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Abstract 

Background:  Meningitis can be caused by several viruses and bacteria. Identifying the causative pathogen as quickly 
as possible is crucial to initiate the most optimal therapy, as acute bacterial meningitis is associated with a significant 
morbidity and mortality. Bacterial meningitis requires antibiotics, as opposed to enteroviral meningitis, which only 
requires supportive therapy. Clinical presentation is usually not sufficient to differentiate between viral and bacterial 
meningitis, thereby necessitating cerebrospinal fluid (CSF) analysis by PCR and/or time-consuming bacterial cultures. 
However, collecting CSF in children is not always feasible and a rather invasive procedure.

Methods:  In 12 Belgian hospitals, we obtained acute blood samples from children with signs of meningitis (49 viral 
and 7 bacterial cases) (aged between 3 months and 16 years). After pathogen confirmation on CSF, the patient was 
asked to give a convalescent sample after recovery. 3′ mRNA sequencing was performed to determine differentially 
expressed genes (DEGs) to create a host transcriptomic profile.

Results:  Enteroviral meningitis cases displayed the largest upregulated fold change enrichment in type I interferon 
production, response and signaling pathways. Patients with bacterial meningitis showed a significant upregulation of 
genes related to macrophage and neutrophil activation. We found several significantly DEGs between enteroviral and 
bacterial meningitis. Random forest classification showed that we were able to differentiate enteroviral from bacterial 
meningitis with an AUC of 0.982 on held-out samples.

Conclusions:  Enteroviral meningitis has an innate immunity signature with type 1 interferons as key players. Our 
classifier, based on blood host transcriptomic profiles of different meningitis cases, is a possible strong alternative for 
diagnosing enteroviral meningitis.

Keywords:  Meningitis, Enterovirus, Bacterial meningitis, Differential gene expression

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Open Access

Journal of 
Translational Medicine

*Correspondence:  benson.ogunjimi@uantwerpen.be
21 Antwerp Center for Translational Immunology and Virology (ACTIV), 
Vaccine & Infectious Disease Institute (VAXINFECTIO), University 
of Antwerp, Universiteitsplein 1, 2610 Wilrijk, 00323/8213251 Antwerp, 
Belgium
Full list of author information is available at the end of the article

http://orcid.org/0000-0003-2127-5161
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12967-019-2037-6&domain=pdf


Page 2 of 9Bartholomeus et al. J Transl Med          (2019) 17:282 

Background
Patients presenting with meningitis need accurate and 
fast diagnosis to determine the adequate treatment. Men-
ingitis is mainly caused by viral and bacterial infections, 
with enteroviruses as most common pathogen in children 
[1, 2]. Enteroviral meningitis (EVM) normally does not 
necessitate specific therapy except supportive therapy. 
In contrast, bacterial meningitis (BM), beyond neonatal 
period mainly caused by strains of Neisseria meningitidis, 
Streptococcus pneumoniae or rarely Haemophilus influ-
enzae, poses a very severe situation with a high morbid-
ity and mortality rate [3]. As physical symptoms might 
not be sufficient enough to distinguish between viral 
and bacterial meningitis, blood and more importantly 
cerebrospinal fluid (CSF) are used to identify the causa-
tive pathogen. Moreover, several clinical tools have been 
developed in order to assist the clinical decision-making 
process [4–7]. Multiplex PCR techniques on blood and 
CSF have been able to identify genes from pathogens, but 
achieving high sensitivity and specificity still pose a chal-
lenge nowadays. As such, bacterial culture still remains 
the golden standard [8]. However, bacterial culture can 
take up to 72  h before providing conclusive results for 
organisms that are difficult to grow or when the patient is 
partially treated with antimicrobial agents. Given the risk 
of delayed antibiotic administration in cases of bacterial 
meningitis, broad-spectrum antibiotics are used as soon 
as the clinical diagnosis of meningitis is made despite 
the lack of pathogenic identification, thereby potentially 
leading to an overuse of antibiotics and anti-microbial 
resistance. Importantly, the requirement of obtaining 
CSF through lumbar puncture for accurate diagnostics is 
not always feasible due to risk of brain herniation, hemo-
dynamic instability or bleeding problems.

The pitfalls in pathogen-based diagnostics and the 
need to collect CSF could be (partially) mitigated by per-
forming deep profiling of the host’s immune response to 
specific pathogens in blood. Several studies have used 
cytokine profiling as a method to differentiate between 
bacterial and viral meningitis, and although some usabil-
ity was noted, the specificity and sensitivity remained 
too low [9, 10]. A more promising technique could be 
gene expression profiling of whole blood. Previous stud-
ies showed that, based on microarrays, differentially 
expressed genes (DEGs) pathways can be used to dis-
criminate between different types of infection [3, 8, 11–
19]. Different influenza strains and respiratory syncytial 
virus were studied by Herberg et  al., Mejias et  al. and 
Woods et al. in [14, 15, 17]. Other studies included men-
ingitis cases to their bacterial or viral infection groups 
[8, 11–13]. Only the study of Lill et al., focused on a spe-
cific bacterial meningitis signature using microarrays [3]. 
However, this study included mainly neonates and adults. 

Together these studies indicate that viral and bacterial 
infections trigger different immune pathways of the host.

In this study, focusing only on bacterial and viral men-
ingitis cases, we aimed to identify a unique enteroviral 
DEG signature in children presenting with meningitis 
using 3′ mRNA sequencing. Next, we assessed whether 
it was possible to distinguish bacterial from viral menin-
gitis based on specific up- and downregulated pathways.

Methods
Study cohort
Twelve Belgian hospitals recruited patients for this mul-
ticentric prospective study from December 2015 until 
November 2017. Paediatricians and emergency physi-
cians collected PaxGene blood RNA tubes (PreAnalytiX) 
samples from children, aged 3 months to 16 years, with 
symptoms reminiscent of meningitis. An acute sample 
was taken during an early diagnostic blood draw. After 
receiving written consent and confirmation of meningi-
tis (identifying the causative pathogen by PCR or bacte-
rial culture analysis of the CSF), patients were included in 
this study. After recovering, patients were asked to give a 
convalescent blood sample 1 to 3 months after remission. 
As this second sample was not obligatory, not all patients 
or their parents agreed to a second blood draw.

We collected 49 enteroviral meningitis (EVM) samples 
(with [EVM1] or without [EVM2] convalescence sam-
ples), 2 other (herpes simplex virus and varicella-zoster 
virus) viral samples (VM) and 7 bacterial meningitis 
samples (BM). Six BM samples are affected by a bacterial 
strain (BM1). The seventh BM sample (BM2) came from 
a patient with neuroborreliosis. As this is a rare case, not 
all analyses took this BM2 sample into account. Table 1 
shows all samples per meningitis type and whether or not 
a convalescent sample was available. In order to increase 
the specificity of the EVM-specific signature, we also 
recruited 14 patients with known rheumatologically con-
ditions as non-infectious inflammatory background sam-
ples (Additional file 1: Diagnoses).

RNA extraction
RNA extraction from PaxGene tubes was performed 
via a column-based RNA extraction using the PaxGene 
blood RNA extraction kit (Qiagen). To optimize RNA 
concentrations, we used the RNA clean & concentrator-5 
kit (Zymo research). We verified the RNA quality using 
the Experion (Biorad, Experion RNA StdSens Analysis 
Kit). No RNA samples had to be excluded based on low 
quantity or quality.

3′ mRNA sequencing library prep and sequencing
All RNA samples were prepared with the QuantSeq3′ 
mRNA-Seq Library Prep Kit FWD for Illumina (Lexogen 
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GmbH) following the standard supplier’s protocol for 
long fragments [20]. During the RNA removal step we 
also added globin blockers, so none of the abundant glo-
bin mRNA was copied to double stranded cDNA. The 
resulting cDNA libraries were equimolarly pooled, with 
up to 40 samples for one NextSeq  500 sequencing run 
(high output v2 kit, 150 cycli, single read, Illumina). This 
gave us an optimum of 10 million reads for each sample.

Data analysis and statistics
The sequencing data is available in the Gene Expression 
Omnibus (GSE133378). All codes used for the preproc-
essing and analysis of the data within this manuscript as 
well as the codes used to generate results is publicly avail-
able on github (https​://githu​b.com/NDeNe​uter/GEMS).

NGS data processing
Raw data from the NextSeq was demultiplexed and fur-
ther processed through an in-house developed 3′mRNA 
sequencing pipeline. The quality of all reads was evalu-
ated using FastQC (v0.11.5) before and after process-
ing with Trimmomatic (v0.36) [21, 22]. Trimmomatic 
removed the leading 20 bases from reads, ensure a 
minimum quality score of 15 over a sliding window of 
4 bases and require a minimum read length of 30 bases. 
Usage of oligodT primers could cause poly-A stretches 
at the 3′ end. To remove these poly-A stretches, the 3′ 
read end was trimmed with our own in-house poly-A 
removal script. All sequences remaining after trimming 
were mapped against the human reference genome build 
38 (polymorph variants excluded) with HISAT2 (v2.0.4) 
[23]. HTseq (v0.6.1) was used to count all reads for each 
gene and set up a read count table [24].

Differential gene expression analysis and gene ontology 
enrichment analysis
Differential gene expression analyses were performed 
using the DESeq  2 Bioconductor package [25]. For any 
given differential gene expression analysis, genes with less 
than 300 read counts over all samples considered during 
the analysis were removed prior to the analysis. Gene 
ontology enrichment analysis was performed on sig-
nificantly differentially expressed genes with a log2 fold 
change of at least 1 (either up- or downregulated) using 
PANTHER’s online gene ontology enrichment tool (gene 
ontology version: 1.2, gene ontology annotations: 2018-
10-08) [26]. To determine significantly enriched/depleted 
gene ontology terms relating to biological processes, a 
Fisher’s exact test was performed with Bonferroni cor-
rection for multiple testing. As reference background set 
of genes, we used the 21,721 genes measured during the 
3′-mRNAseq experiment.

Random forest with feature selection classifier
Classification of samples was performed by Random For-
est classifiers as implemented in Scikit-Learn. Classifiers 
were initialized using 1000 estimators and balanced class 
weights, leaving other parameters at their default values 
[27]. The random forest classifier was trained on the nor-
malized gene expression values for each measured gene 
as features. Due to the larger number of genes available to 
the model, a feature selection step was used. The feature 
selection step used the Boruta method with a Bonferroni 
correction to only retain informative genes/features [28]. 
The Bonferroni correction was set to either the default 
parameter (α = 0.05) or to the more strict threshold 
(α = 0.001). Validation of classifiers was performed using 

Table 1  Overview of the different diagnosis groups

Diagnosis (incl./excl. convalescence sample) Number of samples Group 
abbreviation

Viral meningitis samples

 Enterovirus incl. convalescence sample 35 EVM1

 Enterovirus excl. convalescence sample 12 EVM2

 Herpes simplex type I excl. convalescence sample 1 VM

 Varicella excl. convalescence sample 1 VM

Bacterial meningitis samples

 Neisseria meningitidis B excl. convalescence sample 2 BM1

 Neisseria meningitidis B incl. convalescence sample 1 BM1

 Streptococcus pneumoniae excl. convalescence sample 2 BM1

 Haemophilus influenza incl. convalescence sample 1 BM1

 Neuroborreliose bact. Borrelia burgdorferi exl. convalescence sample 1 BM2

Non-infectious inflammatory background samples

 Paediatric rheumatological conditions 14 REU

https://github.com/NDeNeuter/GEMS
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a leave-one-out cross validation strategy. In this strategy, 
a single sample is removed from the set of samples under 
consideration. Detection of differentially expressed genes 
and feature selection is applied to the remaining samples. 
The selected features are then used to train a classifica-
tion model which is tested on the left-out sample. This 
approach is repeated for each sample under considera-
tion to obtain an overall indication of performance. To 
evaluate performance, receiver-operator-characteristic 
(ROC) curves were drafted and the area under the ROC 
curve (AUC) was calculated.

Ethical forms
This non-commercial study was approved by the IRBs 
from the Antwerp University Hospital/University of 
Antwerp and all local committees from each hos-
pital (EC-15/43/448, Belgian registration number: 
B300201526554).

Results
Enteroviral meningitis‑specific transcriptomic profile
We compared the transcriptomic profile of acute enter-
oviral meningitis samples from 35 patients to their own 
convalescent sample to identify pathways altered due 
to the enteroviral infection (EVM1 group). 2380 DEGs 
(2108 upregulated and 272 downregulated genes) were 
found between acute and convalescence samples (Addi-
tional file  2). For further interpretation, the resulting 
differentially expressed genes (DEGs) obtained after a 
differential gene expression analysis were translated to 
corresponding Gene Ontology (GO) categories with a 
minimum log2 fold enrichment of 1, thus at least two-
fold log change (Additional file  3). Interestingly, the 
GO analysis showed a predominant upregulation of the 
type I interferon (IFN) signature (Additional file 3) with 
three type I IFN related GO categories within the top 4 
GO terms with a fold enrichment value of 5.09 to 5.60: 
(1) type I interferon signaling pathway (5.60), (2) cellu-
lar response to type I interferon (5.60), and (3) response 
to type I interferon (5.09). The 10 strongest IFN-related 
single DEGs are (in decreasing order): IFIT1, IFI44L, 
RSAD2, OAS3, OASL, MX1, IFIT3, EIF2AK2, IFITM3 
and IFI44 (Additional file 2). Furthermore, the GO analy-
sis showed that enteroviral meningitis might affect the 
negative regulation of viral genome replication, protein 
targeting to ER, the detection and response to foreign 
virus particles and many more biological and metabolic 
processes (Additional file 3).

Bacterial meningitis‑specific transcriptomic profile
Six patients in our cohort were diagnosed with bacte-
rial meningitis (BM1), not taking into account the case 
of neuroborreliosis (BM2)(Table  1). For two of these 

BM1 patients, we were able to obtain a second convales-
cent sample. Given that only one significant differential 
expressed gene, namely the pseudogene FTH1P11, was 
found between the bacterial convalescent and enterovi-
ral convalescent samples (Additional file 4: Figure S1), we 
proceeded using two methods: (A) a paired comparison 
between the two samples for which both a bacterial men-
ingitis and convalescent sample were available and (B) 
an unpaired comparison between the six bacterial men-
ingitis samples and all convalescent samples (originating 
from patients with either enteroviral or bacterial menin-
gitis). We only retained the DEGs and GO categories for 
results that were found in both methods.

Method A: BM1 longitudinal DEG analysis
We found GO categories related to innate immunity 
including macrophage activation (Top 1 category; fold 
enrichment of 9.16), and mainly granulocytes activation 
and degranulation, in especially neutrophil activation 
(regulation IL-8 = neutrophil-activating factor (NAF) 
production) with neutrophilic marker CD177 as strong-
est single DEG. As expected, we noticed the detection of 
DEGs involved in bacterial lipopeptides and –proteins 
(and cellular response against it) as well. Furthermore, we 
found signs of T cell immunity with T cell activation in 
immune response (2nd GO, 7.04), T cell differentiation 
(20th GO, 5.25), T cell activation (32nd GO, 4.55) and 
three more T cell regulation GO terms with a lower-fold 
enrichment. In addition, we found GO categories with a 
lower-fold enrichment that are related to general cytokine 
production and regulation, inflammatory responses and 
more general (myeloid) leukocyte/lymphocyte related 
regulation, differentiation and activation. The lowest fold 
enrichments are reserved for more non-immune general 
pathways as signaling, metabolic reactions and enzyme/
transcription factor activities (Additional file 5 and 6).

Method B: acute BM1 vs. pooled convalescence samples
Top responses in this analysis were similar to those 
found in the BM1 longitudinal analysis: innate immunity 
related GO categories such as granulocyte activation and 
degranulation and the more general (myeloid) leukocyte/
lymphocyte categories and the T cell related GOs (Fig. 1). 
Also, single DEGs were quite similar as for Method A 
(Additional files 7 and 8).

Summarized trends in both Method A and B analyses
A clear trend could be seen within both comparisons 
between bacterial and convalescent samples towards an 
activation of the innate immune system, in particular 
macrophages and neutrophils, and a sign of T cell activa-
tion was noted for patients with bacterial meningitis.
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Gene expression differences between enteroviral 
and bacterial meningitis
680 DEGs (349 downregulated and 331 upregulated 
genes) could be identified in 47 acute EVM1/EVM2 
samples compared to the six BM1 samples (Additional 
file  9). Based on all measured DEGs, the most signifi-
cant GO term is the regulation of tumor necrosis factor 
(TNF) secretion with a fold enrichment of 11.68. This is 
directly followed by an upregulation of three type I IFN 
related terms in EVM patients compared to BM patients 
[response to type I IFN (10.90; 22 DEGs), type I IFN sign-
aling pathway (10.88; 20 DEGs) and cellular response to 
type I IFN (10.88; 20 DEGs), all DEGs upregulated with 
positive log2fold changes], which was also found in the 
longitudinal EVM analysis (Additional files 2 and 10). 
Furthermore, we noted other viral related GO terms 
concerning viral life cycle, replication and regulation 
with a high fold enrichment, as expected (Additional 
file  10), followed by more general protein localization 
and targeting GO terms. In the lower GO terms with a 
fold enrichment below 3.5 neutrophilic and leukocyte 
responses appear, together with cytokines regulation and 
production. These lower GO terms were also found in 
the longitudinal BM analysis (Additional files 5 and 7). 
However here the associated single DEGs have a negative 
log2fold change, meaning that they are downregulated in 
the EVM samples compared to the upregulation in BM 
samples (Additional file 10). To study the DEGs in more 
detail, we performed a separate GO analysis on the 331 
upregulated and the 349 downregulated DEGs (Addi-
tional file 10). As expected, the upregulated DEGs leaded 
to four immune-related GOs: defense response to virus, 
regulation of multi-organism process, immune effector 

process and immune system process. The downregulated 
DEGs were traced to 12 different GO terms, where only 
the last two terms were immune-related: inflammatory 
response and defense response (Additional file 11).

A similar analysis was performed using all enterovi-
ral and bacterial samples (including BM2), which is dis-
cussed in Additional file 12: Results.

Enteroviral versus bacterial meningitis classifier
In the last step we used the normalized gene expression 
values from the EVM1/2 versus BM1 samples to build 
a random forest classifier that would be able to distin-
guish enteroviral meningitis cases from acute bacterial 
cases. After cross-validation, we obtained an AUC value 
of 0.982 (Fig.  2a), indicating that the classifier is able 

Fig. 1  Overlap GO terms of both BM analysis. Venn-diagram showing 
the overlap of GO terms between method A and method B of the 
bacterial meningitis-specific transcriptomic profile

Fig. 2  a EVM1/2-BM1 classifier ROC curve. Random forest classifier 
between EVM1/2 and BM1 (including feature selection and 
Bonferroni correction, α = 0.05) resulted in 56 classifier genes. b 
EVM1/2-BM1 classifier ROC curve. Random forest classifier between 
EVM1/2 and BM1 (including feature selection and Bonferroni 
correction, α = 0.001) resulted in 37 classifier genes
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to discriminate enteroviral from bacterial samples. To 
determine which genes were indicative of the meningi-
tis type of the sample, the genes that passed the feature 
selection step (Bonferroni α = 0.05) were extracted from 
a random forest model that was trained on all the EVM 
and BM samples. In total, a set of 56 predictive genes 
were identified in this way (Additional file 13). To assess 
whether a smaller set of genes could be equally or com-
parably performant, the feature selection step was made 
stricter (Bonferroni α = 0.001). This stricter method iden-
tified a predictive gene set of 37 genes with an AUC of 
0.982 (Fig.  2b and Additional file  13, Additional file  14: 
Figure S2). Most of the 56 and 37 predictive classifier 
genes are present as DEG, found in the EVM1/EVM2 
versus BM1 analysis (Additional file 13).

In addition, we gathered a set of 41 genes that had pre-
viously been implicated with viral versus bacterial infec-
tions from a recently published “general” classifier from 
Herberg et  al., 2016 [13]. Using the same leave-one-out 
cross validation strategy, we tested how well this set of 41 
genes was able to predict whether an unknown sample 
was diagnosed as enteroviral or bacterial meningitis. We 
obtained an AUC value of 0.979 (Fig. 3), which shows that 
the two sets of signature genes are equally performant.

Finally, for potential clinical applications, we investi-
gated whether it is possible to specifically identify entero-
viral meningitis samples from any infectious sample. To 
attain this goal, we trained a classifier on all our viral 
meningitis samples versus all other samples (including 
background samples from paediatric patients with non-
infectious inflammatory conditions (Additional file  1) 
and patients with other viral meningitis causes) following 

the same method as described for the enteroviral versus 
bacterial classifier. We obtained an AUC value of 0.928 
(Fig. 4), indicating excellent performance, and identified 
a set of 61 genes that were predictive of the sample being 
an enteroviral meningitis sample (Additional file  15). 
Only five of those classifier genes are not present as DEG 
in the EVM1 versus control analysis (Additional file 15).

Discussion
In this study, we showed for the first time that the anal-
ysis of 3′mRNA sequencing data from whole blood can 
adequately distinguish enteroviral meningitis from bac-
terial meningitis. Using our longitudinal data, we found 
that the upregulation of type I IFN genes was one of the 
most striking observations in enteroviral meningitis, 
whereas the activation of macrophages and neutrophils 
was a dominant feature in bacterial meningitis, simi-
lar to what has been noted before for viral and bacte-
rial comparisons [3, 8, 11, 12]. Including rarer causes of 
meningitis, like Borrelia burgdorferi (BM2 sample), had 
no influence on the main type I IFN or neutrophilic pat-
terns. The differences in gene expression between entero-
viral and bacterial meningitis made it possible to build a 
classifier with an AUC of 0.975. We noted that the earlier 
published classifier genes (41 genes) between different 
types of viral and bacterial infections also led to similar 
AUC as ours, thereby supporting the use of both classi-
fiers in practice [13]. Moreover, our results showed that 
with a reasonable AUC of 0.924 enteroviral meningitis 
could be differentiated from not only bacterial meningi-
tis, but also herpes meningitis and non-infectious inflam-
matory rheumatologically conditions.

Fig. 3  Application of literature classifier on resulting dataset (ROC 
curve). Classifier performance to distinguish our enteroviral samples 
from bacterial samples, based on 41 genes, selected from a literature 
bacterial-viral infection classifier

Fig. 4  EVM specific classifier ROC curve. Enteroviral meningitis 
classifier select 61 genes to distinguish EVM from other types of 
infections
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Our findings are not only of scientific interest for a 
better understanding of the underlying pathophysiology 
and the identification of potential therapeutic targets 
but might also—with the foreseen reduction of turnover 
time in sequencing in mind—present new possibilities in 
clinical practice when lumbar puncture is not feasible, 
delayed or when the direct identification of the pathogens 
is uncertain, due to negative cultures or PCR. In addition, 
during enterovirus season and given a unconfirmed clini-
cal diagnosis of enteroviral meningitis, our findings sug-
gest that our classifier is capable of verifying this clinical 
diagnosis, and thus potentially avoiding an unnecessary 
lumbar puncture as well as antibiotic administration.

Our study is, despite the significant results, limited by 
the sample size of each different bacterial strain. In addi-
tion, for most bacterial cases, we were unable to acquire 
a convalescent sample. To overcome these limitations, 
we grouped samples of the 3 most common bacterial 
strains (BM1) and all collected convalescence samples. 
With those 6 BM1 samples and all EVM samples we were 
able to create a performant general enteroviral-bacterial 
classifier. Including more samples could increase the dis-
criminating strength of this classifier. In literature, there 
are classifiers available for other infections which can 
identify the specific strain of each infectious agent [3, 8, 
11, 12]. Another caveat is that the use of high-through-
put sequencing within a research setting is likely not fea-
sible in routine clinical labs, due to the costs, the need 
of a library preparation and time limits. However, this 
may change as high-throughput sequencing becomes 
cheaper and faster in the future. More important, our 
findings revealed that a small set of genes were sufficient 
for classification, potentially enabling the development 
of a multiplex real-time PCR. Different primers could be 
designed, targeting the transcripts of all selected classifier 
genes. The input for the PCR requires total or mRNA, 
which is easily extracted from whole blood. Provided the 
needed optimization (primer design, input concentration 
and annealing temperature and duration), a real-time 
PCR is a fast technique and easy to integrate in routine 
clinical labs.

Conclusions
Using 3′ mRNA sequencing, gene expression profiles 
can be composed for enteroviral and bacterial meningi-
tis patients. Based on the DEGs we found the expected 
type I interferon signature for all enteroviral meningitis 
patients and we discovered a mainly neutrophilic pattern, 
supported by T-cell activation in bacterial meningitis 
patients. Even with a small number of bacterial menin-
gitis samples, it is feasible to create a very well perform-
ing classifier that distinguish enteroviral meningitis cases 
from bacterial meningitis.
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