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A B S T R A C T

Objective: We aimed to identify modularized structural atrophy of brain regions with a high degree of con-
nectivity and its longitudinal changes associated with the progression of Alzheimer's disease (AD) using
weighted gene co-expression network analysis (WGCNA), which is an unsupervised hierarchical clustering
method originally used in genetic analysis.
Methods: We included participants with late mild cognitive impairment (MCI) at baseline from the Japanese
Alzheimer's Disease Neuroimaging Initiative (J-ADNI) study. We imputed normalized and Z-transformed
structural volume or cortical thickness data of 164 parcellated brain regions/structures based on the calculations
of the FreeSurfer software. We applied the WGCNA to extract modules with highly interconnected structural
atrophic patterns and examined the correlation between the identified modules and clinical AD progression.
Results: We included 204 participants from the baseline dataset, and performed a follow-up with 100 in the 36-
month dataset of MCI cohort participants from the J-ADNI. In the univariate correlation or variable importance
analysis, baseline atrophy in temporal lobe regions/structures significantly predicted clinical AD progression. In
the WGCNA consensus analysis, co-atrophy modules associated with MCI conversion were first distributed in the
temporal lobe and subsequently extended to adjacent parietal cortical regions in the following 36months.
Conclusions: We identified coordinated modules of brain atrophy and demonstrated their longitudinal extension
along with the clinical course of AD progression using WGCNA, which showed a good correspondence with
previous pathological studies of the tau propagation theory. Our results suggest the potential applicability of this
methodology, originating from genetic analyses, for the surrogate visualization of the underlying pathological
progression in neurodegenerative diseases not limited to AD.

1. Introduction

Regional brain atrophy indicates a decline in its corresponding

function; therefore, the structural features of brain atrophy associated
with the disease course are important hallmarks to accurately predict
the conversion of mild cognitive impairment (MCI) to Alzheimer's
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disease (AD) and the subsequent disease progression. To illustrate, re-
gional atrophy in the temporal lobe predicts MCI conversion to AD
(Tapiola et al., 2008; Risacher et al., 2009; Querbes et al., 2009; Misra
et al., 2009; Ferreira et al., 2011; Falahati et al., 2017), indicating the
underlying AD pathology (Braak and Braak, 1991; Frisoni et al., 2010;
Jucker and Walker, 2011).

Magnetic resonance imaging (MRI) studies on structural differences
between MCI converters and non-converters have typically been based
on regional measurements, in which two or more groups in each re-
gion/structure, such as in voxel-based morphometry (Ashburner and
Friston, 2000), were compared independently using a t-test or gen-
eralized linear model. However, since brain regions are interconnected
and neurodegeneration in some neurodegenerative diseases con-
tinuously propagates through an anatomical network within the brain
in a “prion-like” manner (Frost and Diamond, 2010; Brundin et al.,
2010), such an inter-regional interaction-independent approach may
potentially overlook coordinated changes underlying anatomically- or
functionally-interconnected regions/structures.

The connectome approach, a method to overcome interaction-in-
dependent approaches, has been well investigated to facilitate the un-
derstanding of interconnected changes between brain regions
(Hagmann et al., 2008; Bullmore and Sporns, 2009; Stam, 2014). With
regard to AD/MCI, structural and functional network analysis has re-
vealed the reduced connectivity metrics between temporal, parietal,
and frontal lobes in AD (Yao et al., 2010; Griffa et al., 2013; Zhu et al.,
2014; Prescott et al., 2016; Filippi et al., 2018). Although these studies
report connectivity metrics between individual nodes, they have not
fully considered modularization of multiple inter-correlated nodes.
Assuming that the intercorrelation-based modules can be modeled as
bundles of nodes influenced or changed to a similar degree with each
other, longitudinal changes in the distribution of such “coordinated”
modules, demonstrating clinical AD progression associated regional/
structural changes (including atrophy), might indicate the involvement
of underlying pathology in a significantly interconnected manner. In
other words, by modularizing highly interconnected regions/structures
and measuring their association with the longitudinal clinical prog-
nosis, it may be possible to visualize the underlying pathological pro-
pagation of AD indirectly.

Therefore, we employed a weighted gene co-expression network
analysis (WGCNA), which is an unsupervised hierarchical clustering
method originating from genetic analysis (Zhang and Horvath, 2005;
Langfelder and Horvath, 2007; Langfelder and Horvath, 2008;
Langfelder and Horvath, 2014). Originally, the WGCNA was established
in genome-wide gene expression studies, which enables us to identify
relevant “gene modules”, i.e., highly interconnected genes that may be
incorporated into underlying biological pathways. This method can also
be applied to brain imaging data, since it has an identical data structure
as that of the gene expression dataset, having a large number of pre-
defined and normalizable features with relatively limited sample sizes.
This method has previously been applied to functional MRI (fMRI) data
(Mumford et al., 2010), in an attempt to introduce it to the field of
neuroradiology for the first time. It had subsequently reported reliable
detection of more number of parcellated and spatially-focused modules
than via independent component analysis, and provided reasonably
adequate results in the identification of for inter-regional connections of
the brain. We aimed to identify intra-modular brain regions/structures
with significantly similar structural (including atrophic) changes across
the samples, agnostic of anatomical/functional knowledge, by applying
this method to the structural brain MRI data of MCI participants from
the Japanese Alzheimer's Disease Neuroimaging Initiative (J-ADNI)
(Iwatsubo et al., 2018; Iwata et al., 2018), which is a multi-center
prospective observational study for the progression of MCI and mild AD
in the Japanese population. Furthermore, we evaluated correlations
between the modules and clinical prognostic metrics associated with
MCI conversion and ADAS-cog13 progression, over a longitudinal time-
course. To the best of our knowledge, this is the first-ever attempt to use

WGCNA to assess structural changes in the AD brain.

2. Methods

2.1. Sample datasets

We used the J-ADNI dataset downloaded from the National Bioscience
Database Center (NBDC) with the approval of its data access committee
(https://humandbs.biosciencedbc.jp/en/hum0043-v1). General inclusion
criteria for MCI participants in J-ADNI are as follows: participants
themselves or participants' family have complained of memory dis-
turbances, their age ranges from 60 to 84 years at baseline; they are na-
tive Japanese speakers; their total Mini Mental State Examination
(MMSE) scores fall in the range of 24–30, and their Clinical Dementia
Rating (CDR) score and memory box of CDR should be 0.5 and 0.5 or
greater, respectively. The follow-up period for the J-ADNI dataset was
3 years (36months) for NC and MCI, and 2 years (24months) for AD
participants. Participants having MCI at baseline were referred to as MCI
cohort participants, and those who were cognitively normal (CN) at
baseline as the CN cohort participants. We included the baseline dataset
and follow-up at 36months dataset for all MCI or CN cohort participants
whose preprocessed MRI data were available.

2.2. Clinical variables

We selected the Alzheimer's Disease Assessment Scale – cognitive
subscale 13 (ADAS-cog13) and MMSE, from the several neuropsycho-
logical tests used in the J-ADNI cohort, to assess the longitudinal cog-
nitive and functional status of participants. Since not all participant did
not undergo an ADAS test at 36months (their last timing of ADAS-
cog13: median 36months (IQR: 24–36)), we used the ADAS progression
speed instead of raw differences in ADAS-cog13 scores. ADAS-cog13
progression speed score was calculated as follows: progression
speed= (score at the last visit for ADAS-cog13 (up to 36months) –
baseline score)/(number of months between baseline and the last visit
for ADAS). Additionally, we obtained the number of MCI cohort par-
ticipants who experienced conversion to mild AD during the observa-
tional period, which was judged by the study investigators in each fa-
cility: the subjects with mild AD had to successfully satisfy the National
Institute of Neurological and Communicative Disorders and
Stroke–Alzheimer's Disease and Related Disorders Association criteria
for probable AD (McKhann et al., 1984). Further detailed features of
MCI participants who converted to AD or those who did not are re-
ported in our previous report (Sato et al., 2019). Other clinical and
laboratory data used for analysis included their sex, age, serum crea-
tinine level, creatinine clearance calculated from the Cockroft–Gault
equation (Cockcroft and Gault, 1976), cerebrospinal fluid (CSF) amy-
loid-beta 1–42 (Abeta42) level, CSF phosphorylated tau (p-tau) level,
presence of APOE ε4 alleles, and amyloid-PET positivity.

2.3. Structural brain MRI data processing

We used T1-weighted MRI (1.5-T) image data obtained during
screening (baseline dataset) and at the 36-month follow-up (36-months
dataset), both of which had been preprocessed using FreeSurfer software
(Version 5.1) (Fischl, 2012) and uploaded to the NBDC database (file-
names: “lh.aparc.stats.tsv”, “rh.aparc.stats.tsv”, “aseg.stats.tsv”, and
“wmparc.stats.tsv”). We obtained 164 regional/structural measured
values in addition to the total intracranial volume (ICV), the mean
cortical thickness value (mm) of the right and left sides of 34 cortical
regions defined by the Desikan–Killiany atlas (Desikan et al., 2006),
right and left subcortical volume (mm3) of these 34 parcellated regions,
and the volume (mm3) of another 28 subcortical brain structures listed
in Table 1. We excluded cerebellar structural volumes from the analysis
because AD pathology should not cause cerebellar atrophy. Data pro-
cessing (Fig. 1) was carried out by first normalizing the values of the
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structural volume by representing it as a percentage of ICV in each case
(Voevodskaya et al., 2014); however, mean cortical thickness was not
normalized (Westman et al., 2013). Since the distribution of the
thickness/volume values would not always be normal and to avoid the
influence of potential outliers, we transformed the unnormalized mean
cortical thickness and regional/structural volume (normalized to ICV)
to a robust Z score in reference to the data of the cognitive normal
control (CN) cohort participants. The Z score was calculated in each
region/structure in the MRI data of each MCI participant in the baseline
dataset (here we refer to the derived dataset as the “baseline dataset” as
shown in Fig. 1) via the following equation: robust Z= [raw value –
(median value of reference (CN))]× 1.3489/[interquartile range (IQR)
of reference (CN)], where 1.3489 is derived from the normal prob-
ability distribution from 25% to 75% to normalize interquartile range
(IQR). We used this robust Z for normalization as opposed to the con-
ventional Z normalization technique, since the volume/thickness dis-
tribution did not particularly obey normal distribution, even though the
distribution of the data was not significantly skewed. Additionally, we
tried to avoid the influence of potential outliers, which may occur
partly due to the current study criteria of including every participant's
MRI data regardless of their actual degree of atrophy, by using robust Z.
The same procedure was used for the MRI dataset obtained at the 36-
month follow-up (referred to as the “36-months dataset”). Since we
tried to examine the net progression during the 3 years, there was a
non-negligible percentage (16–18%) of amyloid positive subjects
among CN subgroup at baseline, we used data from CN at 36months as

the reference for that from MCI at 36months. As summarized in Fig. 1,
to carry out Z-conversion for both of the baseline dataset and 36-
months dataset, we included those who were MCI at baseline (n=204
in the baseline dataset and n=105 in the 36-months dataset), and
using participants who were CN at baseline (n=136 in the baseline
dataset and n=97 in the 36-months dataset) as a reference. In 100
cases where MRI data were available both in the baseline dataset and
36-months dataset, we derived a subtracted Z score to analyze long-
itudinal changes in atrophy (we refer to this derived dataset as the
“subtracted dataset”). The Z scores in the baseline dataset represent the
relative atrophic measurements of MCI brains at baseline compared to
CN brains, and Z scores in the subtracted dataset represent the long-
itudinal changes of relative atrophic metrics of MCI brains during the
36-month follow-up.

2.4. Statistical analyses

All statistical analyses were performed using R version 3.3.3
(https://www.r-project.org) and its packages. We used the Fisher exact
test to test categorical data and Wilcoxon rank sum test for continuous
data, unless mentioned otherwise. Differences with a p-value of< .05
were considered statistically significant. To perform multiple testing
correction, we used the Benjamini & Hochberg (BH) method (Storey
and Tibshirani, 2003). In the univariate correlation analysis, Spear-
man's rank correlation test was used to evaluate correlations between
each of the normalized regional cortical thickness values or regional/

Table 1
List of regions/structures and their abbreviations.

Thirty-four regions (Desikan–Killiany atlas): gray matter/white
matter

Laterality Abbreviation Other subcortical structures Laterality Abbreviation

Bank of superior temporal sulcus R/L Bankssts Lateral ventricle R/L Lateral.Ventricle
Caudal anterior cingulate cortex R/L Caudalanteriorcingulate Thalamus proper R/L Thalamus.Proper
Caudal middle frontal gyrus R/L Caudalmiddlefrontal Caudate R/L Caudate
Cuneus cortex R/L Cuneus Putamen R/L Putamen
Entorhinal cortex R/L Entorhinal Pallidum R/L Pallidum
Fusiform gyrus R/L Fusiform Third ventricle – 3rd.Ventricle
Inferior parietal cortex R/L Inferiorparietal Hippocampus R/L Hippocampus
Inferior temporal gyrus R/L Inferiortemporal Amygdala R/L Amygdala
Isthmus cingulate cortex R/L Isthmuscingulate Accumbens area R/L Accumbens.area
Lateral occipital cortex R/L Lateraloccipital Ventral diencephalon R/L VentralDC
Lateral orbitofrontal cortex R/L Lateralorbitofrontal White matter hypointensities – WM.hypointensities
Lingual gyrus R/L Lingual Non-white matter

hypointensities
– non.WM.hypointensities

Medial orbitofrontal cortex R/L Medialorbitofrontal Corpus callosum: anterior – CC_Anterior
Middle temporal gyrus R/L Middletemporal Corpus callosum: mid-anterior – CC_Mid_Anterior
Parahippocampal gyrus R/L Parahippocampal Corpus callosum: central – CC_Central
Paracentral lobule R/L Paracentral Corpus callosum: mid-posterior – CC_Mid_Posterior
Pars opercularis R/L Parsopercularis Corpus callosum: posterior – CC_Posterior
Pars orbitalis R/L Parsorbitalis Unsegmented white matter R/L UnsegmentedWhiteMatter
Pars triangularis R/L Parstriangularis
Pericalcarine cortex R/L Pericalcarine
Postcentral gyrus R/L Postcentral
Posterior cingulate cortex R/L Posteriorcingulate
Precentral gyrus R/L Precentral
Precuneus cortex R/L Precuneus
Rostral anterior cingulate cortex R/L Rostralanteriorcingulate
Rostral middle frontal gyrus R/L Rostralmiddlefrontal
Superior frontal gyrus R/L Superiorfrontal
Superior parietal gyrus R/L Superiorparietal
Superior temporal gyrus R/L Superiortemporal
Supramarginal gyrus R/L Supramarginal
Frontal pole R/L Frontalpole
Temporal pole R/L Temporalpole
Transverse temporal cortex R/L Transversetemporal
Insular R/L Insula

The 164 regions/structures comprise 34 right and left gray and white matter regions, two unsegmented white matter regions, and 26 subcortical structures/
parcellations.
Suffix of “.x” or “.y” denotes the laterality of right or left, respectively. For example, “entorhinal.x” represent the right-sided gray matter of the entorhinal cortex. A
prefix of “Right.” or “Left.” refers to the laterality of regions/structures. The prefix of “wm.rh.” or “wm.lh.” means “right-side white matter” or “left-side white
matter” respectively.
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structural volumes and clinical features. The correlation coefficient
(rho) is represented as a heatmap.

Furthermore, we evaluated each region of importance according to
the importance of variables associated with the clinical deterioration
endpoint (MCI conversion and progression in ADAS-cog13 speed) using
the R package, “caret” (Kuhn, 2008). We used a support vector machine
algorithm to discriminate conversion or to regress for ADAS progression
speed using the Z scores for each region/structure (Klöppel et al.,
2008). Importance variables for conversion was obtained as the nor-
malized [0−100] area under curve of discriminating ROC for each
region/structure, while the same for ADAS progression speed was ob-
tained as the R2 in the ADAS progression speed of observed versus
predicted, from each region/structure. Tenfold cross validation and
hyperparameter tuning was performed with the caret package function.

2.5. WGCNA analysis

The WGCNA analysis was performed using the R package,
“WGCNA” (version 1.61) (Langfelder and Horvath, 2008). Originally,
WGCNA was formulated to identify gene modules, groups of highly
interconnected genes that may be incorporated into biological path-
ways. First, the baseline and subtracted dataset as preprocessed above
were imputed for pairwise Spearman's rank correlation, between re-
gional/structural atrophic Z scores, to construct signed networks. The
adjacency matrix was defined using the ‘soft’-thresholding to weigh by
a [0–1] number instead of 0/1, to emphasize large adjacencies while
de-emphasizing smaller adjacencies. The power used in the soft
thresholding is determined according to the scale-free topology cri-
terion: the lowest power at which saturation is reached as long as it is
above 0.80 in both datasets (Supplemental Fig. 2A) (Mumford et al.,
2010). These networks were then tuned into Topological Overlap Ma-
trices (TOM), and two TOMS were scaled across two datasets.

Since the purpose of this study was to compare the baseline J-ADNI
dataset and its longitudinal changes, we performed a “consensus
module” analysis (Langfelder and Horvath, 2007) to identify modules
of which atrophic patterns within modules are preserved between two
or more different networks, thereby enabling us to compare network

results from different datasets (such as the baseline and subtracted
datasets). Thus, the consensus TOM with preserved features between
the two TOMs was calculated. The modularization of regions/structures
was obtained by the hierarchical clustering of this consensus TOM, at
which the minimal module size was set to two regions/structures to
identify coordinated atrophy in as much detail as possible. TOM-based
dissimilarity measure was then used to build network dendrograms, in
which the modules represented the branches (Mumford et al., 2010).
The cut-off threshold to merge close dendrogram branches, for the
derived dendrogram, was set to a value of 0.2 or less, corresponding to
0.80 or more of similarity between modules; therefore, yielding the
final modules (Supplemental Fig. 2B).

A module color was automatically allocated and the regions/struc-
tures not classified into any module were then bundled as the “gray
module”. We analyzed the principle component within each module,
and the first principle component, named as ‘module eigengene’ in the
original article (Langfelder and Horvath, 2007), was used as a re-
presentative value to characterize each module. We then evaluated the
correlation (Spearman's rank correlation) between the first principle
component of the module and the baseline and prognostic clinical
features. We used the R package, “ggseg” for visualization of the module
results (Athanasia, 2019).

2.6. Code and data availability

As described above, the original data we used for this article can be
downloaded from the National Bioscience Database Center (NBDC)
(https://humandbs.biosciencedbc.jp/en/hum0043-v1).

2.7. Ethics

The study protocol was approved by the University of Tokyo ethics
committee (11628).

Fig. 1. Data processing workflow.
Regarding Z-transformation of both the baseline and 36-month datasets, we included those who were MCI at baseline (A; n=204 in baseline dataset and n=105 in
36-months dataset), and used those who were CN at baseline (B; n=136 in baseline dataset and n=97 in 36-months dataset) as a reference. In cases whose MRI
data are available in both the baseline and 36months datasets, the subtracted Z-score is derived (n=100) to observe longitudinal changes in atrophy (here we refer
to this as “36-months dataset subtracted from screening dataset results”).
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3. Results

3.1. Correlation between clinical features and atrophic measurements in
each region/structure

We included 204 MCI participants at baseline, of which, 100 par-
ticipants were also included in the 3-year follow-up data from the J-
ADNI study (Fig. 1). The basic clinical features of the 204 MCI cohort
participants in comparison with the CN cohort participants (as a re-
ference of atrophy) are summarized in Table 2. As previously reported
(Iwatsubo et al., 2018), the MCI cohort participants were significantly
older, received fewer years of education, had worse baseline cognitive

scale scores, higher rates of APOE ε4 alleles, and higher amyloid-bio-
marker positivity (amyloid-PET and/or CSF Aβ42). Among them, 108/
204 (52.94%) participants converted to AD during the 36-month
follow-up period.

To evaluate the basic relationship between regional/structural
atrophy and AD progression, we analyzed the correlation between brain
regional measurements (normalized) and clinical features, such as the
incidence of conversion or ADAS-cog13 progression speed (Figs. 2 and
3). Briefly, baseline regional/structural atrophy of the temporal and
parietal lobe (Fig. 2) demonstrated significant correlation with the
participants' baseline age, cognitive function, amyloid biomarkers (CSF
Aβ42 and amyloid PET), APOE ε4 allele, and poorer future clinical

Table 2
Clinical features of CN and MCI participants at baseline.

CN (n=136) median/
frequency

CN IQR/% MCI (n=204) median/
frequency

MCI IQR/% p

Baseline age (y/o) 67 (64–71) 74 (69–77.25) < .001
Sex: Female 72/136 52.94% 103/204 50.49% .740
Education (years) 14 (12–16) 12 (12–16) .008
Baseline ADAS-cog13 7.5 (4.7–10) 20 (15.3–24.7) < .001
Baseline MMSE 30 (29–30) 26 (25–28) < .001
APOEε4 allele(s) 1/32/103 16/89/97 < .001
Amyloid PET positivity 9/48 18.75% 35/55 63.64% < .001
CSF Aβ (pg/mL) 467.9 (347.7–571.8) 297.5 (248.7–409.2) < .001
CSF Aβ <333 pg/mL 8/50 16.00% 48/76 63.16% < .001
CSF p-tau (pg/mL) 34.85 (32.27–40.21) 58.98 (39.75–78.72) < .001
Baseline CCR (mL/min) 96.3 (78.37–114.0) 79.15 (66.1–94.04) < .001
Conversion of MCI to AD during 3-year follow-up – – 108/204 52.94% –
ADAS progression speed (delta scores/followed

months)
−0.0194 (−0.0833–0.03818) 0.1833 (0.02502–0.3611) < .001

There is a significant difference in most baseline clinical features between MCI and CN cohort participants, including baseline age. Since the CN data was used only
for the purpose of providing a normal reference in Z-transformation, the differences in baseline age between MCI and CN cohort participants is permissible.

Fig. 2. Correlation heatmap between regional/structural atrophy and clinical features (from the baseline dataset: n=204).
Heatmaps of the results of correlation analysis between the mean regional cortical thickness value (mm) or structural volume (percentage of the ICV) and clinical
features in the baseline dataset. The heatmap color corresponds to a rho value (Spearman's rank correlation), from blue (corresponding to −1) to red (corresponding
to +1). The raw significance is adjusted using the BH method (FDR), and non-significant items (FDR > 0.05) are colored gray. The Y-axis on (A) denotes 34 bilateral
cortical regions and other structures, and the Y-axis on (B) denotes the bilateral subcortical white matter of the 34 regions.
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deterioration (positive incidence of conversion or higher ADAS-cog13
progression speed within the 36months) (Supplemental Table 1).
Meanwhile, in the subtracted dataset, derived by subtracting Z scores of
the 36-months dataset from that of the baseline (Fig. 3), the relative
thickness reduction in the entorhinal cortex and para-hippocampal
gyrus, and enlargement in the lateral and third ventricle were sig-
nificantly associated with poorer clinical deterioration, for up to
36months (Supplemental Table 1). These results demonstrate that
features of structural abnormality on MRI in the MCI participants of the
J-ADNI cohort are consistent with earlier MCI studies from other co-
horts, showing either significant entorhinal and hippocampal (Tapiola
et al., 2008) and medial temporal atrophy (Risacher et al., 2009;
Ferreira et al., 2011) in MCI converters compared to non-converters, or
significant difference in the volume of the left temporal lobe (Yang
et al., 2012), hippocampal, parietal lobe, and ventricular volume
(Sørensen et al., 2016) between MCI and AD.

We then performed multivariate analysis for each regional/struc-
tural association with clinical prognostic metrics. We avoided using
linear regression, due to the prominent multicollinearity between right
and left individual regions/structures or between adjacent regions/
structures. Instead, we performed variable importance analysis by ap-
plying a support vector machine algorithm as observed in previous
studies (Klöppel et al., 2008) and calculated the importance of variable
in each region/structure in the regression for the clinical prognostic
metrics (i.e., the incidence of MCI conversion and ADAS-cog13 pro-
gression speed) on both the baseline and subtracted datasets. In the
baseline dataset, majority of the 20 highest regional/structural variable
importance comprised of temporal lobe regions/structures (Supple-
mental Table 2), while other regions/structures, such as lateral ven-
tricles or regions from parietal lobe rank, are listed as 20 highest values
in the subtracted dataset (Supplemental Table 3). These results were

consistent with the univariate correlation result as in Figs. 2 and 3.
Additionally, to confirm the clinical significance of variable im-
portance, we analyzed the relationship between variable importance,
and MCI conversion and ADAS-cog13 progression in the baseline da-
taset (Supplemental Fig. 1A) and on the subtracted dataset (Supple-
mental Fig. 1B), respectively. Across 164 regions/structures, there was
a mild and significant correlation between each feature's importance for
conversion and the importance for ADAS-cog13 progression speed:
rho= 0.339 (p < .001, Spearman's rank correlation) in the baseline
dataset and rho=0.289 (p < .001) in the subtracted dataset, respec-
tively.

3.2. Interconnectivity analysis using WGCNA

Since the univariate region-to-region analysis assumes that the
changes in each region/structure are independent and does not allow
coordinated changes of interconnected regions/structures that might
indicate involvement of underlying pathological. We then applied the
WGCNA to identify potentially interconnected regional/structural
modules in a longitudinal time course. We first performed a “consensus
module” analysis of the baseline and subtracted datasets (Langfelder
and Horvath, 2007) to identify the modules commonly preserved in
both. The networks from both datasets were constructed with a soft
threshold power of 14, determined according to the scale-free topology
criterion (Supplemental Fig. 2A). We then identified the modules in
which atrophic patterns were preserved between these two networks.
With regard to the module dendrogram derived from the consensus
analysis, the cut-off threshold to merge adjacent dendrogram branches
was adjusted from 0.10 to 0.20, yielding the same final modules
(Supplemental Fig. 2B).

As a result, 46 (28.05%) regions/structures out of 164 regions/

Fig. 3. Correlation heatmap between regional/structural atrophy and clinical features (from the subtracted dataset: n=100).
Heatmaps of correlation analysis results between the mean regional cortical thickness value (mm) or structural volume (percentage of the ICV) and clinical features in
the baseline dataset. The heatmap color corresponds to the rho value (Spearman's rank correlation), from blue (which corresponds to −1) to red (which corresponds
to +1). The raw significance is adjusted using the BH method (FDR), and non-significant items (FDR > 0.05) are colored gray. The Y-axis on (A) denotes 34 bilateral
cortical regions and other structures, and the Y-axis on (B) denotes the subcortical white matter of the 34 bilateral regions. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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structures were allocated into 17 modules with a minimal module size
of two regions/structures (Table 3). Unclassified regions were bundled
together as a “gray” module. Cortical regions tended to be modularized
within the same lobe (“brown” and “yellow” for temporal cortical re-
gions; and “cyan”, “red”, and “midnightblue” for parietal cortical re-
gions), and subcortical structures tended to be modularized bilaterally
(“salmon” for bilateral lateral ventricles; “greenyellow” for bilateral
thalamus; and “magenta”, “purple”, and “lightcyan” for bilateral basal
ganglia).

To identify modules associated with clinical metrics including MCI
conversion and ADAS-cog13 progression, we derived each module's
first principle component, followed by calculating its correlation with
clinical features. The correlations are represented in the heatmap in
Fig. 4 (for the baseline dataset) and Fig. 5 (for the subtracted dataset).
Regarding the results in the baseline dataset (Fig. 4), atrophy in the
regions of the temporal cortex (“brown” for right-sided and “yellow” for
left-sided) demonstrated significantly correlated with poorer future
clinical deterioration (MCI conversion and the ADAS-cog13 progression
speed) (Fig. 6A). Modules such as the parietal (“cyan”, “red”, and
“midnight blue”) and occipital cortex (“grey60”) were only associated
with poorer ADAS-cog13 progression speed.

Furthermore, in the correlation of the first principle component and
clinical features from the subtracted dataset (Fig. 5), changes in the
degree of atrophy of the temporal cortex (“brown” and “yellow”
module) or enlargement of the lateral ventricles (“salmon” module)
during the 36months were also significantly correlated with poorer
clinical deterioration (Fig. 6B). Additionally, atrophic changes, pri-
marily in the parietal and occipital cortices (“grey60”, “black”, “cyan”,
“red”, and “midnight blue” modules) during the 36-month follow-up

were also significantly correlated with the incidence of the conversion,
while ADAS-cog13 progression speed was not correlated with these
cortical modules in the subtracted dataset. Summarily, with regard to
the longitudinal changes from baseline to 36months, distribution of
coordinated and grouped co-atrophic regions associated with conver-
sion, first localized to the temporal cortex. However, over the period of
36months it was observed in both temporal and parietal cortex.

4. Discussion

During the course of AD, along with underlying AD pathological
progression (Braak and Braak, 1991; Frisoni et al., 2010; Jucker and
Walker, 2011), abnormalities in amyloid biomarkers (Shaw et al.,
2009) precedes structural changes in the brain changes (Tapiola et al.,
2008; Querbes et al., 2009; Schuff et al., 2009), which extends from the
medial temporal lobe to the parietal and frontal lobes, followed by a
deterioration in cognitive function (Frisoni et al., 2010). Since the de-
gree of atrophy directly correlates with the degree of pathological in-
fluence, including a reduction in the number of synapses and neuronal
death, co-atrophied regions/structures (or regions/structures showing
similar degrees of atrophy) should demonstrate approximately similar
degrees of pathological influence. Our results show that coordinated
atrophy at baseline was observed in the module of the temporal cortex,
but not in that of the parietal cortex was associated with MCI conver-
sion. However, coordinated net progression of atrophy in each of these
modules, during the 36months were associated with the MCI conver-
sion, suggesting that the modular regions of coordinated atrophy as-
sociated with MCI conversion extended from the temporal to the par-
ietal cortex. Based on the fact that pathological changes propagate

Table 3
Regions/structures assigned to each module.

The “gray module” is an expedient label for unclassified regions/structures.
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through neuronal networks in several neurodegenerative diseases
(Brundin et al., 2010), the extended distribution of such coordinated
atrophy might correspond to the underlying AD pathological progres-
sion.

The WGCNA method has hardly ever been applied in the field of
neuroradiological studies, except in an earlier weighted voxel coacti-
vation network analysis (WVCNA) study (Mumford et al., 2010), which
applied the same network construction and module identification
methods to fMRI data. Our study is different from the earlier study in
that we applied the methodological framework to structural brain MRI
data, thereby demonstrating its potential applicability in inferring un-
derlying pathological extension in the brain of neurodegenerative dis-
ease patients. The rationale in applying this methodology, originally
used in genetic analysis, to neuroradiological data is because of the
similarity in data structure as well as due to the problems that might be
shared by researchers in the fields of neuroradiology and genetics: a
large number of features with relatively limited sample size, co-
ordinated, but not independent, changes within each feature, and the
efficacy of using data-driven analysis. In a dataset with a large number
of radiological features (such as the 1000 regions-of-interest within
parcellated brain regions/structures in earlier literature (Hagmann
et al., 2008)), comparison between two or more phenotypes (e.g., CN vs
MCI vs AD), region-to-region univariate testing (regardless of whether
it is a t-test, Wilcoxon rank sum test, analysis of variance, generalized
linear regression, or some other method) is most frequently used, in
which inter-regional interactive differences are not considered.

Similarly, researchers in the field of genetics who investigate genome-
wide studies (e.g., methylation microarrays, ChIP-seq, RNA-seq, pro-
teomics, etc.) compare each gene or genomic feature between two or
more of phenotypes (e.g., disease versus control) independently,
making it difficult to recognize underlying interconnecting genetic
changes along with hidden or unhidden biological pathways. WGCNA is
a hierarchical clustering methodology that has been developed to ad-
dress this problem (Langfelder and Horvath, 2007) by extracting highly
interconnected gene groups and thereby elucidating the underlying
biological pathways associated with the disease. If there were some
latent interconnected structures mediated by underlying pathological
involvement, within the brains of individuals with neurodegenerative
diseases, it is expected that we can visualize them as co-atrophic
module distributions using WGCNA. The modules associated with
clinical deterioration of MCI (i.e., “brown”, “yellow”, “grey60”,
“black”, “cyan”, “red”, and “midnight blue”) demonstrated atrophy in
the temporal, parietal, and some parts of occipital and frontal cortex.
These results are consistent with the well-known pathological pro-
gression of AD (Braak and Braak, 1991; Frisoni et al., 2010; Jucker and
Walker, 2011), as well as the distribution of structural atrophy in MCI-
converters relative to non-converters: baseline atrophy in medial tem-
poral structures including the entorhinal cortex (Tapiola et al., 2008),
hippocampus (Tapiola et al., 2008; Risacher et al., 2009), posterior
cingulate gyrus (Querbes et al., 2009), and left temporal lobe (Ferreira
et al., 2011). Additionally, the “yellow” and “black” modules were in-
volved in regions that exhibited baseline differences in cortical

Fig. 4. Correlation heatmap between clinical features and the modules' first principle component (from the baseline dataset: n=204).
Results of consensus analysis between the baseline and subtracted dataset, deriving preserved modules from the same. The heatmap shows the correlation between
the first principle component of regional/structural measurements within each module (rows) from the baseline dataset and clinical features (columns). The heatmap
color corresponds to the rho value (−1 to +1). The upper row in each table square denotes the rho value of the Spearman's rank correlation and the lower row
denotes its p-value.
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thickness between AD-like patterned MCI brains and normal-like pat-
terned MCI brains, specifically in the entorhinal cortex, fusiform gyrus,
temporal pole, superior temporal gyrus, middle temporal gyrus, and
inferior temporal gyrus (Falahati et al., 2017). Our results were con-
sistent with these earlier studies, which support our hypothesis that this
data-driven network approach originating from genetics can detect
hidden structural atrophies.

Although the WGCNA approach is advantageous due to its data-
driven manner, there have been several studies using data-driven
multivariate analyses such as independent component analysis (ICA)
(Iraji et al., 2016) or principle component analysis (PCA) (Leonardi
et al., 2013) to investigate connectivity among brain regions in AD or
MCI. To illustrate, the decreasing functional brain connectivity in MCI
and AD along with cognitive decline progression has been reported in
an ICA-based fMRI study (Pagani et al., 2017). The WGCNA has a
number of advantages in comparison with these approaches, as the ICA
requires spatial or temporal independence assumption (Iraji et al.,
2016), which may not be plausible for complexed and interconnected
pathological changes among brain regions, while the PCA assumes
Gaussian distribution of the data. Additionally, the WVCNA study on
fMRI demonstrated that this method tends to produce more spatially
focused modules than that of ICA components (Mumford et al., 2010).

Since this method could detect previously reported underlying pa-
thological extension of AD, using only the structural images in an un-
supervised manner, radiological studies of other neurodegenerative
diseases may also benefit from this method. We can further evaluate the
validity of this method in other neurodegenerative diseases which are
pathologically well investigated such as Lewy body disease.

Consequently, we may be able to obtain informative suggestions to
estimate or interpret the pathological progression in other neurode-
generative disease that are much rarer and have not been thoroughly
investigated pathologically, such as neuronal intranuclear hyaline in-
clusion disease.

Another advantage in using WGCNA is that we calculate the first
principle component of the module, giving us the opportunity to
speculate over its characteristics in association with the clinical fea-
tures. To illustrate, considering age, several modules have significant
correlation with age specifically that cortical atrophy and ventricular
enlargement was associated with baseline age (Fig. 4, leftmost column);
however, these correlations become non-significant in the following
36months (Fig. 5, leftmost column), suggesting that atrophy in these
cortices was not always accelerated by a greater baseline age. A similar
relationship is observed between the degree of regional atrophy and
baseline renal function (Figs. 4 and 5, third column from the right).
Additionally, while the baseline positivity of amyloid-PET or APOE al-
lele status was not associated with most modules at baseline in MCI
participants (Fig. 4, fourth and seventh columns from the right, re-
spectively), these features are significantly associated with the salmon
module (containing bilateral lateral ventricles), tan module (containing
bilateral ventral diencephalons), purple module (containing bilateral
caudate nuclei), brown module, or yellow module at the 36month
follow-up. This suggests that these AD pathology-related features have
an effect on the regional/structural MRI changes in a delayed manner
(for up to 36months). A similar delay can also be observed between
baseline CSF biomarkers and enlargement of the lateral ventricles.

Our study has certain limitations. First, is the restrictions associated

Fig. 5. Correlation heatmap between clinical features and the modules' first principle component (from the subtracted dataset: n=100).
Results of consensus analysis between the baseline and subtracted dataset, deriving preserved modules from the same. The heatmap shows the correlation between
the modules' first principle component of regional/structural measurements within each module (rows) from the subtracted dataset and clinical features. The
heatmap color corresponds to the rho value (−1 to +1). The upper row in each table square denotes the rho value of the Spearman's rank correlation and the lower
row denotes its p-value.
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with the WGCNA methodological requirements, in which the data
structure should be equipped with unified features (e.g., anatomical
standardization in voxel-based morphometry) and data measurements
be normalized. This is sometimes time-consuming if using data from
FreeSurfer and the process to define a reference in dataset normalization
can be another concern. Furthermore, our analysis did not consider
similarities between anatomically neighboring regions/structures,
which should demonstrate a high correlation in the pathological in-
volvement. It should also be noted that the atrophy of entorhinal cortex,
hippocampus, or amygdala, have significant associations with clinical
deterioration in MCI but were not included in any of these modules in
the present result. This is presumably due to the similarities in their
regions/structures', implying that this methodology does not always
cover all individual regional/structural associations with the given
clinical features. Additionally, modularization results can differ de-
pending on the adjustment of the parameters, thereby making this
method less statistically robust. Although we considered both cortical
thinning and volume reduction as regional/structural atrophy, the
significance of these two is not always equivalent.

5. Conclusions

To conclude, we quantitatively visualized coordinated distribution
and progression of brain atrophy following AD progression using the
WGCNA methodology on the J-ADNI cohort's structural brain MRI data
for MCI participants, and largely demonstrated results similar to earlier
AD/MCI studies. Our results suggest the potential applicability of this
methodology as an option to visualize underlying pathological pro-
gression in integrative large-scale connectivity studies of neurodegen-
erative disease, not just limited to AD.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.nicl.2019.101957.
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Fig. 6. Distribution of the derived modules associated with
the incidence of MCI conversion.
(A) and (B) show the module distribution from the baseline
and subtracted dataset, respectively; these modules are cor-
related with a higher incidence rate of MCI conversion during
the 36months of follow-up. Only cortical modules are shown.
In each image (A & B), the left column shows the lateral
cortex, and the right column shows the medial cortex. The co-
atrophied modules at baseline (A) were distributed in bi-
lateral temporal lobe (“yellow” and “brown”), implying that
these regions showed similar levels of atrophy among all the
parcellated regions/structures across samples. The distribu-
tion of modules showing similar level of atrophic change
during the 36months (B) then extended to the bilateral par-
ietal lobe (“cyan”, “red”, and “midnightblue”). (For inter-
pretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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