surface of CDs.
And the strong electron absorption of NO2

- makes it difficult for
the electrons in the CDs core to be excited, leading to fluorescence
quenching. When SO3

2- was introduced, SO3
2- would reduce

NO2
- and destroy the charge transfer between NO2

- and CDs,
resulting in fluorescence recovery (Figure 7).

Cytotoxicity Test and Intracellular Sensing
Before imaging, the cytotoxicity of CDs to HeLa cells was assessed
using WST assay. Various concentrations of CDs (20, 50, 100,

200, 300, 400, 500 μg ml-1) were added to Hela cells and cell
viability was observed more than 90% after incubating HeLa cells
with CDs for 24 h (Supplementary Figure S4). Owing to their
low cytotoxicity and excellent biocompatibility, the fluorescent
probe was used to image NO2

- and SO3
2- in live cells.

The possibility of CDs to be as a label agent for fluorescent
bioimaging of NO2

-and SO3
2- was tested by a confocal laser

microscopy. As shown in Figure 8, Hela cells treated with CDs
solution (200 μg ml-1) exhibit blue fluorescence and retained
normal morphology. Upon incubation with NO2

- for 20 min,
the fluorescence in the living cells was significantly quenched.
After adding SO3

2-, the fluorescence recovered effectively. These

FIGURE 7 | Schematic diagram of CDs with NO2
- and SO3

2-.

FIGURE 8 |Confocal laser fluorescence images of HeLa cells incubated with CDs (A), CDs/NO2
- (B) and CDs/NO2

-/SO3
2- (C) (Left: the merged image; middle: the

fluorescence image; right: the bright field image; scale bar: 100 μm).
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results are consistent with the observed results in spectral
experiments, which suggest that the fluorescent probe have the
potential to detect NO2

- and SO3
2- in living cells.

CONCLUSION

In summary, we have developed a highly sensitive and selective
fluorescence probe for the detection nitrite ions and sulfite ions.
The fluorescence of CDs was efficiently quenched by nitrite ions
through a static quench mechanism, which was confirmed by the
fluorescence lifetime. Because of the specific reactive response of
CDs to nitrite ions and sulfite ions, the fluorescence of “on-off-
on” sensor was quenched via nitrite ions and the weak
fluorescence was enhanced upon addition of sulfite ions. Thus,
the fluorescent probe can be used to detect nitrite ions and sulfite
ions with convenience, high sensitivity and selectivity. Owing to
low cytotoxicity and good biocompatibility, CDs have been used
to image NO2

- and SO3
2- in HeLa cell. Therefore, this method

may provide a new route for sensing nitrite and sulfite derivatives
in environment and living cells.
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