
Citation: Tinte, M.M.; Masike, K.;

Steenkamp, P.A.; Huyser, J.; van der

Hooft, J.J.J.; Tugizimana, F.

Computational Metabolomics Tools

Reveal Metabolic Reconfigurations

Underlying the Effects of

Biostimulant Seaweed Extracts on

Maize Plants under Drought Stress

Conditions. Metabolites 2022, 12, 487.

https://doi.org/10.3390/

metabo12060487

Academic Editor:

Gabriele Capodaglio

Received: 20 March 2022

Accepted: 23 May 2022

Published: 27 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

metabolites

H

OH

OH

Article

Computational Metabolomics Tools Reveal Metabolic
Reconfigurations Underlying the Effects of Biostimulant
Seaweed Extracts on Maize Plants under Drought
Stress Conditions
Morena M. Tinte 1 , Keabetswe Masike 1, Paul A. Steenkamp 1 , Johan Huyser 2, Justin J. J. van der Hooft 1,3,*
and Fidele Tugizimana 1,2,*

1 Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa;
morenatinte@gmail.com (M.M.T.); keabetswemasike@yahoo.com (K.M.); psteenkamp@uj.ac.za (P.A.S.)

2 Omnia Group, International Research and Development Division, Ltd., Bryanston,
Johannesburg 2021, South Africa; johan.huyser@omnia.co.za

3 Bioinformatics Group, Wageningen University, 6708 PB Wageningen, The Netherlands
* Correspondence: justin.vanderhooft@wur.nl (J.J.J.v.d.H.); fidele.tugizimana@omnia.co.za (F.T.);

Tel.: +27-11-559-7784 (F.T.); Fax: +27-11-559-2370 (F.T.)

Abstract: Drought is one of the major abiotic stresses causing severe damage and losses in eco-
nomically important crops worldwide. Drought decreases the plant water status, leading to a
disruptive metabolic reprogramming that negatively affects plant growth and yield. Seaweed extract-
based biostimulants show potential as a sustainable strategy for improved crop health and stress
resilience. However, cellular, biochemical, and molecular mechanisms governing the agronomically
observed benefits of the seaweed extracts on plants are still poorly understood. In this study, a
liquid chromatography–mass spectrometry-based untargeted metabolomics approach combined with
computational metabolomics strategies was applied to unravel the molecular ‘stamps’ that define the
effects of seaweed extracts on greenhouse-grown maize (Zea mays) under drought conditions. We
applied mass spectral networking, substructure discovery, chemometrics, and metabolic pathway
analyses to mine and interpret the generated mass spectral data. The results showed that the appli-
cation of seaweed extracts induced alterations in the different pathways of primary and secondary
metabolism, such as phenylpropanoid, flavonoid biosynthesis, fatty acid metabolism, and amino
acids pathways. These metabolic changes involved increasing levels of phenylalanine, tryptophan,
coumaroylquinic acid, and linolenic acid metabolites. These metabolic alterations are known to define
some of the various biochemical and physiological events that lead to enhanced drought resistance
traits. The latter include root growth, alleviation of oxidative stress, improved water, and nutrient
uptake. Moreover, this study demonstrates the use of molecular networking in annotating maize
metabolome. Furthermore, the results reveal that seaweed extract-based biostimulants induced a
remodeling of maize metabolism, subsequently readjusting the plant towards stress alleviation, for
example, by increasing the plant height and diameter through foliar application. Such insights add
to ongoing efforts in elucidating the modes of action of biostimulants, such as seaweed extracts.
Altogether, our study contributes to the fundamental scientific knowledge that is necessary for the
development of a biostimulants industry aiming for a sustainable food security.

Keywords: biostimulants; seaweed extracts; metabolomics; molecular networking; GNPS; MS2LDA
substructure discovery; pathway analysis; maize; drought; abiotic stress

1. Introduction

Recurring drought conditions are projected to reduce the global production of major
crops by approximately 50% by 2050, and 90% by 2100 [1,2]. The global production of maize
(Zea mays L.) has declined by 40% due to drought in the past few decades and is expected to
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further decrease by 10–25% with a 1 ◦C increase in global surface temperatures [2,3]. Maize
is a cereal crop species of global economic significance that contributes to approximately
12% of the world’s food demand and ranks first in grain global production at a volume of
1.135 billion tons. Recurring droughts, therefore, pose a significant threat to global food
security and economies [4–6]. Over the past few years, crop protection and productivity
was achieved by the extensive application of synthetic chemical fertilizers and pesticides.
However, these agrochemicals have both short- and long-term detrimental effects on the
natural ecosystem, as well as on human health [7–9]. Hence, eco-friendly, sustainable,
and innovative strategies that are capable of improving crop productivity and drought
tolerance, without compromising soil and human health, are imperatively needed [6,10].

Biostimulants have emerged as promising eco-friendly alternatives to traditional agro-
chemicals, with evidence of enhancing crop productivity and tolerance to abiotic stressors,
such as drought [9,10]. Biostimulants are defined as biological formulations that improve
plant health and productivity through the stimulating action of novel and/or emergent
properties within the complex natural mixture [8,10]. The common basis of biostimulant
formulations are plant growth promoting rhizobacteria (PGPR), humic and fulvic acids,
protein hydrolysates, chitosan and biopolymers, and seaweed extracts [6,11]. Seaweed
extracts are rich sources of bioactive phenolic compounds, polysaccharides, phytohor-
mones, amino acids, and macro- and micro-element nutrients that are capable of inducing
changes in the physiological and biochemical processes involved in plant nutrient uptake
and growth [7,12]. For example, Kappaphycus alvarezii seaweed extract upregulated genes
involved in enhancing root growth, auxin signaling, nitrogen metabolism, and antioxidant
activity, thus improving the root growth, grain yield, and nutrient content of maize roots
to mitigate drought stress [5]. Seaweed-based biostimulants account for more than 33%
of the global biostimulant market and are projected to reach a value of EUR 894 million
by 2022 [12]. The above-mentioned biostimulants were proposed to induce the metabolic
reprogramming of plants. Up to now, however, the molecular mechanisms through which
biostimulants act, and which maize metabolic changes and pathways are involved in
response to the biostimulants’ presence, have remained unknown [10,13].

To investigate the metabolic perturbations caused by biostimulants, herein we report
the application of a liquid chromatography–tandem mass spectrometry (LC–MS/MS)-based
untargeted metabolomics approach to unravel the mechanistic effects of a seaweed-based
biostimulant on the metabolism of maize plants under normal and drought conditions.
Molecular networking (MN) tools, in the Global Natural Products Social Molecular Net-
working (GNPS) ecosystem [14,15] were applied to process and analyze the generated
spectral data. These MN strategies enable a broad overview of the molecular information
that can be inferred from the MS/MS data. This analysis of chemical relationships between
every MS/MS spectrum, visualizing the entire metabolome detected in a sample using
the MolNetEnhancer approach, reveals structurally related molecular families in maize
plants [16–19]. Furthermore, the implementation of the Metabolomics Pathway Analysis
(MetPA) tool, a MetaboAnalyst feature, aids in identifying the most relevant pathways
within the metabolome [20,21]. Thus, profiling the metabolome of maize plants, treated
with a seaweed formulation, would reveal the metabolic reprogramming due to seaweed
treatment. Such insights would provide a fundamental understanding of the molecular
mechanisms induced by seaweed-based biostimulants towards plant growth promotion
and enhanced defenses. Furthermore, it would help us to create a roadmap for novel
biostimulant formulation and strategies for sustainable agricultural practices.

2. Results and Discussion

Seaweed extracts, the same as other plant biostimulants, are currently considered
novel and sustainable strategies in the agro-industry. Seaweed extracts were shown to
mitigate abiotic stress and enhance plant productivity [5]. However, the effects of biostimu-
lants on the plant metabolism and overall underlying molecular mechanisms that govern
the positive effects of biostimulants, such as improved nutrient uptake, increased ROS
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scavenging and plant height, and tolerance to abiotic stress, remain enigmatic [11,22,23]. In
this study, we applied an LC–MS/MS-based untargeted metabolomics study to unravel
the effects of the seaweed-based biostimulant (with soil- and foliar application) on the
metabolism of maize plants under normal and drought conditions.

A schematic overview of the study design is illustrated in Figure 1. The study was
designed to comprise maize leave extracts from control and treatment plant groups. The
control group consisted of untreated maize plants under (1) normal (water level maintained
at 90% plant available water [PAW]) and (2) drought stress (water level maintained at 50%
PAW) conditions, whereas the treated group was soil-applied biostimulant-treated maize
plants under (3) normal and (4) drought stress conditions, foliar-applied biostimulant-
treated maize plants under (5) normal and (6) drought stress conditions. In the final
metabolomics dataset, each group consisted of five biological replicates and three technical
replicates. The data acquired from the untargeted LC–MS/MS analyses of methanol
extracts from maize leaves was mined and interpreted using various chemometrics and
computational approaches, such as feature-based molecular networking (FBMN), MS2LDA,
Network Annotation Propagation (NAP) in silico annotation tool, and MolNetEnhancer.
The MetaboAnalyst generated an unsupervised principal component analysis (PCA) plot
that provided a global visualization of the data and revealed sample groupings related to
drought stress conditions, biostimulant treatment, and its method of application (soil vs.
foliar application) (Figure S1).

Figure 1. Schematic overview of the study design. (A) Maize plants were divided into 6 groups,
with each group comprised of 5 maize plants (biological replicates) to make up a total of 30 plant
samples. Control groups consisted of untreated maize plants under (1) normal and (2) drought stress
conditions. Treatment groups consisted of soil application of seaweed-based biostimulant under
(3) normal and (4) drought stress conditions, and foliar application of seaweed-based biostimulant
under (5) normal and (6) drought stress conditions. Leaves were harvested at four time points (1 day,
3-, 7-, and 14 days after treatment) followed by (B) metabolite extraction and sample preparation;
(C) Extracts were analyzed with liquid-chromatography mass-spectrometry (LC–MS/MS); (D) Data
analysis of the acquired LC-MS data was mined using chemometrics and computational tools, such
as GNPS, MS2LDA and MetaboAnalyst.
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2.1. A Molecular Networking Approach for the Annotation and Visualization of the Extracted
Maize Metabolome

Molecular networking (MN) organizes metabolites or experimental spectra into molec-
ular families/classes, based on spectral similarities, followed by metabolite annotation and
identification [15,24]. Thereby, molecular families/classes with unknown metabolites can
be distinguished when connected to similar or related annotated metabolites. Feature-based
MN (FBMN), unlike ‘classical MN’, incorporates MS1 chromatographic and quantitative
information, such as retention time, isotope patterns, ion mobility separation, and peak
heights or areas, thereby enabling the accurate detection of isomers producing similar
MS2 in molecular networks and the use of downstream statistical analysis and annotation
tools [15,25].

FBMN was employed through the GNPS infrastructure to explore and visualize the
acquired MS/MS spectra data from the maize leave extracts. The FBMN job links are
attached in the Supplementary Materials. The molecular network generated from the
positive dataset consists of 4648 nodes of which 68 nodes (green nodes, Figure S2A, Supple-
mentary Materials) were annotated or matched with metabolites within the GNPS library
mass spectral databases (Table S1, Supplementary Materials). The molecular network
for the negative dataset comprised of 4910 nodes of which 61 nodes (the green nodes in
Figure S2B, Supplementary Materials) were annotated or matched with the metabolites
within the GNPS library mass spectral databases (Table S1, Supplementary Materials).
The GNPS library databases consist of mass spectra acquired from the use of various
sample preparation protocols and mass spectrometers, hence, the variation in the mass
spectra quality and content [24]. Moreover, some of these mass spectra lack chemical stan-
dards and therefore limit the accurate annotation of the metabolites [24]. Hence, manual
inspection is sometimes required to confirm the putative (semi-automated) annotations
and predictions [24]. In addition to the FBMN metabolite annotations, 33 metabolites
such glucogallin, kaempferol-7-O-hexoside, phenylalanine, and tryptophan were manually
annotated (Table S2), as described in the experimental Section 3.6.1. FBMN was used in
combination with the MolNetEnhancer workflow to allow for an efficient exploration of
the structural diversity and distribution of the different chemical classes in the extracted
maize metabolome (Figure 2). The outputs from FBMN and MolNetEnhancer revealed that
the measured maize metabolome was comprised of various metabolite classes, including
carboxylic acid, flavonoid, benzene, lipid, organic acid, cinnamic acid, and amino acid
metabolites (Figure 2 and Tables S1 and S2, Supplementary Materials).

The carboxylic acids and derivatives, and the lipid metabolite classes were widely
observed in the positive ionization mode data (Figure 2A), in contrast to the negative
ionization mode data, which were observed to be rich in flavonoids, benzene and substi-
tuted derivatives, and organooxygen compounds (Figure 2B). Zooming in, the carboxylic
acids and derivatives’ metabolite class consists of amino acids, such as the annotated
isoleucine, phenylalanine, and tryptophan metabolites (Figure S3 and Tables S1 and S2,
Supplementary Materials). These metabolites were reported to increase under drought
stress, with phenylalanine and tryptophan reported to be widely accumulated in maize
leaves [26]. Various terpenoid and steroid glycoside-related metabolites were observed
within the lipid class. Additionally, the benzene and substituted derivatives class was
observed to comprise of halobenzenes and hydroxycoumarin metabolites, whereas the
flavonoid class consisted largely of flavonoid glycosides and organooxygen compounds,
such as DIBOA-glucoside, apigenin-7-O-glucoside, and rutin subclasses (Figure S3 and
Tables S1 and S2, Supplementary Materials). DIBOA-glucoside was reported to increase
under stress conditions [27]. Finally, rutin and apigenin-7-O-glucoside are considered to be
great antioxidants that decrease oxidative damage and enhance tolerance to stresses, such
as drought [28,29].
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Figure 2. MolNetEnhancer enriched feature-based molecular networks of (A) positive electrospray
ionization (ESI+) and (B) negative electrospray ionization (ESI−) MS/MS spectra obtained from
maize leave extracts. The MolNetEnhancer enriched molecular networks depict structurally similar
nodes as molecular families/clusters. GNPS spectral library matched annotations and in silico
Network Annotation Propagation (NAP) annotations were used to predict chemical compound class
annotations, represented by colored nodes (ClassyFire class ontology terms) with nodes without class
annotation colored grey.

To explore the substructural diversities of the metabolites within the datasets, MS2LDA
was applied to explore, aiding in the metabolite annotation and/or functional classification
of unannotated metabolites within the extracted maize metabolome (Figure 2). Previously
annotated Mass2Motifs, which are common patterns of mass fragments and neutral losses
from MotifDB, were used in the exploration of the substructural diversity and identifica-
tion of known chemistry and recognition of yet unknown chemistry. Five hundred and
forty-one (541) Mass2Motifs were discovered from the positive, and 181 from the negative
datasets, of which 134 and 27, respectively, were annotated Mass2Motifs derived from the
GNPS, MassBank, Euphorbia, Rhamnaceae Plant, Streptomyces and Salinisporus, Pho-
torhabdus, and Xenorhabdus MotifSets included in MotifDB. Fifty-four (54) and 18 of the
previously annotated Mass2Motifs in the positive and negative ionization mode datasets,
respectively, had a degree of five or higher. Piperazine, ferulic, cinnamic/hydroxycinnamic,
kaempferol/glycosylated kaempferol, flavonoid, coumaric, and rhamnocitrin-related sub-
structures are examples of the Mass2Motifs, with assigned fragmentation spectra, extracted
from the positive dataset (Figure 3). The Mass2Motifs discovered in the maize metabolomics
data are indicative of a diverse and complex chemistry of the maize metabolome, span-
ning a range of biological pathways and chemical compound classes. The exploration of
the fragmentation spectra by MS2LDA, hence, provided metabolome-wide insights into
the specialized maize metabolism through the discovery of Mass2Motifs that are related
to plant metabolite structures, as depicted in Figure 3. Furthermore, these substructure
annotations support putative de novo structural metabolite annotations, thus accelerating
the annotation of metabolites and providing meaningful biochemical interpretation that
aids in the understanding of plant mechanisms. However, to fully capture the maize
metabolic diversity and enhance our understanding of the plant’s mechanisms, the un-
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known motifs should be explored and annotated in the future. MS2LDA is thus limited by
the vast amount of unannotated Mass2Motifs, that require expert knowledge for structural
annotation, which makes this process laborious [17,19].

Figure 3. Characterized Mass2Motifs mapped on the spectral molecular network of the positive
electrospray ionization (ESI+) MS/MS spectra obtained from maize leave extracts. Colored nodes
represent the distinct Mass2Motif annotations and their occurrence within the spectra dataset. The
shared Mass2Motifs among the various nodes were mapped on the edges connecting the nodes.

Furthermore, to support the MolNetEnhancer chemical compound class annotation
(Figure 2), the Network Annotation Propagation (NAP) in silico annotation tool was applied
(Figures 4 and 5). NAP predicts and re-ranks candidate structure annotations from the com-
pound databases, based on the predicted similarity of the experimental MS/MS data [15,17].
In the case where there is a node with a spectral library match within a molecular family,
NAP utilizes the Fusion scoring method to predict and re-rank the candidate structures.
The Fusion scoring method utilizes the MetFrag tool to produce in silico fragmentation
predictions, which are subsequently combined with the output of the spectral library search
by the MetFusion tool to improve the candidate structure ranking for direct neighbor nodes
based on the structural similarity of library matches and in silico candidate structures. The
structural annotations of these nodes within the molecular network are represented by the
top MetFusion spectral library matches [30]. For instance, in the highlighted section of
the carboxylic acids and the derivatives molecular family cluster (Figure 4), eight nodes
were propagated from known GNPS structural annotations, using the NAP Fusion scoring
method. The top ranked MetFrag and MetFusion candidate structures from the GNPS,
Dictionary of Natural Products (DNP), Super Natural II (SUPNAT), Chemical Entities of Bi-
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ological Interest (ChEBI), and MarinLit databases are, respectively, depicted in Figure 4A,B.
Among the top MetFusion candidate structures depicted in Figure 4B (yellow highlighted
structure/node) is epigallocatechin-(4β->8)-epigallocatechin-3-O-gallate (m/z 763.1514), an
esterified epigallocatechin-3-O-gallate polyphenolic flavanol/catechin, which was accumu-
lated in plant species under drought conditions, due to its high antioxidant activity [31,32].
This metabolite was observed to have increased in drought-stressed plants treated with the
seaweed-based biostimulant (Figure 6A).

Figure 4. Molecular network family cluster of the carboxylic acid and derivatives chemical compound
class containing GNPS spectral library and NAP propagated annotations from maize leave extracts
analyzed in positive electrospray ionization (ESI+). (A) Cluster of polyphenolic flavanol compounds
matched with GNPS spectral library (green square-shaped nodes), top ranked predicted NAP MetFrag
candidate structures (blue square-shaped nodes) and no spectral match (grey nodes) annotations;
(B) Cluster of polyphenolic flavanol compounds matched with GNPS spectral library (green square-
shaped nodes), NAP MetFusion top ranked candidate structures, with epigallocatechin-(4β->8)-
epigallocatechin-3-O-gallate (m/z 763.1514) compound highlighted in yellow, (purple square-shaped
nodes) and no spectral match (grey nodes) annotations.
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Figure 5. Molecular network family clusters of unidentified chemical compound class from maize
leave extracts analyzed in positive electrospray ionization (ESI+). (A) Molecular network family
with unknown structural annotations (grey nodes) and the resultant (B) top ranked NAP Consensus
structural annotations (cyan nodes).

Moreover, when there are no spectral library matches within a molecular family, as
depicted on the observed molecular family cluster in Figure 5A, NAP utilizes network
consensus scoring to re-rank the MetFrag predicted in silico candidate structures, based
on the structural similarity between the connected nodes, thereby propagating candidate
structures for the connected nodes [30,33]. NAP with consensus scoring for the illustrated
molecular family in Figure 5A, resulted in the propagation of six out of seven nodes, includ-
ing the polyphenolic compounds ligurobustoside M and 4′-hydroxyisorottlerin among the
top ranked candidate structures (Figure 5B). NAP thus accelerates and improves the struc-
tural annotations of unknown metabolites by propagating the structural information of any
node(s) within a molecular family/cluster to other or neighboring nodes within that fam-
ily/cluster, [25]. NAP is, however, limited by the possible inaccuracy of the MetFrag tool in
predicting complex rearrangement reactions, due to its bond disconnection approach in
generating fragment ions [34,35]. Furthermore, NAP is limited to small metabolites [18,34].
Thus, the expert inspection of the NAP predicted candidates is encouraged to ensure ac-
curate structural annotation [30]. The NAP-acquired structural annotations also provide
input for the chemical compound class information of the nodes in the molecular network
that is used by the MolNetEnhancer workflow, and that thereby illuminates the maize
metabolome, thus enhancing insight into the maize metabolome and aiding in biochemical
interpretation.

Thus, in our study, we applied a combination of the FBMN, unsupervised MS2LDA
substructure discovery, NAP in silico annotation tool, and the ClassyFire automated chemi-
cal classification tool outputs, coming together in the MolNetEnhancer workflow (Figure 2).
ClassyFire utilizes structural features for the automated prediction of a metabolite’s chem-
ical classification, therefore chemical class annotation through ClassyFire is limited by
the drawbacks of spectral matching and in silico annotation tools [17,36]. The benefit of
using ClassyFire within the MolNetEnhancer, is that it allows for automated chemical
class annotations based on library matches and candidate structures, and a hierarchical
ontology. Of course, this will not always lead to “correct” chemical class annotations, as the
ClassyFire ontology is sometimes different from a field-specific ontology (Tables S1 and S2,
Supplementary Materials). Thus, MolNetEnhancer allowed a comprehensive exploration
and enrichment of chemical annotations, discovering the subtle substructural diversity
within molecular families. Furthermore, assessing the features that chemometrically
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differentiate treatment groups (Table S3, Supplementary Materials), the molecular net-
working approach allowed the annotation of more than 50% of these features (Figure S4,
Supplementary Materials).

Figure 6. The MolNetEnhancer molecular network of positive electrospray ionization (ESI+) (top left)
and negative ESI- MS/MS (top right) spectra obtained from maize leave extracts. The enriched molec-
ular networks depict structurally similar nodes as molecular families/clusters, with the annotated
metabolites, MS2LDA substructures and NAP annotations assigned class annotations, represented by
colored nodes and nodes with no class annotation as grey. The pie charts show the differential effects
of the seaweed-based biostimulant treatment and their method of application on the metabolite
levels of the (A) carboxylic acid and derivatives; (B) lipids; and (C) flavonoid molecular families
under normal and drought stress conditions. Abbreviations: S-applied, soil applied; and F-applied,
foliar applied.

Thus, this MN strategy allowed the visualization of molecular families with class
annotations [36] (Figure 2, Tables S1 and S2) and quantitative descriptions of the individual
metabolites (Figure 6). For instance, the maize metabolome was observed to broadly consist
of the carboxylic acid and derivatives, flavonoid, benzene and substituted derivatives,
and lipid molecular families (Figure 2). The quantitative data are depicted by pie charts
that reflect the differential effects of the seaweed-based biostimulant treatments and the
method of application on individual metabolites under both normal and drought stress
conditions (Figure 6). For example, in the carboxylic acid and derivatives molecular
family cluster, a quantitative description (i.e., pie chart) of 3,5-dicaffeoylquinic acid (m/z
499.1185, Figure 6A) highlighted the effect of the seaweed-based biostimulant treatments
on its distribution, with the greatest effect under normal conditions observed by the foliar
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application method. In contrast, under drought stress conditions, the soil application
method was shown to have the greatest effect on the distribution of 3,5-dicaffeoylquinic
acid in comparison to the foliar-applied biostimulant. However, in the depicted lipid
molecular family, the foliar application method was observed to have the greatest effect on
the distribution of the individual metabolites, in comparison to the soil application method,
under both normal and drought stress conditions (Figure 6B). A similar effect was observed
for some of the individual metabolites within the flavonoid molecular family for plants
under normal conditions, whereas in drought stress conditions, the soil application method
was observed to have the greatest effect on the distribution of the individual metabolites
(Figures 6C and 7). Below, several chemical compound classes observed in the maize
metabolomics data are described in more detail.

Figure 7. Visualization of discriminatory metabolites and concentration of selected metabolites in
individual groups. PLS-DA VIP score plot of important identified metabolites with their concentration
in each group displayed by the heatmap, and bar graphs displaying the average peak intensities of
selected metabolites in each group. Abbreviation: S-applied, soil applied; F-applied, foliar applied;
and Avg. IPA, averaged integrated peak area. Refer to Tables S1 and S2, Supplementary Materials,
for full names of metabolites.

The flavonoid molecular class is regarded as one of the largest class of polyphenolic
metabolites in plant species, as is also reflected in Figure 2 (in particular in the negative ion-
ization mode network), which encompasses approximately 8000 metabolites contributing
to plant processes involved in the development, plant–environment interactions, and de-
fenses [10,29,37]. In maize, various flavonoids were reported to be synthesized and widely
distributed in leaf bases and tips, in response to abiotic stresses such as drought [38,39].
Flavonoids can function as antioxidants that reduce and protect cells from oxidative damage
caused by abiotic stress-induced reactive oxygen species (ROS) [29,40]. In our MolNetEn-
hancer networks, we observe a broad detection of flavonoid metabolite features that vary
in distribution with regards to the environmental conditions they are linked to, and the
possible role of the individual flavonoid metabolite in the maize plant’s processes. For
example, as previously stated by [28], apigenin is one of the best ROS scavengers in
drought conditions, and we observe an increase in apigenin-C-hexoside-C-rhamnoside
(m/z 577.1517) and hyperoside (m/z 463.0929) metabolites in drought-stressed maize plants
treated with the seaweed-based biostimulant (Figures 6C and 7 and Tables S1 and S2). The
flavonoid pathways are key branches of the phenylpropanoid metabolism and can thus
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direct the metabolic flux towards the synthesis of other specialized metabolic pathways
and molecular families, such as organic compounds [29].

Organic compounds are utilized for plant growth and tolerance to stress, by promoting
nutrient (i.e., mineral) uptake, stabilizing the activity of the tricarboxylic acid (TCA) cycle,
and maintaining pH and redox balance in cells. Thereby, organic compounds aid in the
reduction of stress-induced oxidative stress [41,42]. Additionally, the benzenoid organic
compounds function as chemical signals and precursors for natural products involved in
plant fitness [43–45]. The biosynthesis, distribution, up- and downregulation of organic
compounds are based on the plants’ response to the stress condition [42]. This may
therefore explain their broad existence within the extracted maize metabolome (Figure 2).
The organic compound molecular families (i.e., carboxylic acid and derivatives, benzene
and substituted derivatives, and organooxygen compounds) (Figure 2) are thus essentially
important to plants as they function in various cellular metabolic processes [42].

Lipids have diverse functions in plants that include their influence on the performance,
regulation, and physical properties of plant membranes. Furthermore, lipids function as
integral components of the photosynthetic protein complexes of the electron transport
chain and serve as signaling molecules that regulate cell metabolism [46,47]. The observed
lipid molecular families (Figure 2) were associated with the maintenance of cell membrane
stability, energy metabolism, and antioxidant activity [48,49]. Furthermore, lipids were
reported to have significantly increased in the drought-stressed plants, thus suggestive of
their role in plant abiotic stress responses [50]. This may, therefore, explain the observed
increase in fatty acyl lipids, including 5,12-DiHETE and monolinolenin, in drought-stressed
plants treated with the seaweed-based biostimulant (Figures 6B and 7).

The partial least squares discriminant analysis’ (PLS-DA) variable importance in pro-
jection (VIP) provided visualization of the top annotated metabolites (i.e., the metabolites
with a VIP > 1.0) that contributed to the variation of the sample groups (Figure 7, Tables
S1 and S2, Supplementary Materials). A total of 20 metabolites were discovered as sig-
nificant metabolites that contributed to the group variations. The metabolites included
stress defense-related metabolites, such as isoleucine, coumaric acid, caffeic acid, adenine,
kaempferol-3-rutinoside, and isovitexin (Figure 7). The roles that some of these metabolites
play in plant productivity and/or stress tolerances, are discussed in Section 2.2. Moreover,
their concentration and other individual metabolites for each group are illustrated in the
heatmap (Figure 7).

The quantitative analyses of individual metabolites, visualized within the molecular
networks and heatmap (Figure 7), showed the effect of the seaweed-based biostimulant
treatment on metabolite distribution. The majority of the molecular family metabolites
were increased in abundance by the seaweed-based biostimulant treatment, with the foliar
application having the greatest effect on the increased distribution of most metabolites un-
der normal conditions (Figures 6 and 7). On the contrary, under drought stress conditions,
the soil application method was observed to be superior to the foliar application method
in increasing the distribution of most metabolites, in particular those that are associated
with stress tolerance (Figures 6 and 7). Thus, it can be suggested that the seaweed-based
biostimulant positively impacted the maize plant by aiding in maintaining or improving
plant health. Seaweed extract-based biostimulants were reported to upregulate the levels
of phenylpropanoids in tomato plants and “Sangiovese” grapes [11,51]. Strawberry plants
treated with seaweed extract-based biostimulants showed enhanced levels of carbohydrates
and quercetin [23]. Furthermore, abscisic acid, cytokinin, and indole acetic acid levels were
elevated in Arabidopsis thaliana plants treated with seaweed-based biostimulants [7]. Ap-
plication of these various seaweed extract-based biostimulants were shown to enhance
nitrogen, protein, lipid, polyphenolic (e.g., flavonoids), tannic, and sugar contents in maize
plants [52,53]. Additionally, the efficacy of seaweed extract-based biostimulants on improv-
ing stress resistance in maize plants was reported [54]. For instance, the foliar application
of Kappaphycus alvarezii seaweed extract was proven effective in ameliorating drought
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stress in maize, through the enhancement of antioxidants and changes in physiological
processes [55].

2.2. Impacted Biological Pathways and Changes in Plant Height and Diameter of Maize Plants
Treated with a Seaweed-Based Biostimulant

To situate the maize metabolic changes upon biostimulant application (as described in
Section 2.1) in a biological context, metabolic pathway analysis was performed. Based on
quantitative pathway analysis of the differentially abundant metabolites due to seaweed
treatment, we observed specific patterns per control/treatment group for metabolites in
the phenylalanine metabolism, phenylpropanoid biosynthesis, and flavonoid biosynthesis
pathways (Figure 8A and Table S4). The metabolites involved in these pathways, under
drought stress conditions, were observed to be altered by the seaweed-based biostimulant
treatment, resulting in specific metabolite patterns (Figure 8B).

1 
 

 

 

 

Figure 8. Summary of Metabolic Pathway Analysis (MetPA) outputs. (A) Representation of the
global metabolome overview containing all of the matched pathways arranged by p-Values on the
y-axis and pathway impact (significance) values on the x-axis. The pathway impact values refer to the
cumulative percentage from the matched metabolites and the maximum importance of each pathway
is 1. (1) Phenylalanine metabolism; (2) Phenylpropanoid biosynthesis; (3) Arginine and proline
metabolism; (4) Flavonoid biosynthesis; (5) Stilbenoid, diarylheptanoid, and gingerol biosynthesis;
(6) alpha-Linolenic acid metabolism; (7) Citrate cycle (TCA cycle); and (8) Glyoxylate and dicarboxy-
late metabolism; (B) Heatmaps displaying differential qualitative alterations in the concentrations
of selected metabolites; (C) Topological characteristics of the phenylalanine metabolism pathway,
including quantification levels of phenylalanine and phenethylamine; (D) Topological characteristics
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of the phenylpropanoid biosynthesis pathway including quantification levels of 4-coumaric acid,
p-coumaroylquinic acid, caffeoylquinic acid, p-coumaraldehyde, caffeic acid, and ferulic acid. Abbre-
viation: C, Control (no stress; no seaweed extract biostimulant); DS, Drought stress (stress; no seaweed
extract biostimulant); DS + SE, Drought stress with seaweed extract biostimulant; Phe, Phenylalanine;
PEA, Phenethylamine; Trp, Tryptophan; CQA, Caffeoylquinic acid; CoQa, Coumaroylquinic acid; LA,
Linolenic acid; 4-CA, 4-Coumaric acid; CA, Caffeic acid; FA, Ferulic acid; Hyp, 4-hydroxyproline; LT,
Luteolin; and QUE, Quercetin.

The seaweed-based biostimulant treatments on the maize plants under drought stress
conditions induced differential alteration on the phenylalanine metabolism, with an in-
crease in phenylalanine and significant decrease in phenethylamine observed (Figure 8C).
The soil method application of the seaweed-based biostimulant had the most positive
effect on the phenylalanine metabolite, whereas for phenethylamine, a negative effect was
observed for the seaweed-based biostimulant treatment (Figure S5A). The increased pheny-
lalanine levels in the maize plants is due to the effect of the seaweed biostimulant, which
was reported to induce the activity of phenylalanine ammonia lyase [7]. The increased
phenylalanine levels are indicative of the induction of the phenylpropanoid pathway, an
epicenter of defense-related metabolites [10]. Phenylalanine is thus regarded as a key
metabolite that serves as a bridge between the phenylalanine metabolism to other spe-
cialized metabolic pathways, as it serves as a precursor of secondary metabolites, such as
flavonoids, alkaloids, and phenylpropanoids, and as a stress-related signal [56–58].

The seaweed-based biostimulant induced reprogramming of the phenylpropanoid
biosynthesis pathway, as observed by the changes in the matched metabolites that include
phenylalanine, coumaric acid, caffeic acid, ferulic acid, coumaraldehyde, and chlorogenic
acids (i.e., coumaroylquinic acid and caffeoylquinic acid) (Figure 8D). The coumaric acid
and coumaraldehyde levels were evidently increased in the seaweed-based biostimulant-
treated plants under drought stress conditions, with the foliar application method having
the more prominent increase in coumaric acid levels over the soil application method
(Figure 8D and Figure S4B). Coumaric acid is one of the main constituents of coumarins and
phenylpropanoids, which actively function in physiological processes, plant adaptation,
and resistance/tolerance to mechanical and biological stresses. Coumaric acid functions
as a signaling molecule for plant development at different stages and its increase in con-
centration levels is suggestive of changes induced by the seaweed-based biostimulant in
the maize plants’ physiological processes towards drought stress tolerance [59,60]. Similar
to coumaric acid levels, tryptophan levels were also notably increased in seaweed-based
biostimulant treated plants under drought stress conditions (Figure 8B). Increased levels of
tryptophan in maize plants under drought stress conditions were reported and suggested
to be attributed to its function as a precursor for a range of specialized metabolites and its
role in scavenging ROS [61].

Coumaraldehyde is a key precursor for the biosynthesis of lignins that function in
cell wall strengthening activities under stress conditions [40,62]. The accumulation of
coumaraldehyde can therefore be related to cell wall strengthening, and thus the results
suggest the seaweed-based biostimulant may function in promoting cell wall strengthening
through enhanced biosynthesis of lignins. Seaweed-based biostimulants were reported
to increase the accumulation of lignins and stimulate pathways associated with lignin
biosynthesis in oilseed rape and bean plants [8,63]. Furthermore, the accumulated levels of
coumaraldehyde, suggest that the applied biostimulant may play a role in maintaining the
strength of the plant cell wall under drought stress conditions.

Furthermore, variations in chlorogenic acids (i.e., coumaroylquinic and caffeoylquinic
acids) levels were observed. The coumaroylquinic acid levels were increased in the seaweed-
based biostimulant treated maize plants under drought stress conditions, with the foliar
application method having the positive effect (Figures 8D and S5B). No notable changes
were observed in caffeoylquinic acid levels; however, according to the heatmap analysis,
the levels were increased for both foliar- and soil-applied biostimulant treatment. The soil
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application method is shown to elicit the greatest increase in the caffeoylquinic acid levels
(Figures 8D and S5B). These chlorogenic acids are reported to have antioxidant activities
and their increase in maize leaves during the onset of stress, are shown to negatively reduce
the plants’ growth and yield-related traits [27].

Differential effects of the seaweed-based biostimulant on drought-stressed maize
plants’ height and diameter were observed. The maize plants treated with the foliar applica-
tion of the seaweed-based biostimulant were observed to be significantly taller and thicker
than the untreated plants, whereas those treated with the soil application displayed no sig-
nificant effect on the plant height and diameter (Tables S5 and S6, Supplementary Materials).
On the contrary, under normal conditions, the maize plants treated with the soil application
of the seaweed-based biostimulant were observed to be taller and thicker than the un-
treated plants, and those treated with the foliar application displayed no significant effect
on the plant height and diameter (Tables S5 and S6, Supplementary Materials). Drought
stress was reported to negatively affect plant growth parameters, such as plant height and
stem diameter, therefore the increase in plant height and diameter during the onset of
drought is suggestive of enhanced plant tolerance to stress [64]. Weekly foliar application
of pot-grown maize seedlings with seaweed extracts for 90 days were reported to have a
significant effect on the plant diameter and resulted in an increase in plant length by an
average of 43% in comparison to control seedlings [65]. It was reported that during growth,
plants accumulate sugars, phytohormones, coumaroyl- and feruloyl-related metabolites in
the roots, whereas, when stressed, regulatory and defense-related metabolites, such as an-
tioxidants, abscisic acid, coumaroyl- and feruloyl-related metabolites, may be synthesized
or act in specific plant tissues [66,67]. Thus, the observed increase in coumaroylquinic acid
levels in the foliar application seaweed-based biostimulant treated plants under drought
stress (Figure S5B, Supplementary Materials), may be related to the increase in the plant’s
height and diameter. Whereas in the soil application seaweed-based biostimulant treated
plants under normal conditions, the growth in plant height and diameter can be related
to the seaweed-based biostimulant’s growth promoting substances, which were reported
to include phytohormones, sugars, and phenolics [54]. It can also be suggested that the
seaweed-based biostimulant plays a role stress tolerance during unfavorable environmental
conditions and growth promotion during favorable environmental conditions.

The caffeic acid levels were decreased, whereas the ferulic acid levels showed no
significant changes in the seaweed-based biostimulant treated plants under drought stress
conditions (Figures 8D and S5B). The heatmap for ferulic acid, however, depicts a decrease
in its levels, and for caffeic acid, the soil application method showed a positive effect on
its levels (Figure S5B). Both caffeic and ferulic acids, in the same way as other phenolic
metabolites, are primarily involved in lignin synthesis and cell wall formation [68,69].
Additionally, caffeic acid is also involved in the regulation of turgor pressure, water flux,
and growth, thus describing its importance in maintaining plant growth and tolerance to
stress, as reflected by the observed caffeic acid levels in the maize leave samples’ drought
stress conditions [68]. Ferulic acid levels were reported to be decreased in maize under
drought stress conditions and the observed results are indicative that the biostimulant does
not favor the increase in ferulic acid drought stress conditions [40]. Considering that some
of these phenylpropanoid pathway products serve as precursors for other pathways, the
stimulation of this pathway by the seaweed-based biostimulant may therefore impact other
downstream pathways, such as the flavonoid pathway [70].

The impact of the seaweed-based biostimulant treatment on the flavonoid biosynthesis
pathway is observed by the changes in the matched metabolites, that include luteolin,
quercetin, and the phenylpropanoid products, coumaroylquinic and caffeoylquinic acid
(Figure S6A). The biostimulant resulted in a decrease in luteolin and quercetin levels
under drought stress conditions (Figure S6A). The heatmap for quercetin, however, shows
an increase in its levels with the soil application method of the biostimulant treatment,
whereas for luteolin, both methods of application had negative effects on its accumulation
(Figure S6B). Luteolin and quercetin are reported to be the most powerful antioxidants
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among the flavonoids and are associated with plant developmental regulation and stress
response/tolerance [67,71]. Both luteolin and quercetin are reported to be exudates in
seaweed extracts [23]. Quercetin and their derivatives were proved to improve water and
nutrient uptake of plants through interaction with the soil chemistry and enhancement of
the lateral root formation. In addition, they regulate auxin transport and the abscisic acid
signaling pathways by antagonizing the abscisic acid-regulated stomatal closure through
the reduction of oxidative stress levels, thereby enabling the plant to respond to stress
in a more conservative manner [37,67]. Quercetin levels were suggested to be decreased
due to their glycosylation and use in the synthesis of other flavonoids in defense to salt
stress, hence this may possibly explain the observed quercetin and luteolin levels [72].
Furthermore, in the study of [73], a seaweed extract-based biostimulant was reported to
enhance the plant production of quercetin, as similarly observed in our study (Figure S6B,
Supplementary Materials).

Overall, the observed metabolic alterations suggest that the application of the seaweed-
based biostimulant cautiously facilitated the maize tolerance to drought stress without
vastly compromising its growth and development, by increasing the accumulation of
metabolites associated with antioxidant activities, plant physiological signaling, and the
biosynthesis of secondary metabolites (Figure 9). Tryptophan is one example that was
widely accumulated in the leaves, as it serves as a precursor for a range of metabolites
including lignin precursors, and, as suggested, it also serves as a protein protectant from
ROS [61]. Additionally, based on the metabolite levels and comparison of the methods
of application, it can be suggested that the method of application plays a role in the
accumulation of specific metabolites and thereby the reconfiguration of specific maize
metabolic pathways. The soil application method was shown to have the greatest impact
on the maize metabolic pathways. For instance, caffeic acid and related metabolites in
the phenylpropanoid pathway, as well as metabolites in the phenylalanine and flavonoid
pathways, were greatly increased with the soil application method in comparison to the
foliar application method. However, the foliar application method had a more positive
effect on the distributions of coumaroylquinic acid and coumaraldehyde metabolites. This
phenomenon may be attributed to the tissue-specific distribution of the metabolites and
therefore suggests that the application method may determine which molecular mecha-
nisms/events are prioritized, i.e., the increase in antioxidant activity over plant growth and
development, or vice versa. Thus, the soil application method can be considered best for
drought stress conditions, as it facilitates the increase in most metabolites involved in both
defense or tolerance responses, plant growth, and development. In future, the combination
of metabolomics’ and phenomics’ studies on the root tissues may provide insight into the
maize plant’s uptake of seaweed-based biostimulant exudates and their mechanisms of
action in drought-stressed plants.

The generalized biostimulant mechanisms of action were found to include the re-
configuration of primary and specialized metabolic pathways, such as the phenylalanine,
phenylpropanoid, flavonoid, and fatty acid pathways (Figure 9). The reconfiguration of
these pathways encompassed the increased synthesis and/or distribution of metabolites
previously reported to be involved in plant physiological signaling and homeostasis, oxida-
tive stress alleviation, cell wall formation and strengthening, water and nutrient uptake,
and lateral root formation (Figure 9). Nevertheless, additional studies, such as the analysis
of root and shoot metabolites of maize plants treated with seaweed-based biostimulants,
are required to yield further insight and prove the effect of the seaweed-based biostimulant
on the reported physiological events.
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Figure 9. A summary of the results obtained in this study highlighting the general seaweed-based
biostimulant’s mechanism of action. The metabolic and biochemical events observed in the seaweed-
based biostimulant treated maize plants via soil and foliar application, displayed alterations in the
primary and specialized metabolic pathways that resulted in increased synthesis and distribution of
metabolites related to enhanced drought resistance traits.

3. Materials and Methods

All chemicals for sample analyses (from the pre-analytical step to the data acquisition
stage) were of analytical or pure grade quality and obtained from various international
suppliers. Briefly, the organic solvents used, methanol and acetonitrile, were LCMS grade
quality (Romil, MicroSep, South Africa). Water was purified by a Milli-Q Gradient A10
system (Millipore, Billerica, MA, USA). Leucine enkephalin and formic acid were pur-
chased from Sigma Aldrich, Steinheim am Albuch, Germany. The study design and plants’
cultivation are detailed in the following section.

3.1. Maize Plant Preparation, Cultivation and Phenotypic Measurements

The maize (Zea mays) plants, PAN 3Q-240, were cultivated in 10 L-pots, containing
a sandy soil, placed in a randomized order on rotating tables in a greenhouse at Omnia
facilities in Sasolburg, Free-State, South Africa. Drought stress, the drop in water levels
to below 50% plant available water (PAW), was applied at the 3-leaf stage (3 weeks after
emergence). The water level was dropped and maintained at 50% plant available water
(PAW). Well-watered plants were maintained at 90% PAW. Details on how the 50% PAW
and 90% PAW were determined are highlighted in the Supplementary Materials (Section
S3.1). The study was experimentally designed to comprise control and treated groups, all
referred to as treatments (Table S7, Supplementary Materials). Control groups consisted
of (1) control (no seaweed extract, no drought stress); (2) control (no seaweed extract with
drought stress); treated groups were (3) soil applied seaweed extract with no drought stress;
(4) soil applied seaweed extract with drought stress; (5) foliar applied seaweed extract with
no drought stress; and (6) foliar applied seaweed extract with drought stress (Table S7,
Supplementary Materials). The biological changes reflecting the seaweed extract-treated
and naïve plant responses to drought stress conditions were monitored over 1-, 3-, 7- and
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14-days post treatment, i.e., after drought application. Each pot was considered a biological
replicate and contained five plants at the harvesting time. Five biological replicates (i.e.,
five pots) per group (per treatment, Table S7, Supplementary Materials) were harvested at
each time point. The seaweed extract used in this study is a Kelpak® formulation, made
from kelp Ecklonia maxima and registered as a biostimulant for use in agriculture. For soil
treatment, the seaweed extract formulation was added to the soil. The foliar treatment was
applied by using a pressure spray and evenly applying the formulation on maize leaves at
the 4-leaf stage (4 weeks after emergence).

The plant height was measured with a ruler from the soil surface (base) to the collar of
the most recently unfolded leaf. The plant stem diameter was measured with a caliper.

The plant leaves were cut off at the node, frozen with liquid nitrogen and stored at
−80 ◦C prior to metabolite extraction.

3.2. Metabolite Extraction and Sample Preparation

Metabolites were extracted from treated and non-treated plant leaves using 80% cold
aqueous methanol, in a ratio of 1:15 (w/v), at 4 ◦C. The mixture was homogenized using
an Ultra Turrax homogenizer, followed by sonication using a probe sonicator (Bandelin
Sonopuls, Germany), set at 55% power for 15 sec. The homogenates were centrifuged
at 5000× g for 10 min at 4 ◦C, and supernatants were kept. The 80% aqueous-methanol
extracts were concentrated by evaporating the supernatants to complete dryness and re-
suspending the dried extracts in 300 µL 50% aqueous-methanol. The samples were then
filtered through 0.22 µm nylon syringe filters (Anatech, Randburg, South Africa) into
HPLC glass vials fitted with 500 µL inserts. The filtered extracts were kept at −20 ◦C until
analyzed. The methanol used was LC-grade (Romil Pure Chemistry, Cambridge, UK) and
ultrapure water (Siemens purification system, Separations, Randburg, South Africa). The
quality control (QC) samples were pooled samples, prepared by pipetting and mixing
aliquots of equal volume from all of the samples.

3.3. Sample Analyses on an UHPLC-HDMS Analytical Platform

Sample analyses were carried out on a Waters Acquity ultra-high performance liquid
chromatography (UHPLC) system coupled to a SYNAPT G1 Q-TOF mass spectrometer
equipped with an electrospray ionization (ESI) source (Waters Corporation, Milford, CT,
USA). A Waters HSS T3 C18 column (150 mm × 2.1 mm ×1.8 µm) thermostatted at 60 ◦C
was used for the chromatographic separation of the samples, with an injection volume of
2 µL. The mobile phase was a binary solvent system consisting of 0.1% aqueous formic
acid (Sigma-Aldrich, Darmstadt, Germany) (solvent A), and 0.1% formic acid in acetonitrile
(Romil Pure Chemistry, Cambridge, UK) (solvent B), at a flow rate of 0.4 mL min−1. The
initial gradient elution conditions were 98% A and 2% B, maintained for 13 min followed by
30% A and 70% B at 14 min; at 15 min the conditions were changed to 5% A and 95% B for
2 min, followed by a return to the initial conditions. The column was calibrated for 2 min
prior to the next injection. The total chromatographic run time was 20 min. Individual
samples were analyzed in triplicate to account for any analytical variability.

For mass spectrometry (MS) analyses, both ESI positive and negative modes were used,
and data were collected covering the 100–1000 Da mass range. Other MS conditions were set
as follows: capillary and sampling cone voltages, 2.5 kV and 30 V, respectively; extraction
cone voltage, 4.0 V; source temperature, 120 ◦C; desolvation temperature, 450 ◦C; cone gas
flow, 50 L h−1 and desolvation gas flow, 550 L h−1. The scan time was 0.2 s. Nitrogen
was used as the nebulization gas with a flow rate of 700 L h−1. Fragmentation data were
obtained using a data independent acquisition (DDA) method, MSE, with collision energy
ramping from 10 to 30 eV. Leucine encephalin (50 pg mL−1), [M + H]+ = 55.2766 and
[M–H]− = 554.2615, was used as a lock spray mass, to ensure high mass accuracy between
1–3 mDa and reproducibility. The software used to control the hyphenated system and
perform all of the data manipulation was MassLynxTM 4.1 (SCN 704, Waters Corporation,
Milford, CT, USA).
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Solvent blanks and the quality control (QC, pooled) samples were also analyzed in par-
allel with the sample extracts. The blank samples (50% aqueous methanol) were randomly
run to monitor for background noise. The QC samples were used to condition the LC–MS
analytical system and to assess the reliability and reproducibility of the analysis [74–77].
The samples were analyzed in a randomized manner, with the QC sample analyzed every
10 injections to monitor and correct changes in the instrument response.

3.4. Data Analysis: Data Set Matrix Creation and Chemometric Analyses

Visualization and data processing were performed using MassLynx XSTM 4.1 soft-
ware (Waters Corporation, Manchester, UK). The MarkerLynxTM application manager of
the MassLynx software was used for data pre-processing (matrix creation), producing a
matrix of retention time (Rt)-m/z variable pairs, with m/z peak intensity for each sample.
MarkerLynx software parameters were set to process the 1–15 min Rt range of the chro-
matograms and the m/z domain of mass range 100–1000 Da. The Rts were allowed to
differ by ±0.2 min and the m/z values by ±0.05 Da. The mass tolerance used was 0.01 Da,
and the intensity threshold was 100 counts. Only data matrices that had a noise level
of less than 50% (MarkerLynx cut off) were retained for downstream chemometrics and
statistical analyses.

3.5. Molecular Networking in GNPS

The format of the raw Waters MS/MS data was converted to the analysis base file (ABF)
format using the Reifys Abf converter software (https://www.reifycs.com/AbfConverter/,
accessed on 22 May 2022), and then uploaded onto the Mass Spectrometry-Data Indepen-
dent AnaLysis (MS-DIAL) software for data-processing. The MS-DIAL parameters used
to process the data were a mass accuracy (MS1 and MS2 tolerance) of 0.05 Da, minimum
peak height of 10 amplitude and mass slice width of 0.1 Da for peak detection, a 0.5 sigma
window value, and a 0 MS/MS abundance cut-off for data deconvolution; a retention time
tolerance of 0.05 min was used under alignment parameter settings, with one of the QC
samples used as a reference file for alignment. Following data-processing with MS-DIAL,
the resultant GNPS export files, i.e., GNPS MGF and GNPS Table (feature quantification
table) were then uploaded onto the GNPS server (https://gnps.ucsd.edu/, accessed on
22 May 2022) using the WinSCP server software.

The FBMN workflow was applied for data acquired in both the negative and positive
electrospray ionization modes, by uploading the respective feature quantification table,
MGF file, and metadata file describing the properties of the sample file (i.e., treatment,
day, and plant condition). The parameters used to generate the FBMN were a precursor
ion mass tolerance of 0.05 Da, a fragment ion mass tolerance of 0.05 Da, a minimum pair
cosine score of at least 0.7 with a minimum of six matched peaks, and the search analogs
was turned off. The resultant molecular networks were further analyzed with MS2LDA,
NAP, and MolNetEnhancer (all accessible through the GNPS ecosystem). The parameters
for MS2LDA were set as follow: bin width of 0.01, number of iterations at 1000, 300 free
motifs, and a minimum MS2 intensity of 100. The MotifSets selected from the MotifDB
included GNPS, MassBank, Euphorbia, Streptomyces and Salinisporus, Photorhabdus and
Xenorhabdus (for positive ionization), and Rhamnaceae Plant (for negative ionization).
The discovered Mass2Motifs or substructures were analyzed within the MS2LDA.org web
application and mapped on the nodes of the mass spectral molecular networks, with the
shared Mass2Motifs among the various nodes mapped on the edges connecting the nodes.
NAP utilized the MetFrag in silico fragmentation tool to search the structural databases
of GNPS, Dictionary of Natural Products (DNP), Super Natural II (SUPNAT), Chemical
Entities of Biological Interest (ChEBI), and MarinLit [78]. The accuracy for exact mass
candidate search was set to 10 ppm. Fusion and Consensus scores were calculated based
on the 10-first candidates in the network propagation phase.

The MolNetEnhancer workflow enhanced the molecular networks by combining the
outputs of FBMN, MS2LDA, and NAP to improve the chemical structural annotations.

https://www.reifycs.com/AbfConverter/
https://gnps.ucsd.edu/
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The resultant FBMN, MS2LDA, and MolNetEnhancer molecular networks were visualized
using the Cytoscape version 3.7.2 tool/software [79,80]. The fragmentation spectra of
all of the putatively annotated metabolites matched to the GNPS’ spectral libraries were
manually validated, using the metabolite annotation workflow described below.

3.6. Metabolite Identification and Metabolic Pathway Analyses
3.6.1. Metabolite Identification

For metabolite identification, the data matrices from MarkerLynx-based data pro-
cessing were exported to the Taverna workbench for PUTMEDID_LCMS Metabolite ID
Workflows [81,82]. The Taverna workflows allow for integrated, automated, and high-
throughput annotation and putative metabolite identification from LC–ESI-MS metabolomic
data. The workflows consist of correlation analysis, metabolic feature annotation, and
metabolite annotation. A data matrix from MarkerLynx-based data processing was firstly
formatted to match the Taverna workbench requirements. Three main workflows formed
the Taverna Metabolite ID procedure: (I) Pearson-based correlation analysis (List_CorrData);
(II) metabolic feature annotation (annotate_Massmatch)—allowing for grouping together
ion peaks with similar features, such as Rt, and annotating features with the type of m/z
ion (molecular ion, isotope, adduct, others) believed to originate from the same compound.
The elemental composition molecular formula (MF) of each m/z ion is then automatically
calculated; and (III) metabolite annotation (matchMF-MF) of the calculated MF (from the
output file from workflow (2) is automatically compared and matched to the MF from a
pre-defined reference file of metabolites.

Three main steps were carried out for annotation confidence: (i) the calculated MF of a
selected metabolite candidate was manually searched against databases and bioinformatics
tools (mainly, DNP, Chemspider, SorgCyc, PlantCyc, and KEGG); (ii) structural confirma-
tion through careful inspection of fragmentation patterns by examining the MS1 and MSE
spectra of the selected metabolite candidate; (iii) comparative assessment with/against
annotation details of metabolites in sorghum, reported in literature, particularly in [83,84].

In this study, during substructure mining, we focused on the previously annotated
Mass2Motifs from MotifDB MotifSets derived from GNPS, MassBank, Euphorbia, Rham-
naceae Plant (only for negative mode ionization), Streptomyces and Salinisporus, Pho-
torhabdus and Xenorhabdus MotifSets that were all matched to MS/MS spectra of metabo-
lite features in the maize molecular networks. The annotated GNPS spectral library matches
were subsequently used to aid in structural identification of the mass peaks and molecules
matching the in MotifDB annotated Mass2Motifs.

3.6.2. Pathway Analyses

Pathway analysis of annotated metabolites were performed with the MetPA (Metabolomics
Pathway Analysis) component of the MetaboAnalyst bioinformatics tool suite (version 3.0;
http://www.metaboanalyst.ca/, accessed on 22 May 2022) [20,21], enabling the identifica-
tion of the affected metabolic pathways, analysis thereof, and visualization. MetPA uses
high-quality KEGG metabolic pathways as the backend knowledge base.

4. Conclusions

Metabolomics and molecular networking computational strategies provided key in-
sights into the mechanisms of action of seaweed extract-based biostimulants through
the wide-screen exploration of the maize metabolome under drought stress conditions.
The molecular networking strategies enabled the characterization of the reconfigured
maize chemical space, and pathway analysis provided insight on the impacted pathways
due to the seaweed-based biostimulant treatment. The phenylalanine, phenylpropanoid,
flavonoid, and fatty acid biosynthesis pathways were some of the primary and specialized
metabolic pathways reconfigured by the seaweed-based biostimulant. These metabolic
reconfigurations increased the maize plant height and diameter under normal and drought
stress conditions, with the foliar application method having the most positive effect on

http://www.metaboanalyst.ca/
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the plants subjected to drought stress, whereas under normal conditions, the soil appli-
cation method increased the plant height and diameter. Furthermore, the changes in
metabolite profiles attributed to the seaweed-based biostimulant treatment and the method
of application were associated with previously reported metabolites involved in stress-
related responses. This knowledge provided about the underlying mechanisms of seaweed
extracts-based biostimulants on maize plants under drought stress will potentially increase
widespread application and science-based development of biostimulants.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo12060487/s1, the GNPS job links; Figure S1: Principal
component analyses (PCA) score plots; Figure S2: Feature-based molecular network (FBMN) of
positive electrospray ionization (ESI+) MS/MS spectra; Figure S3: MolNetEnhancer enriched feature-
based molecular networks; Figure S4: A pie chart of selected differential metabolite features; Figure S5:
Heatmap analyses of qualitative altered metabolites; Figure S6: Summary of Metabolomics Pathway
Analysis (MetPA) outputs; Table S1: Annotation of unique metabolites based on the spectral matches
of experimental data with the GNPS library databases; Table S2: Metabolites manually annotated;
Table S3: Discriminating features (m/z ions) selected using OPLS-DA modelling; Table S4: Signif-
icantly altered metabolic pathways; Table S5: Height analyses of maize plants with and without
seaweed-based biostimulant treatment; Table S6: Diameter analyses of maize plants with and without
seaweed-based biostimulant treatment; Table S7: Seaweed extract biostimulant application rates
(L/ha) applied to the plant sample groups.
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