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Cancer is one of the prominent causes of death worldwide. Despite the existence of
various modalities for cancer treatment, many types of cancer remain uncured or develop
resistance to therapeutic strategies. Furthermore, almost all chemotherapeutics cause a
range of side effects because they affect normal cells in addition to malignant cells.
Therefore, the development of novel therapeutic agents that are targeted specifically
toward cancer cells is indispensable. Immunotoxins (ITs) are a class of tumor cell-targeted
fusion proteins consisting of both a targeting moiety and a toxic moiety. The targeting
moiety is usually an antibody/antibody fragment or a ligand of the immune system that can
bind an antigen or receptor that is only expressed or overexpressed by cancer cells but
not normal cells. The toxic moiety is usually a protein toxin (or derivative) of animal, plant,
insect, or bacterial origin. To date, three ITs have gained Food and Drug Administration
(FDA) approval for human use, including denileukin diftitox (FDA approval: 1999),
tagraxofusp (FDA approval: 2018), and moxetumomab pasudotox (FDA approval:
2018). All of these ITs take advantage of bacterial protein toxins. The toxic moiety of
the first two ITs is a truncated form of diphtheria toxin, and the third is a derivative of
Pseudomonas exotoxin (PE). There is a growing list of ITs using PE, or its derivatives,
being evaluated preclinically or clinically. Here, we will review these ITs to highlight the
advances in PE-based anticancer strategies, as well as review the targeting moieties that
are used to reduce the non-specific destruction of non-cancerous cells. Although we tried
to be as comprehensive as possible, we have limited our review to those ITs that have
proceeded to clinical trials and are still under active clinical evaluation.

Keywords: immunotoxin, Pseudomonas exotoxin A, cancer, targeted therapy, bacterial toxin
Abbreviations: BBB, blood–brain barrier; BCG, Bacillus Calmette–Guérin; CED, convection-enhanced delivery; CLL, chronic
lymphocytic leukemia; CR, complete remission; DIPG, diffuse intrinsic pontine glioma; DLT, dose-limiting toxicity; FDA,
United States Food and Drug Administration; GB, glioblastoma; GBM, glioblastoma multiforme; HCL, hairy cell leukemia;
HUS, hemolytic uremic syndrome; IT, immunotoxin; i.p., intraperitoneal; i.v., intravenous; MRD, minimal residual disease;
MTD, maximum tolerated dose; NHL, non-Hodgkin’s lymphoma; SCCHN, squamous cell carcinoma of the head and neck;
SCLC, small cell lung cancer; PE, Pseudomonas exotoxin A; PR, partial remission.
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INTRODUCTION

Cancer is the leading cause of death in developed countries and
the second cause of death in developing countries (1, 2). The
prevalence and mortality of cancer are rapidly growing because
of aging, population growth, and predisposing behaviors such as
smoking (2, 3). Over 7 million cancer-related deaths have been
recorded worldwide, which is 13% of all deaths (4).
Chemotherapy, radiotherapy, and surgery are the major
treatment strategies for cancer (5, 6). Chemo- and radio-
therapeutics target rapidly growing cancer cells; however, they
are also cytotoxic to normal cells (7). Therefore, besides their
success in eradicating tumor cells, conventional chemo- and
radio-therapeutics result in a wide range of side effects such as
alopecia, gastrointestinal symptoms, myelosuppression, and even
secondary cancers (7). To reduce the side effects, various
modalities have emerged that target cancer cells based on
tumor-specific antigens or the use of cell-specific gene
promoters (8). The aim of targeted therapy is to inhibit the
proliferation of cancer cells either by delivery of growth
inhibitory molecules or cytolethal agents to cancer cells or by
controlled expression of cytolethal proteins via the use of a
cancer-specific promoter (9).

In the former strategy, tumor-specific receptors, which are
not, or are much less, expressed on normal cells are targeted by a
monoclonal antibody, or an antibody fragment, which
consequently blocks ligand–receptor interaction and
intracellular signaling (10). Furthermore, the antibody/
antibody fragment or the ligand can also be fused to a protein
toxin to specifically kill the targeted cancer cell. Such chimeric
molecules are called immunotoxins (ITs) (11). In the latter
strategy, the coding sequence of a toxic protein is cloned under
the control of a tumor-specific promoter and delivered to cancer
cells (12). Tumor-specific promoters are derived from genes that
Frontiers in Oncology | www.frontiersin.org 2
are specifically and ectopically overexpressed in cancer cells (13).
Although normal cells might uptake the expression cassette
(depending on the gene delivery vehicle), transcription can be
controlled by the cell type, resulting in expression in only cancer
cells (14).

Targeted cancer therapy is an extremely broad area, and novel
strategies are continually emerging. This review aims to highlight
advances in applications of Pseudomonas exotoxin A (PE)
protein and its derivatives for the production of ITs and their
use in targeted cancer therapy. It is worth mentioning that
the coding sequence of this bacterial toxin has been also used
in many studies for cancer cell-specific gene therapy as
summarized in Table 1. However, here, we only focus on various
PE-derived ITs, one of which has been recently approved for
clinical application.
IMMUNOTOXINS

ITs were first defined as engineered proteins consisting of an
antibody or antibody fragment, or a ligand of the immune
system, such as a growth factor or cytokine, as the targeting
moiety, fused to a cytolethal protein. However, recent studies
have used other cancer-specific targeting molecules including
natural or synthetic cell-penetrating peptides (26, 27) as well as
natural and mutated antimicrobial peptides (28, 29). The toxic
moiety has not deviated as much and has consisted of cytolethal
proteins from plants, animals, fungi, or bacteria (30). Among the
bacterial toxins, diphtheria toxin (9, 31, 32), Shiga toxin (33),
Vibrio cholerae toxin (34), and PE (35, 36) have been used for
construction of ITs. PE is one of the most potent bacterial toxins
and is the most toxic virulence factor of the pathogenic
bacterium Pseudomonas aeruginosa.
TABLE 1 | A summary of studies on gene therapy applications of Pseudomonas exotoxin A or its derivatives usually encoded under the control of a tumor-specific
promoter for targeted killing of corresponding cancer cells.

Gene therapy modality Applied Pseudomonas exotoxin A
(PE) fragment

Targeted cancer Extent of the
study

Reference(s)

pULI100 DNA (adenov. mediated) PE Breast cancer In vitro (15)
pCMV-e23sFv-PE40 (transduced lymphocyte) PE40 Breast cancer In vitro and in

vivo
(16)

pWF-47-TEG (plasmid bound to TGF-alpha) PE various tumors In vitro (17)
Retro-1.3MBP-pe-toxin (under thyroid hormone promoter) PE Brain tumor In vitro and in

vivo
(18)

pPETOPN The receptor-binding and membrane
translocation moiety is PE

various tumors In vitro (19)

sigVEGFPE/pcDNA.3 PE Myeloid tumors In vitro and in
vivo

(20)

pCMV-ETA-EGFP ETA cancers In vitro (21)
Ad.mhIL-4TRE.mhIL-13-PE PE Glioma In vitro and in

vivo
(22)

pVEGF165PE38-IRES2-EGFP PE38 Glioma In vivo (23)
pGene/V5-His-ETA ETA Head and neck In vitro (24)
PM/pG-CM-PE, PM/pG-CM-bF-PE, PM/pG-CM-CX-PE, PM/
pF-CX-bF-PE

PE Breast cancer In vitro (25)

pSERPINB3-PE38KDEL PE38KDEL Oral squamous cell
carcinoma

In vitro (12)
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Pseudomonas EXOTOXIN A

PE is an NAD+-diphthamide-ADP-ribosyl transferase (EC
2.4.2.36), which falls within the family of mono-ADP-ribosyl
transferases (37). PE ADP-ribosylates eukaryotic elongation
factor-2 (eEF-2) on the ribosomes when it reaches the cytosol
of eukaryotic cells (38). eEF-2 is a crucial factor involved in
protein biosynthesis and promotes GTP-dependent
translocation of mRNA from the ribosomal A-site to the P-site
(39). ADP-ribosylation results in the inactivation of eEF-2 and
subsequent termination of protein biosynthesis within the
affected cell. Consequently, extrinsic and intrinsic apoptosis
pathways are activated, which results in cell death (40–42).

PE is a 638-amino-acid protein that belongs to the AB toxins
family (Figure 1A), where the A domain harbors enzymatic
activity and the B domain acts as a cell-binding moiety (43, 44).
The first 25 amino acids form a highly hydrophobic signal
sequence that is removed during secretion (5). The remaining
613 amino acids make up three domains. Domain Ia (aa 1–252)
is a receptor-binding domain and helps PE to recognize and
attach to target cells. Domain II (aa 253–364) facilitates
translocation of PE across the cell membrane and contains a
furin cleavable motif (aa 274–280, RHRQPR^G). The last four
residues (amino acids 400–404) of domain Ib (aa 365–404) along
with domain III (405–613 aa) make up the catalytic part of the
toxin (45). Upon secretion, the terminal amino acid residue of PE
(lysine 613) is thought to be cleaved by a host plasma
carboxypeptidase, which converts the REDLK (609–613) motif
into REDL (609–612) (as reviewed by 37). PE interacts with the
low-density lipoprotein receptor-related protein 1 (LRP-1) (aka
Frontiers in Oncology | www.frontiersin.org 3
CD91 or the a2-macroglobulin receptor) via its Ia domain
and is subsequently internalized through receptor-mediated
endocytosis. In the early endosome, PE dissociates from the
receptor and undergoes a conformational change due to the
acidic environment. This makes the furin-cleavable motif
accessible, which allows furin to cleave PE into two fragments
of about 28 kDa (aa1–279) and 37 kDa (aa280–613) (45). The
smaller fragment consists of domain Ia and parts of domain II.
The larger fragment contains parts of domain II, domains Ib, and
domain III and has enzymatic activity. The 37-kDa fragment
exploits a pathway from the late endosome to the trans-Golgi
network (TGN) and from there to the ER via retrograde pathway
following interaction of its C-terminal REDL (aa 609–612) motif
with the KDEL receptors on the TGN (46, 47).

Pseudomonas Exotoxin A-Derived
Immunotoxins
To date, various ITs have been constructed by chemical
conjugation or recombinant fusion of full or truncated PEs to
target moieties (Figure 2). Chemically conjugated ITs lacked
stability (due to vulnerable disulfide or thioether bonds used
for chemical conjugation) and specificity (due to having the native
binding domain of PE in addition to having the conjugated
targeting moiety) (48, 49). Attempts have been made to
produce more stable and specific PE–ITs via recombinant
protein production.

PE40 and PE38 (Figures 1B, C, respectively) are the two
most-used truncated forms of PE, constructed by the removal of
the Ia domain, or the Ia and part of the Ib domains (aa 365–380),
respectively. Moreover, to enhance ER localization of the
A

B

C

E

FIGURE 1 | Schematic representation of Pseudomonas exotoxin A (A) and its most applicable derivatives. In order to reduce PE–ITs, non-specific toxicities,
immunogenicity, and size, various PE derivatives have been evaluated, most of which are PE40 (B), PE38 (C), PE38QQR (D), and PE24 (E). PE, Pseudomonas
exotoxin A; IT, immunotoxin.
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PE-derived ITs, the C-terminus REDL motif of PE has been
mutated to match the KDEL receptors on TGNs (PE-KDEL) (46,
50). Studies involving “PE-derived immunotoxins” retrieved
by searching scientific databases have been collated in
Supplementary Table 1. PE-derived ITs have been evaluated
in vitro, in vivo, and/or in clinical studies. Although the list is
comprehensive, this review has been limited to those
therapeutics that have advanced to clinical evaluations and that
are currently under active clinical trial or clinical application. In
Table 2, PE-derived ITs that proceeded to phase I clinical trial
are described. However, only a few of them have been safe
enough to advance to subsequent phases.

In the next sections, we review those PE–ITs that are
currently under active clinical trials or approved for clinical
application. In each case, first, the targeted receptor and its
significance in the corresponding malignancy or disease will be
addressed, and then, the IT(s) will be discussed.

Targeting CD22
CD22 is an inhibitory co-receptor of the B-cell receptor that is
expressed on the surface of normal B lymphocytes and also many
malignant B cells including chronic B-lymphocytic cells (B-CLL),
B-lymphoma cells such as Burkitt’s lymphoma, and hairy
cell leukemia (HCL). However, because CD22 is not expressed
on stem cells, it has been considered for targeting the
malignancies (62).
Frontiers in Oncology | www.frontiersin.org 4
RFB4 is a monoclonal antibody against CD22, which was
primarily used for the production of chemically conjugated PE–
ITs (63). However, in order to enhance tumor penetration as well
reduce non-specific cytotoxicity of the ITs, the chemically
conjugated ITs were replaced by a recombinant IT (RFB4
(dsFv)PE38) composed of disulfide stabilized variable
fragments (dsFv) of the RFB4 antibody fused to PE38. The
recombinant IT showed IC50 values of approximately 2 ng/ml
on four Burkitt’s lymphoma cell lines, while being not toxic to
CD22-negative cell lines (IC50 > 1,000 ng/ml) (64). Next, in vivo
studies in nude mouse xenograft of human Burkitt’s lymphoma
resulted in 80% and 100% tumor regression following
administration of 200 or 275 µg/kg of the IT every other day
for three doses. The cumulative MTD of the IT was 3.7 mg/kg for
continuous infusion and 1.2 mg/kg for intermittent bolus dosing.
In addition, i.v. infusion of three doses of 275 or 350 mg/kg every
other day of RFB4(dsFv)PE38 resulted in complete remission
(CR) in all animals. In the case of continuous infusion, 100 or
200 mg/kg/day resulted in CR (65).

Safety and specificity of the IT were also studied in
cynomolgus monkeys that also express CD22, similar to
humans. Three doses of 100 or 500 mg/kg injected every other
day were well tolerated and showed mild laboratory
abnormalities. The tolerated dose of 500 mg/kg was much
higher than the dose needed to obtain CR in the mice
xenografts (i.e., 275 mg/kg) (65).
FIGURE 2 | Schematic representation of PE–IT interaction with the cancer-specific antigen (CSA) or cancer-specific receptor (CSR) targeted on cancer cells and the
subsequent intracellular events resulting in cell death. PE-L, Pseudomonas exotoxin A (PE) fused to a cancer-specific ligand; Ab, antibody; IT, immunotoxin.
December 2021 | Volume 11 | Article 781800
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The level of cytotoxicity of the IT was also confirmed on cell
samples obtained from 28 patients with CD22-positive
leukemias. Moreover, the sensitivity of CD22-positive tumor
cells was correlated with CD22 expression on the cells’
surface (66).

RFB4(dsFv)-PE38 proceeded to clinical evaluations under the
name of BL22 (aka CAT-3888). In a dose-escalation trial
(Clinicaltrials.gov Identifier (CTI): NCT00021983) on 16
patients with chemotherapy-resistant HCL, 69% (11 patients)
underwent CR and 12% (two patients) had partial remission
(PR) following administration of 3–50 µg/kg of the IT, every
other day for three times in a cycle, and within a range of 1 to 15
cycles in different patients. The three non-responsive patients
had neutralizing antibodies before therapy or received the least
amount of the therapeutic (up to 6 µg/kg/dose) (67). Moreover,
only one case of dose-limiting cytokine release syndrome was
reported. Therefore, the IT was further evaluated in a phase I trial
(CTI: NCT00126646) on 46 CD22+ patients (four non-
Hodgkin’s lymphoma (NHL), 11 chronic lymphocytic
leukemia (CLL), and 31 HCL). The effective and tolerable dose
of BL22 consisted of one cycle (three doses) of 40 mg/kg of the IT
every other day. However, among the patients, only HCL
patients responded with 19 (61%) CRs and six (19%) PRs (81%
of overall response), likely because of the higher number of CD22
on the surface of HCL cells (5,000 to 70,000) compared with CLL
(350–1,000) and NHL cells (unknown) (68).

BL22 proceeded to a phase II clinical trial (CTI:
NCT00074048) consisting of 36 chemoresistant HCL patients.
The patients received a single round of treatment consisting of 40
mg/kg of the IT every other day over 5 days (total of three doses).
This resulted in nine cases (25%) with CR, one of which relapsed.
After the re-treatment of 20 patients (56%), the total CRs
increased to 17 CR (47%). Therefore, the high response rate
seen in HCL patients during phase I testing was also confirmed
by the phase II trial. In addition, for both phase I and phase II
trials, the average dose per cycle was similar, ranging from 29 to
Frontiers in Oncology | www.frontiersin.org 5
33 mg/kg three times in a cycle. In phase II, hemolytic uremic
syndrome (HUS) occurred less than in phase I, and major
toxicities were hypoalbuminemia, aspartate aminotransferase/
alanine aminotransferase (AST/ALT) elevation, edema, myalgia,
proteinuria, fatigue, nausea, and fever (69).

BL22 was also evaluated in patients with B-cell acute
lymphoblastic leukemia (ALL) that relapsed after chemotherapy.
A phase I dose-escalation trial (CTI: NCT00077493) on 23
pediatric patients who received 10–40 µg/kg of BL22 every other
day for three or six doses repeated every 21 or 28 days revealed a
significant reduction in peripheral blast counts, recovery of normal
blood counts, or decreased blast infiltration of bone marrow and
extramedullary sites in 16 subjects (70%). However, although the
treatment was associated with an acceptable safety profile, and
adverse events were rapidly reversible, higher doses might have
been required to achieve maximal benefit (70).

As mentioned before, the very low efficiency of BL22 in CLL
patients is likely due to the small quantity of CD22 on the surface
of CLL cells. In an attempt to increase the cytotoxicity of BL22, a
greater affinity toward CD22 was sought. Phage display was used
to screen various mutations in the heavy chain (VH)
complementarity-determining regions 3 (CDR3) of RFB4
(dsFv). Among five selected mutants, a variant where the
CDR3 Ser-Ser-Tyr (SSY) residues were replaced by Thr-His-
Trp (THW) showed increased affinity (~14-fold) toward the
target molecule compared with the parent protein. When the
THW mutant was fused to PE38, the IC50 values on fresh
leukemic cells from CLL and HCL patients decreased to 22–29
ng/ml compared with an IC50 > 1,000 ng/ml for BL22 on the
same cells. This 50-fold difference in IC50 (71) prompted
additional in vitro and in vivo evaluations of RFB4(dsFv)
THW mutant-PE38, now also known as HA22 or CAT-8015
(72). HA22 cytotoxicity was evaluated on Burkitt’s lymphoma
and CLL cell lines. An overall IC50 of 0.3–8.6 ng/ml, with only
10% cell survival following treatment with ≥50 ng/ml of HA22
was determined. Safety studies were performed in cynomolgus
TABLE 2 | PE-derived immunotoxins advanced to various phases of clinical evaluations or clinical application.

Immunotoxin Toxin
fragment

Targeting moiety Target disease Extent of study Reference

Moxetumomab PE38 Anti-CD22 Hairy cell leukemia FDA-approved (36)
LMB-100 PE38 Anti-mesothelin Pancreatic

adenocarcinoma
Clinical trial phases 1 and 2 (51)

IL-13-PE38QQR PE38QQr IL-13 Glioblastoma multiforme Clinical trial phase 3 (52)
CD4-PE40 PE40 CD4 HIV Clinical trial phase 3 (53)
LMB-2 PE38 Anti-IL2

(anti-TAC)
Hematological malignancies Clinical trial phase 2 (54)

Erb-38 PE38 Fv portion of MAb e23 Breast cancer and esophageal cancer Clinical trial phase 1 (55)
D2C7-IT PE38KDEL EGFR Glioblastoma Clinical trial phase 1 (56)
LMB-1 PE38 B3 Solid tumors Clinical trial phase 1 (57)
NBI-3001 PE38KDEL IL4 Solid tumors Clinical trial phase 2 (58)
SGN-10 PE40 BR96 Advanced solid tumor Clinical trial

phase 1
(59)

VB4-845
(oportuzumab monatox or Vicinium)

PE Anti-EpCAM Squamous cell carcinoma of the head and neck Clinical trial
phase 3

(60)

OVB3-PE PE OVB3 Ovarian cancer Clinical trial
phase 1

(61)
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monkeys receiving similar doses of either HA22 or BL22, and no
differences have been reported between the two ITs. This
suggested that the increased affinity of CAT-8015 for CD22
was not associated with additional or exacerbated side effects. In
vivo antitumor activity was evaluated in female athymic NCr
nude mice model of human Burkitt’s lymphoma. Administration
of three doses of 12.5 mg/kg of HA22 injected every other day
resulted in a long-lasting cytostatic response. Moreover, when
the dose increased to 150 mg/kg with the same dosing paradigm,
a long-term inhibition in the growth of Burkitt’s lymphoma was
achieved. Therefore, the non-clinical data suggested that a
therapeutic window for HA22 in humans could be achieved (73).

HA22, under the name of moxetumomab pasudotox (aka
Moxe), proceeded to a phase I dose-escalation trial (CTI:
NCT00462189) consisting of 28 patients with chemotherapy-
resistant HCL. The patients received cycles of three doses of 5 to
50 µg/kg every other day, for one to 16 cycles (median: four
cycles). It must be noted that 50 µg/kg (administered in 12 of the
patients) is one dose level higher than the MTD of BL22. No
dose-limiting toxicity (DLT) was reported, and only two cases of
reversible HUS were observed. Hypoalbuminemia (in 54% of
total treatment cycles) and elevated aminotransferases (38% for
both ALT and AST) were the most commonly observed drug-
related adverse effects. Hence, HA22 showed an acceptable safety
profile in patients at the given doses. Of the patients, 86%
responded to the treatment, with 46% having CR, even with
doses as low as 10 µg/kg for a single cycle, and 39% having PR.
The median duration of response was 29 months, and only one
patient relapsed within 1 year of treatment. Moreover, seven
patients in CR were negative for minimal residual disease (MRD)
(74). The phase I trial was further expanded to a long-term
follow-up (CTI: NCT00586924) by the inclusion of 21 patients
receiving 50 µg/kg of the IT every other day for three doses in 4-
week cycles. Of the 21-patient extension, 91% responded to
treatment, with 71% having CR, improving the overall study to
an 88% overall response rate and 64% having CR. Among the 21
patients with CR, 11 (55%) cases were negative for MRD. The
median CR duration was 82.7 months in MRD-negative CRs
(75). Moxe was further evaluated in a phase III pivotal,
multicenter, single-arm, open-label study at 32 centers in 14
countries (CTI: NCT01829711). A dose of 40 mg/kg was
administered by intravenous (i.v.) infusion over 30 min on
days 1, 3, and 5 of 28-day cycles for a maximum of six cycles,
or documentation of MRD-negative CR, disease progression,
initiation of alternate therapy, or unacceptable toxicity (75). The
reason for the dose reduction (50 to 40 mg/kg) was due to the
improvement of the Moxe production process, which resulted in
higher IT activity (76). A primary report from this pivotal study
at a median follow-up of 16.7 months (range: 2.1–48.8 months)
showed enrolment of eighty patients, among which 33 (41%)
achieved CR. Moreover, 24 (30%) of the CRs were durable (CR
with hematologic remission >180 days), and 27 (33%) of the CRs
were negative for MRD by immunohistochemistry. The median
duration of MRD-positive CR was 5.9 months. The most
common treatment-related adverse events leading to
permanent discontinuation (n = 8) were HUS, capillary leak
Frontiers in Oncology | www.frontiersin.org 6
syndrome (CLS), and increased blood creatinine. All HUS and
CLS events were reversible (77). In Sep 2018, Moxe (Lumoxiti™)
was approved by the US FDA for the treatment of adult patients
with relapsed or refractory HCL who received at least two prior
systemic therapies, including treatment with a purine nucleoside
analog (36). Lumoxiti™ obtained European Medicines Agency
(EMA) approval for the treatment of HCL patients with the same
conditions in Dec 2020 (78). The final report on the phase III
study was recently released, which covered a median follow-up
period of 24.6 months (range: 1.2–71.7 months). According to
the report, the safety concerns were similar to the previous
report, but the efficacy data were better, with the rate of
durable CR increasing to 36% (vs. 30% in the primary report).
In addition, a durable CR rate with HR ≥ 360 days was reported
in 33% of the patients (79).

Like BL22, Moxe was also evaluated in pediatric B-lineage
ALL malignancies, where blasts from the patients were shown to
be sensitive to Moxe (70), and the data provided enough
rationale for the IT to be clinically evaluated in children with
resistant ALL (80). Therefore, the safety and efficacy of Moxe
were evaluated in a phase I multicenter dose-escalation trial
(CTI: NCT00659425) followed by a phase II study (CTI:
NCT02227108) in children, adolescents, and young adults
(ages 1–25 years) with ALL or NHL. However, due to the
drug-related adverse effects and unacceptable clinical activity of
the IT, the study was terminated prior to a planned interim
analysis (81). Therefore, although Moxe was promising for the
treatment of relapsed HCL patients and even got approval for the
treatment of the disease, it was not deemed to be safe and
effective enough for use in pediatric B-lineage ALL. Further
investigations are warranted for the latter.
Targeting Interleukin 13 Receptor
IL-13 is predominantly a TH2-derived immunoregulatory
cytokine. Since IL-13 receptors are significantly overexpressed
on glioma cells (more than 30,000 receptors/cell), a PE-derived
IT called IL-13-PE38QQR (Figure 1D) was constructed (82).
The PE38 fragment in this IT harbored three mutations: C-
terminal lysines at positions 590, 606, and 613 were mutated to
glutamine, glutamine, and arginine, respectively. This
modification of PE38 enhanced the toxicity of the protein and
increased its expression in Escherichia coli during production
(83). The cytotoxicity of the IT was assessed in nine glioma cell
lines with IC50 values ranging between <0.1 and >300 ng/ml.
Furthermore, the cytotoxicity was blocked in the presence of IL-
13, which confirmed the specificity of the IT (84).

One of the limitations for targeting brain tumors is the
delivery of therapeutic agents through the blood–brain barrier
(BBB) (85). IL-13-PE38QQR has suffered this problem due to the
size of the molecule. To overcome this limitation, convection-
enhanced delivery (CED) has been used. CED facilitates the
distribution of macromolecules into brain tissue by positive-
pressure micro-infusion over a period of hours to days (86). In a
human glioma xenograft model that received 100 µg/kg of IL-13-
PE38QQR via CED, all six animals showed CR without acute
December 2021 | Volume 11 | Article 781800
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histopathologic cytotoxicity (87). The safety of IL-13-PE38QQR
was assessed in rats receiving 24-h infusion (200 µl totally) of a
10 mg/ml solution of the IT. All mice (n = 6) tolerated the
infusion without any neurological changes (88).

The safety and efficacy of IL-13-PE38QQR were further
evaluated clinically under the name cintredekin besudotox
(CB). In a phase I trial (CTI: NCT00024570) consisting of 51
patients with recurrent malignant gliomas who received 0.25, 0.5,
or 1 µg/ml of the IT via CED over 5–6 days of infusion, the 1 µg/
ml dose caused DLT. The doses of 0.25 and 0.5 µg/ml were very
well tolerated, and no patients displayed any toxicity. The
adverse events were neurologic or psychiatric including
headache, sensory disturbance, aphasia, asthenia, and
convulsion (89). In a phase III clinical trial (CTI:
NCT00076986), the efficacy of administration of CB via CED
was compared with an approved treatment (Gliadel wafers
containing 7.7 mg of carmustine) in adults with recurrent
glioblastoma multiforme (GBM). Although the median survival
duration in patients who received CB was higher than in patients
who received standard treatment (9.1 vs. 8.8 months), the
incidence of severe adverse effects, especially thromboembolic
complications, resulting in death or termination of the treatment
was higher in cases treated with CB. Poor results of CB could also
be attributed to the need for exact placement of catheters, which
were incorrect in up to 49% of the cases (52, 90). A later animal
study comparing CED with bolus stereotactic administration
resulted in higher volume distribution in the tumor tissue that
lasted for a longer period of time (91); however, improper
positioning of the catheter, the catheter configuration, the
infusion rate, and the infusion volume could have all
contributed to inadequate concentration of CB in tumors and
consequently lower than expected efficiencies. Moreover, the
GBM patients were not assessed for the density of IL-13
receptor on their tumor cells (52). Variation in the expression
level of the receptor among the patients and on the tumors (as
shown before (92, 93) could be another reason for the
lackluster results.

In addition to GBM, a dose-escalation phase I trial (CTI:
NCT00088061) to evaluate the safety and tissue distribution of
the IL13-PE38QQR administered via CED in five children with
diffuse intrinsic pontine glioma (DIPG) has been reported
recently. However, despite interim prevention of DIPG
progression in two of the patients, all patients showed disease
progression 3 months after initial infusion and died (94). There
has been no further report on any aspects of IL13-PE38QQR in
DIPG patients.

Targeting Mesothelin
Mesothelin is a cell surface antigen that is highly expressed on
pancreatic, colon, lung, and ovarian solid tumors as well as in
mesothelioma and cholangiocarcinoma (95). The physiological
role of mesothelin is not known, but it might be involved in
tumorigenesis and metastasis (96–98). The antigen was first
detected in a search for monoclonal antibodies interacting with
ovarian cancer cells but not normal human tissues, via
immunization of mice with a human ovarian cancer cell line,
Frontiers in Oncology | www.frontiersin.org 7
OVCAR3 (99). Later, it was shown that mesothelial cells are the
only normal cells that express mesothelin, albeit at a much lower
level than on malignant cells (100).

To target and destroy these tumors, K1, a monoclonal
antibody against mesothelin, (99, 101) was conjugated to
PE38QQR (K1-LysPE38QQR). In vitro, the IC50 values of 3–6
ng/ml were obtained for A431-K5 cells (a cell line engineered to
express mesothelin). In vivo, complete tumor regression was
observed in 50% of A431-K5 xenograft nude mice that received
three doses of 0.75 mg/kg of the IT (102). Further studies aimed
at the production of K1-based ITs by recombinant DNA
technology. In this regard, the single-chain variable fragment
(scFv) of the K1 antibody was fused to PE38. The scFv-PE38
showed reasonable cytotoxicity on A431-K5 cells with an IC50 of
0.6 ng/ml, whereas on various mesothelin-negative cells, IC50

ranged between 450 and 1,000 ng/ml. Unfortunately, the IT was
very unstable with a half-life of 8 h at 37°C (103). Therefore, a
series of attempts were made to produce an anti-mesothelin scFv
with enhanced stability, binding characteristics (kD), and
cytotoxicity (when fused to PE38) (103–105). Finally, an
improved scFv with high stability (up to 40 h at 37°C) and
high affinity (kd of 11 nM) was obtained and designated as SS
scFv. In addition, when fused to PE38, the SS scFV-PE38 IT had
an IC50 of 0.5 ng/ml on A431-K5 cells and 6–16 ng/ml on
mesothelin-positive cancer cells. The IC50 ranged from 450 to
over 1,000 ng/ml on mesothelin-negative cancer cells. An in vivo
study in A431-K5 xenograft nude mice, i.v. injected with three
doses of 2.6 or 4.3 µg of the IT every other day, showed complete
tumor regression (103). Next, random mutations were
introduced to hotspots in the complementarity-determining
region 3 (CDR3) of the light chain of SS scFv to enhance its
affinity. Finally, a variant named SS1 showed much higher
affinity (15 times) and when fused with PE38 (SS1 scFv-PE38)
showed an increase in in vitro cytotoxicity (13 times) (106). In
another study, a disulfide bond stabilized (ds) bivalent SS Fv (SS
(dsFv)2) was developed in which the VL and VH of each Fv were
joined via a disulfide bond. The two Fvs were fused to PE by a
(Gly4-Ser)3 linker. The SS (dsFv)2-PE38 IT had an enhanced
half-life (47 vs. 27 min), affinity (40 times more), and in vitro
cytotoxicity (10 times higher) when compared with SS dsFv-
PE38. However, no significant difference in activity was reported
between the two ITs in vivo (107). Combining advances, SS1
(dsFv)-PE38 was constructed and evaluated on the primary
culture of tumor cells obtained from patients with ovarian and
cervical cancers. The IC50 of SS1(dsFv)-PE38 was 1–10 ng/ml for
mesothelin-positive cells, while for negative cells, the IC50 was
greater than 1,000 ng/ml (108). Moreover, tumor cells obtained
from ascites of patients with peritoneal mesothelioma were killed
by the IT with IC50 values ranging between 0.08 and 3.9 ng/
ml (109).

In vivo evaluation of SS1(dsFv)-PE38 in nude mice
xenografted with non-small cell lung cancer (NSCLC) cells
resulted in almost complete tumor regression and significantly
prevented metastasis (110). Safety and toxicology studies of the
IT were performed in cynomolgus monkeys receiving three doses
of 250 or 1,000 µg/kg every other day. Decreased appetite and
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physical activity were the only side effects observed with the
1,000 µg/kg dose. Microscopic evaluation of serosal membranes
revealed micro-inflammatory lesions, predicting pleuritic, and/or
pericarditis as possible DLTs (111).

SS1(dsFv)-PE38 was termed SS1P and evaluated in a phase I
dose-escalation clinical trial (CTI: NCT00006981) on patients
with advanced mesothelioma, ovarian, and pancreatic cancers.
The patients in different cohorts received three doses of 8–60 µg/
kg every other day for either six cycles (8–25 µg/kg doses) or
three cycles (25–60 µg/kg doses). However, despite the
reasonable safety of the IT, it showed limited efficacy due to
anti-IT antibody formation in almost 88% of the patients (111).
Considering the high concentration of anti-SS1P antibodies
(defined as 75% or more neutralization of SS1P activity in
vitro) developed in most of the patients, and the limited
efficiency of the IT, later studies used different strategies
including 1) administration of the SS1P by continuous infusion
instead of bolus injection; 2) administration of SS1P in
combination with other chemotherapeutics to enhance tumor
penetration and lower the required IT dose; and 3) re-
engineering SS1P to remove its B- and T-cell epitopes.

The first strategy was used in a phase I clinical trial (CTI:
NCT00024674) consisting of 24 patients with various
mesothelioma and ovarian and pancreatic carcinoma. Patients
received 4 to 25 mg/kg/day of SS1P by continuous infusion over
10 days. This strategy did lead to slightly lower neutralizing
antibodies following the infusion, and the total amount of SS1P
administered to the patients was higher than that of the bolus
injection. However, the response in patients did not differ
significantly as compared with the previous trial (112).

As the second strategy, the combination of SS1P with other
chemotherapeutics was targeted. The use of chemotherapeutics
has been shown to increase the uptake of IT, presumably through
endothelial damage (113), making this approach a potential
strategy for SS1P. In an athymic nude mice study, where the
mice were xenografted with A431-K5 cells, the use of a single
dose of Taxol (50, 20, or 10 mg/kg), cisplatin (5 mg/kg), or
cyclophosphamide (15 mg/kg) 24 h before administration of the
first dose of SS1P was investigated. As expected, results showed
an increased potency and enhanced tumor regression when SS1P
administration was combined with a single dose of any of the
chemotherapeutics. Interestingly, complete tumor regression for
at least 40 days was reported when SS1P was administered after a
single dose of 20 or 50 mg/kg of Taxol. Further analysis of the
results indicated a synergistic effect for the combinations.
However, in vitro assessment of the combinations on A431-K5
cell line revealed no enhanced cytotoxic effects when compared
with the agent alone, indicating that the observed synergistic
effects must not be related to direct effects of the agents on the
cells (114). A subsequent mechanistic study showed that the
promoting effect of Taxol on SS1P efficiency was not related to
endothelial damage. In Taxol-sensitive tumors, mesothelin
shedding into the tumor environment and in blood was
significantly reduced (~10 times) over 5 days after a single
injection of 20 mg/kg of Taxol. Hence, SS1P was not
antagonized by shed mesothelin and could readily bind
Frontiers in Oncology | www.frontiersin.org 8
membrane mesothelin and kill tumor cells (115). A phase I
dose-escalation clinical trial (CTI: NCT01445392) has also been
reported for SS1P combination therapy, with standard doses of
pemetrexed and cisplatin in patients with confirmed malignant
pleural mesothelioma. However, although pretreatment of the
patients with the chemotherapeutics followed by administration
of different doses (25–55 µg/kg) of SS1P caused some partial
responses, the production of neutralizing antibodies by the
patients’ immune system hampered further administration of
SS1P (116). Therefore, the third strategy, i.e., de-immunizing
SS1P, was intensely pursued.

De-immunization of SS1P was expected to be promising since
previous studies on de-immunization of PE (117, 118) or using
lymphocyte depleting regimen (119) showed reduced production
of anti-SS1P antibodies and consequently increased SS1P serum
concentration. These findings were confirmed by a subsequent
pilot clinical trial in patients with refractory malignant
mesothelioma, in which the patients received the immune-
depleting regimen before each cycle of SS1P administration to
reduce their B and T lymphocytes. Lower serum anti-SS1P
antibody, higher serum SS1P concentrations, and prolonged
PRs were found in the pilot study, supporting the notion
that reducing immune responses toward the SS1P could allow
repeated administration of the IT and enhance overall responses
(120). Among various mutants of SS1P (99, 105, 107, 111, 112,
114–119, 121–123), RG7787 is one of the most widely studied
forms, which also proceeded to clinical evaluation.

RG7787 (also known as LMB-100) is a mutant of SS1P
developed by 1) introducing seven point mutations to the
catalytic domain of PE (domain III), which removed its human
B-cell epitopes; 2) removing the majority of domain II of PE,
which removed protease sites as well as additional B-cell epitopes;
and 3) replacing the murine dsFv with a humanized anti-
mesothelin Fab fragment (124). The first two modifications
resulted in a new generation of PE–IT based on PE24
(Figure 1E), which, in addition to much lower immunogenicity,
was resistant to lysosomal degradation and resulted in a
substantial reduction in off-target toxicity (125).

The cytotoxicity and antitumor effects of LMB-100 were verified
on different cancer types including breast (126), gastric (126), lung
(127), ovarian (128), and colorectal (129) cancers, as well as
pancreatic ductal adenocarcinoma (130–133). Almost all cell
lines corresponding to these malignancies were affected by LMB-
100 at concentrations in the picomolar range (as low as 6.8 pmol/
lit) (130–133). Because in vivo evaluation in rodents and
cynomolgus monkeys revealed a 5- to 10-fold higher MTD for
LMB-100 when compared with the SS1P (124, 126), LMB-100
could be administered at higher doses (2.5 vs. 0.4 mg/kg/dose for
SS1P). However, although the treatment of xenograft models with
LMB-100 alone resulted in some PRs and tumor regression, no
cases of CR were reported (124, 126). Therefore, LMB-100 was
evaluated in combination with other chemotherapeutics, including
taxanes (paclitaxel and nano-albumin bound (Nab)-paclitaxel)
(126–128, 130, 134), platinum-based agents (cisplatin and
oxaliplatin) (128, 129), actinomycin D (129, 135), and
gemcitabine (134). Co-administration of LMB-100 with the
December 2021 | Volume 11 | Article 781800

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Havaei et al. Pseudomonas Exotoxin-Derived Immunotoxins
taxanes enhanced the antitumor activity in a synergistic manner
and even resulted in four CRs in gastric cancer (received paclitaxel)
(126), as well as pancreatic cancer (received nab-paclitaxel) (134)
xenografts. Likewise, actinomycin D co-administration
synergistically potentiated the antitumor activity of LMB-100 in
pancreatic (135) and colorectal (129) carcinoma xenografts and
resulted in some CRs. Cisplatin co-administration in an ovarian
xenograft model also enhanced antitumor activity of LMB-100,
though in an additive manner and without any CRs (128). The
combination of gemcitabine only slightly improved LMB-100
activity in pancreatic cancer xenografts (134), and oxaliplatin
showed no enhancement in antitumor activity in colorectal
xenografts (129). Taken together, enhancement of LMB-100
efficacy is dependent not only on the selected chemotherapeutics
but also on the type of cancer itself. None of the above studies could
clearly define the mechanisms behind the observed synergistic
effects, though further mechanistic and pharmacokinetic studies
are underway (136, 137).

LMB-100 monotherapy was also shown to be inefficient in a
phase I dose-escalation clinical trial (CTI: NCT02798536) due to
the development of anti-LMB-100 antibodies, as well as the lack
of durable responses or CRs in patients with different
mesothelin-positive cancers (138). Further clinical evaluation
of LMB-100 alone or in combination with nab-paclitaxel in a
phase I/II clinical study (CTI: NCT02810418) in pancreatic
cancer patients was also underwhelming (139). The study
included two arms based on the infusion rate of LMB-100. In
arm A (A1 and A2) of the study, patients were infused over 30
min (short infusion), while in arm B (B1 and B2), patients were
infused over 24 or 48 h (long infusion). Patients in A1 (dose-
escalation phase I trial), A2 (phase II trial), and B2 received nab-
paclitaxel (125 mg/m2) in addition to the IT. Despite the
beneficial antitumor activity of the combination therapy, the
amplification of toxic side effects by nab-paclitaxel, especially
the CLS-related side effects, such as severe myalgia and cardiac
toxicity, prevented its further use (51). A recent abstract
presented at the annual meeting of the American Society of
Clinical Oncology (2020) reported results corresponding to the
B1 and B2 arms of the study. Despite being well tolerated by the
patients, higher titers of anti-IT antibodies were reported
compared with the short infusion (the A arm of the study).
Clinically, the combination of LMB-100 and nab-paclitaxel was
not beneficial for the treatment of pancreatic cancer.

Yet another strategy to overcome anti-LMB-100 antibody
formation in patients has been the use of tofacitinib (a JAK
inhibitor), which was previously used in an SS1P study and
significantly lowered the production of anti-SS1P antibodies
(140). Concurrent administration of LMB-100 and tofacitinib
in patients with mesothelin-positive solid tumors has started
recently (CTI: NCT04034238). However, according to a recent
brief report on the study presented at the annual meeting of the
American Society of Clinical Oncology (2021), the combination
has yielded no objective responses and even raised certain safety
concerns (141). Another strategy has been to combine LMB-100
with monoclonal antibodies against immune checkpoints,
CTLA-4 and PD-1. In vivo and clinical observations have
Frontiers in Oncology | www.frontiersin.org 9
shown that administration of anti-CTLA-4 as well as anti-PD-
1 after treatment with either SS1P or LMB-100 resulted in
significant antitumor activity and tumor mass eradication
(142–144). In this regard, three clinical trials are ongoing
including administration of LMB-100 in combination with
ipi l imumab (ant i-CTLA-4, CTI : NCT04840615) or
pembrolizumab (anti-PD-1, CTI: NCT03644550) in malignant
mesothelioma, as well as pembrolizumab in NSCLC (CTI:
NCT04027946). There are no reports from these studies as of
the writing of this review.
Targeting Epidermal Growth
Factor Receptor
EGFRvIII is a variant of epidermal growth factor receptor
(EGFR) missing 267 amino acids of the extracellular domain
because of an in-frame deletion of exons 2–7 (145, 146).
EGFRvIII is not capable of binding to EGF; however, due to its
constitutive kinase activity, EGFRvIII-bearing cells grow rapidly
and are invasively metastatic (147). Both wild-type EGFR
(wtEGFR) and the EGFRvIII are highly expressed on the
surface of GBM cells, while normal brain cells express none of
these receptors (148). D2C7 is a monoclonal antibody that binds
to both wtEGFR and EGFRvIII on the surface of GBM cells and
is subsequently internalized. The antibody localizes to tumors
expressing the receptors and has thus been investigated as part of
a PE-derived IT (149). The targeting moiety was created by
fusing the VH and VL domains of D2C7 via a (Gly4Ser)3 linker
and further stabilized by the introduction of Cys mutations in
both domains to form a disulfide bridge (D2C7-scdsFv). To
create the IT, D2C7-scdsFv was fused to the PE38KDEL (D2C7-
(scdsFv)-PE38KDEL). Cytotoxicity evaluation of the IT showed
IC50 values ranging from 0.18 to 2.5 ng/ml when assessed on
various human epidermoid carcinoma or glioblastoma cell lines.
Moreover, the application of the IT in an intracranial tumor
murine xenograft overexpressing human wtEGFR increased the
survival of the animals by up to 310%. The survival rate was
approximately 160% when the IT was administered via CED to
intracranial tumor xenografts expressing both receptors. CED
was also shown to be a reasonable route to provide sufficient
concentrations of the IT in tumors (150, 151). Next, the D2C-
(scdsFv)-PE38KDEL IT, or D2C7-IT in brief, was subjected to a
toxicity study in rats to determine the MTD and the dose level in
which no adverse effect (NOAEL) was observed. The rats
received different concentrations of the IT up to 0.4 µg/rat via
CED infusion over 72 h. The MTD was between 0.1 and 0.35 µg/
rat, and the NOAEL was 0.05 µg (152, 153). D2C7-IT production
was scaled (154) for phase I/II clinical trials involving patients
with recurrent GB (CTI: NCT02303678). Phase II is still ongoing,
but a brief report at the annual meeting of the American Society
of Clinical Oncology (2020) presented preliminary data of the
dose-escalation phase I, which involved doses ranging from 440
to 23,354 ng/ml. D7C2-IT was administered in patients (two
patients in each dose level) via CED, and the patients were
examined for DLTs. A dose of 6,920 ng/ml was deemed the most
suitable therapeutic dose. Phase II was justified because three
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patients remained in PR for 28–54 months (56). Another clinical
trial combining D7C2-IT with atezolizumab, an anti-PD-1
antibody, has been recently initiated (CTI: NCT04160494)
(155) This trial was based on a previous animal study of mice
xenografts that received D7C2-IT and either anti-CTLA-4 or
anti-PD-1 antibodies. In the animal study, the combination with
either antibody resulted in prolonged CRs. Moreover, the
surviving animals were resistant to tumor development upon
subcutaneous re-challenge, indicating a protective antitumor
immunity (156). As of the date of this review, there has been
no report on the results of this latest clinical trial.

Targeting Epithelial Cell
Adhesion Molecule
Epithelial cell adhesion molecule (EpCAM, aka CD326) is a
transmembrane glycoprotein mediating epithelial-specific
intracellular cell adhesion (157). The glycoprotein has been
shown to be stably overexpressed on the surface of some
malignancies including bladder (158), prostate (159), ovary
(160), colorectal, breast, and lung cancers (161–163), while its
expression is limited on normal tissues corresponding to the
malignancies (162). EpCAM is involved in cell migration,
proliferation, and differentiation, as well as cell adhesion. The
contribution of EpCAM to proliferation and promotion of tumor
growth, and metastasis as well, has made it an attractive antigen
for cancer cell-targeted antibodies and ITs (164–166).

Primary attempts to produce an IT targeting EpCAM-positive
malignancies were made by chemical conjugation of a full anti-
EpCAM antibody, MOC-31, to PE via chemical conjugation
(167). The IT was effective on human small cell lung cancer
(SCLC) in vitro and in vivo in rat xenograft models (168). A
subsequent version of the IT was made by chemical conjugation
of the MOC-31 antibody to PE40 (PE252-613) and termed
MOC31-ETA252–613. The IT was cytotoxic to an array of lung
cancer cell lines with IC50 values ranging from 10 to 3,500 pM.
Furthermore, i.p. administration of four doses of the ITmeasuring
10 or 20 µg every other day in SCLC xenografts showed promising
antitumor effects as well as an LD50 of 210 µg (169).

To enhance tumor penetration of the IT, a MOC-31 antibody-
derived scFv (termed 4D5MOCB) was developed (170) and
recombinantly fused to PE252-608KDEL, yielding 4D5MOCB-
PE252-608KDEL (also referred to as 4D5MOCB-PE40KDEL). In
vitro assessment of 4D5MOCB-PE40KDEL revealed specific
cytotoxicity on EpCAM-positive cell lines with IC50 values of
0.005–0.2 pM. In vivo safety and toxicity evaluation of the IT in
mice revealed no organ toxicity. Antitumor activity of the
4D5MOCB-PE40KDEL was verified in nude mice xenografted
with SW2 (lung), HT29 (colon), or CAL27 (squamous) carcinoma
cell lines. The mice received a total amount of either 45 or 30 µg of
4D5MOCB-PE40KDEL over 3 or 1 weeks, respectively. All animals
tolerated the administered doses. Significant tumor regression was
observed in all animals that received 45 µg of the IT, with five cases
of durable CR (171). Toxicokinetics of the 4D5MOCB-PE40KDEL
(now termed VB4-845) was assessed following intratumoral and
i.v. administration in rats and cynomolgus monkeys. The MTD
was determined to be 1 mg/kg in cynomolgus monkey, and local
administration of the IT was safe even after repeated injections.
Frontiers in Oncology | www.frontiersin.org 10
However, in rats administered systemic doses, significant toxicities
including vascular leak syndrome (VLS) and multiple organ
ischemic necrosis resulting in animal death occurred (50).
Despite the effect in rats, and considering the promising
antitumor effects of VB4-845, as well as its safety via
locoregional administration, it was concluded that the IT might
be suitable for the treatment of locally accessible malignancies.

A dose-escalation phase I clinical trial involving 20 patients
with squamous cell carcinoma of the head and neck (SCCHN)
has been conducted. Patients received IT doses ranging at 100–
930 mg once weekly for four consecutive weeks. The DLT was
grade 3 elevated liver enzyme, and the MTD was determined to
be 930 mg/dose. Moreover, a notable reduction in injected
tumors size was observed in 10 patients, and four patients
showed complete clinical resolution of their tumors (172).

Concurrently, another phase I clinical trial was also
performed in patients with EpCAM-positive non-muscle-
invasive bladder cancer either refractory to or intolerant of
Bacillus Calmette–Guérin (BCG) therapy. The patients
received intravesical injections of 0.1–30.16 mg/dose of VB4-
845 once weekly for six consecutive doses. Only 20 patients
experienced mild VB4-845 administration-related adverse
effects; hence, no DLT and, consequently, no MTD was
determined. In addition, an overall CR of 39% was observed,
most of which occurred at doses higher than 1 mg (173). Thus,
since the modality was found to be safe and efficient for the
disease, it proceeded to a phase II clinical trial (CTI:
NCT00462488) under the name oportuzumab monatox or
Vicinium. In that study, 46 patients with non-invasive
urothelial carcinoma in situ were split into two cohorts
(cohorts 1 and 2) and received 30 mg/dose of intravesical
Vicinium according to treatment schedules specific for each
cohort for up to 1 year. Forty-two patients completed the
treatment regimens. All patients tolerated the IT well. No one
reported serious adverse effects related to the medication, and no
one died during the study. Of the evaluable patients, 44%
achieved a CR that was reduced to 40%, 27%, 18%, and 16%
when evaluated at 3, 6, 9, and 12 months, respectively. However,
seven patients of both cohorts remained with CR for 18–25
months. This study confirmed the safety and efficacy of Vicinium
(60). Vicinium is being evaluated in a phase III clinical trial (CTI:
NCT04859751) that started on March 23, 2021, and is expected
to be completed around December 2023.

Another phase I clinical trial combining Vicinium with
durvalumab [a monoclonal anti-PD-L1 antibody (174) to treat
patients with high-grade non-muscle-invasive bladder cancer
previously treated with BCG (CTI: NCT03258593)] is ongoing.
Durvalumab is expected to potentiate Vicinium through an
enhancement of immune responses resulting from a PD1–PD-
L1 interaction blockade. Yet there is no report on the clinical
effects and outcomes of the combination.
CONCLUSION

There have been 12 PE–ITs (Table 3) with promising effects in
vitro and in animal studies; however, most could not be
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translated to the clinic. The inability to transfer the results
from the laboratory to the clinic was based on safety or
efficacy issues, or both. Safety concerns mostly arise due to
non-specific uptake of an IT by non-target cells, which is
partly due to the physiologic expression of targeted antigen/
receptor by normal cells, though at low levels. Furthermore,
immune responses against ITs, which are considered foreign
Frontiers in Oncology | www.frontiersin.org 11
proteins by the immune system, could result in both safety and
efficacy issues. Recent publications fully review why the
immunogenicity of PE-derived ITs and disease resistance
renders this treatment inapplicable in a clinical setting (176,
177); however, given the approval of Moxe by the FDA, and
promising clinical effects observed following combination
therapies, especially with immune checkpoint inhibitors (178)
TABLE 3 | Clinical characteristics of PE–ITs advanced to clinical trials, alone or in combination with other therapeutic agents.

Immunotoxin MTD DLT Dosing Response Reference

Moxe (HA22) 50 µg/kg × 6 CLS, refractory hypercalcemia in the
setting of active leukemia,
hepatobiliary disorder, HUS

A dose of 40 mg/kg by intravenous (i.v.)
infusion over 30 min on days 1, 3, and 5 of
28-day cycles for a maximum of six cycles

Significant clinical
response in hairy cell
leukemia

(79)

IL-13-pe38qqr 0.5 mg/ml in a volume
of 72 ml administered
by
CED for 96 h at a rate
of 0.750 ml/h

Symptomatic imaging changes
consistent radiographically and
histopathologically with a necrotic
and inflammatory process

(0.5 mg/ml; total flow
rate 0.75 ml/h) was administered over 96 h via
2–4 intraparenchymal catheters placed

No significant clinical
response

(52)

SS1P (SS1
(dsFv)-PE38)

45 µg/kg Allergic reactions, VLS, pleuritic 25 to 55 µg/kg was administered
intravenously over 30 min

A few cases of minor
clinical response, but
not CR

(116)

LMB-100 140 µg/kg CLS 40–250 µg/kg of LMB-100 via 30-min
intravenous infusion on days 1, 3, and 5 of a
21-day cycle

No significant clinical
response

(138)

LMB-100+Nab-
paclitaxel

65 mg/kg CLS (edema, urine output decrease) Received fixed-dose nab-paclitaxel (125 mg/
m2 on days 1 and 8) with LMB-100 (65 or
100 mg/kg on days 1, 3, and 5) in 21-day
cycles for 1–3 cycles

No significant clinical
response

(51)

LMB-100
+tofacitinib

ND CLS-related cardiac toxicity and
hyponatremia

Tofacitinib 10 mg twice daily on days 1–10
and LMB-100 at 65, 100, or 140 mg/kg on
days 4, 6, and 8 of a 21-day cycle

No significant clinical
response, inadequate
safety

(141)

LMB-100+
ipilimumab

Ongoing Ongoing Ongoing Ongoing (175)

LMB-100
+pembrolizumab

Ongoing Ongoing Ongoing Ongoing (138)

D2c7-pe38kdel 6,920 ng/ml Seizure, confusion, pyramidal tract
syndrome, cerebral edema,
dysphasia

440–23,354 ng/ml Ongoing (56)

D2c7-pe38kdel
+ atezolizumab

Ongoing Third-grade ALT elevation, no final
report yet

Ongoing Ongoing (155)

Oportuzumab
monatox or
Vicinium

930 mg/dose Elevated liver enzyme 30 mg/dose once per week for 6 weeks
(cohort 1)
30 mg/dose once per week for 12
consecutive weeks (cohort 2)

Significant clinical
response, proceeded
to phase III (CTI:
NCT04859751)

(60)

Cd4-pe40 80 µg/m2 Hepatocellular injuries 40, 80, or 160 µg/m2 CD4-PE by infusion
three to seven times over 10 days

No clinical response
(viral infection restarts
after treatment stops)

(53)

LMB-2 40 µg/kg every other
day for 3 doses

Transaminase elevation, diarrhea, and
cardiomyopathy

2 to 63 µg/kg administered intravenously over
30 min on alternate days for three doses (qod
× 3)

No significant clinical
response as well as
progressive disease

(54)

Erb-38 ND ND Three doses of erb-38 at 1.0 and 2.0 mg/kg No clinical response (55)
LMB-1 75 µg/kg given i.v.

three times every other
day

Transient postural hypotension and
scanty urination

10, 15, 20, 25, 30, 45, 60, 75, 90, and 100
µg/kg

Inadequate safety (57)

Nbi-3001 6 µg/ml × 40 ml Transaminase elevation 6 µg/ml × 40 ml, 9 µg/ml × 40 ml, 15 µg/ml ×
40 ml, or 9 µg/ml × 100 ml

No significant clinical
responses,
inadequate safety

(58)

Sgn-10 0.641 mg/m2 Gastrointestinal side effects 0.024 to 0.962 mg/m2 No clinical responses (59)
Ovb3-PE 0.5 µg when

administered i.p. every
other day for a total of
3 or 6 treatments

CNS toxicities 1 to 10 µg/kg No clinical responses (61)
December
 2021 | Volume 11 | Art
CLS, capillary leak syndrome; CR, complete remission; CTI, Clinicaltrials.gov Identifier; DLT, dose-limiting toxicity; HUS, hemolytic uremic syndrome; MTD, maximum tolerated dose;
VLS, vascular leak syndrome; PE, Pseudomonas exotoxin A; IT, immunotoxin; CED, convection-enhanced delivery; ALT, alanine aminotransferase; CNS, central nervous system. ND,
not defined.
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as well as efforts that are underway to address the safety and
efficacy issues (179), PE–ITs remain a promising research area
for cancer-specific targeted therapeutic modalities.
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