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Abstract: This paper reports a concise and scalable method for the synthesis of the phytoestrogen
7,2′-dihydroxy-4′,5′-dimethoxyisoflavanone 1 via an optimized synthetic route. Compound 1 was
readily obtained in 11 steps and 11% overall yield on a gram scale from commercially available
3,4-dimethoxyphenol. The key features of the synthesis include the construction of the deoxybenzoin
unit through a sequence of Claisen rearrangement, oxidative cleavage, and aryllithium addition and
the efficient synthesis of the isoflavanone architecture from highly functionalized 2-hydroxyketone.

Keywords: phytoestrogen; isoflavanone; Dalbergia oliveri; hair growth; deoxybenzoin; total synthesis

1. Introduction

Phytoestrogens are naturally occurring dietary compounds. They are found in a
wide variety of foods, including fruits, vegetables, and grains [1–4]. These plant-derived
compounds and their metabolites are structurally and functionally similar to those of mam-
malian estrogens, such as estradiol, and thereby exhibit weak estrogenic and anti-estrogenic
effects by binding to estrogen receptors (ERs) [3,5,6]. There is increasing evidence that
edible phytoestrogens have numerous health benefits, including anticancer, antioxidant,
anti-inflammatory, hepatoprotective, antibacterial, and antiviral activities, that are closely
related to the prevention and treatment of various types of cancers, cardiovascular dis-
eases, osteoporosis, neurological diseases, diabetes/obesity, immune system dysfunction,
menopause symptoms, and skin aging conditions, such as alopecia [1–3,5,7,8]. Hence, phy-
toestrogens are promising non-steroidal estrogenic compounds and potential alternatives
to estrogen replacement therapy (ERT) for human healthcare.

Phytoestrogens are classified into several subgroups, such as flavonoids, isoflavonoids,
and lignans, based on their structural motifs and biosynthetic pathways. Furthermore,
isoflavonoids vary among subclasses, such as isoflavones, isoflavanones, isoflavans, ptero-
carpanes, and coumestans [1,2,9,10]. Owing to their structural rarity, as well as their unique
and diverse range of biological functions, the chemistry related to the isolation, structural
elucidation, and bioactivities of isoflavanones, along with their therapeutic applications,
has been extensively investigated [10–12].

In 2003, 7,2′-dihydroxy-4′,5′-dimethoxyisoflavanone (1) was first isolated from the
heartwood of Dalbergia louvelii R. Viguier (Fabaceae), which was used as a folk medicine to
treat bilharzia and malaria in Madagascar [13]. More recently, 1 and its structurally related
phytochemicals possessing diverse substitution patterns and oxidation states were isolated
from the bark of Dalbergia oliveri Prain, a traditional Thai medicine used for the treatment of
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chronic ulcers in Southeast Asia (Figure 1) [14]. Isoflavanone 1 exhibits potent hair growth
effects on immortalized dermal papilla cells (iDPCs). In a cell proliferation assay, 1 induced
significant cell proliferative activity (54.1% at 10 µM, EC50 = 8.83 µM), which was more
potent than that of Minoxidil (20.6% at 10 µM), a widely used medication for the prevention
and treatment of hair loss [14]. Moreover, isoflavanone 1 induced the anagen phase of the
hair cycle in a mouse model via subcutaneous (SC) injection [15].
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Figure 1. Chemical structure of 7,2′-dihydroxy-4′,5′-dimethoxyisoflavanone (1).

In 2018, Kim et al. reported a sophisticated approach for the synthesis of 1. However,
this synthetic route does not yield a large amount of isoflavanone 1, although the synthetic
steps are relatively short [15]. Practically, the preparation of naturally occurring compounds
in large quantities is a highly formidable task because the large-scale collection and isolation
of natural products from natural sources are restricted. Therefore, we have been exploring
an efficient and scalable synthetic strategy for the large-scale synthesis of 1 to identify the
mechanism of its hair growth effects through in vivo animal model studies, as well as its
wide range of health benefits. Herein, we report the synthesis of the natural isoflavanone
7,2′-dihydroxy-4′,5′-dimethoxyisoflavanone (1).

2. Results and Discussion

Our approach for the synthesis of phytoestrogen 7,2′-dihydroxy-4′,5′-
dimethoxyisoflavanone (1), as shown in Figure 2, includes the efficient construction of an
isoflavanone framework and a gram-scale synthetic pathway. Isoflavanone 1 was obtained
from 2-hydroxyketone 2 via the annulation of the deoxybenzoin skeleton and the sequential
deprotection of the two masked phenols in the final stage. The deoxybenzoin unit of 2
can be constructed through a sequence of aryllithium additions to arylacetaldehyde 3
and the subsequent oxidation of the resulting alcohol. It was expected that 3 could be
easily prepared from commercially available 3,4-dimethoxyphenol 4 via Claisen rearrange-
ment and the subsequent oxidative cleavage of the terminal alkene to introduce a crucial
acetaldehyde side chain.
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The synthesis of 1 begins with the preparation of the key intermediate, deoxybenzoin
2, as shown in Scheme 1. The allylation of commercially available 3,4-dimethoxyphenol 4
and subsequent Claisen rearrangement in N,N-diethylaniline [16] solely produced o-allyl-
substituted phenol 6, which was readily converted to benzyl ether 7. The dihydroxylation
of the terminal alkene of 7 and subsequent oxidative cleavage by NaIO4 readily afforded
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arylacetaldehyde 3. Next, the lithiation of aryl bromide 8, which was prepared from
commercially available 4-bromoresorcinol, and a spontaneous nucleophilic addition to
the acetaldehyde of 3 afforded benzyl alcohol 9, which was converted to methoxymethyl
(MOM)-protected deoxybenzoin 10 by pyridinium dichromate (PDC) oxidation. The
selective MOM deprotection of the phenol adjacent to the ketone in deoxybenzoin 10
finally afforded 2-hydroxyketone 2, which is a key intermediate for the construction of the
isoflavanone framework of 1.
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Scheme 1. Preparation of key intermediate deoxybenzoin 2.

Using precursor 2, the isoflavanone skeleton of 1 was constructed, as shown in
Scheme 2. Previously, Gouda et al. reported an efficient and scalable approach to con-
struct the isoflavanone framework [17]. Therefore, Gouda’s protocol was employed to
obtain the fully functionalized isoflavanone 11 with paraformaldehyde and Et2NH in
refluxing MeOH. As expected, isoflavanone 11 was obtained with a yield of 88% on a
multi-gram scale. Finally, sequential deprotection reactions were performed for the two
phenols in 11 with Bn and MOM protecting groups. However, initial attempts to remove
the protecting groups of phenols were unsuccessful. In the presence of Pd/C or Pd(OH)2
(Pearlman’s catalyst), the hydrogenolysis of the benzyl group in 11 unexpectedly yielded
phenol 12 with a very low yield (<5%). Furthermore, under acidic conditions for the MOM
deprotection of 12, phenol 12 was highly unstable and degradable, despite its structural
simplicity. We assumed that the intrinsic structural instability of 12 was likely due to the
presence of a free phenol moiety adjacent to the ketone in the 4-chromanone skeleton,
leading to unexpected and inseparable messy mixtures, especially under acidic conditions.
Therefore, the deprotection sequence for two masked phenols was changed, wherein the
MOM ether was deprotected first, and the benzyl ether group was then cleaved under
neutral conditions in the final stage via a hydrogenolysis reaction. Significantly, the careful
deprotection of the MOM ether under acidic conditions afforded the desired phenol 13
without any degradation. Finally, the subsequent hydrogenolysis of the benzyl-protecting
group successfully furnished the 7,2′-dihydroxy-4′,5′-dimethoxyisoflavanone (1) on a gram
scale. The spectral data for synthetic 1 were identical to the reported data for the natural
product in all aspects [13].
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3. Conclusions

A concise and scalable synthesis of phytoestrogen 7,2′-dihydroxy-4′,5′-
dimethoxyisoflavanone (1) was performed successfully. The key features of the synthesis
include a deoxybenzoin intermediate obtained via a sequence of Claisen rearrangement and
oxidative cleavage for the installation of the acetaldehyde side chain and the subsequent
nucleophilic addition of functionalized aryllithium. Moreover, the scalable synthesis of the
isoflavanone framework from the functionalized 2-hydroxyketone enabled the completion
of isoflavanone 1 synthesis. Further in vivo studies on the hair growth effects and the
elucidation of the therapeutic potential of phytoestrogen 1 as a promising treatment for
hair loss diseases, such as alopecia, are currently in progress.

4. Materials and Methods
4.1. General Information

Unless noted otherwise, all starting materials and reagents were obtained from com-
mercial suppliers and were used without further purification. All solvents used for the
routine isolation of products and chromatography were reagent grade and glass-distilled.
Reaction flasks were dried at 100 ◦C. Air- and moisture-sensitive reactions were performed
under an argon atmosphere. Flash column chromatography was performed using silica gel
60 (230–400 mesh, Merck, Darmstadt, Germany) with the indicated solvents. Thin-layer
chromatography was performed using 0.25 mm silica gel plates (Merck). High-resolution
mass data were recorded by JMS-700 (JEOL, Tokyo, Japan), and methanol solvent was
used to measure the MS-ESI spectra. Infrared (IR) spectra were measured on a 1600
FTIR spectrometer (Perkin-Elmer, Waltham, MA, USA). 1H and 13C NMR spectra were
recorded on JEOL-500 (JEOL, Tokyo, Japan) as solutions in deuteriochloroform (CDCl3)
and hexadeuterodimethyl sulfoxide (DMSO-d6). The melting point (m.p.) was measured
using Electrothermal IA9100. Chemical shifts are expressed in parts per million (ppm, δ)
downfield from tetramethylsilane and are referenced to the deuterated solvents (CHCl3
or HCD2SOCD3 for 1H NMR and CDCl3 or DMSO-d6 for 13C NMR). 1H NMR data are
reported in the order of chemical shift, multiplicity (s, singlet; d, doublet; t, triplet; dd,
doublet of doublets; dt, doublet of triplet; ddd, doublet of doublet of doublets; ddt, doublet
of doublet of triplets; bs, broad singlet; m, multiplet and/or multiple resonance), number
of protons, and coupling constant in hertz (Hz).

4.2. 4-(Allyloxy)-1,2-dimethoxybenzene (5)

To a solution of 3,4-dimethoxyphenol (10.0 g, 64.9 mmol) in acetone (120 mL) were
added allyl bromide (8.43 mL, 97.5 mmol) and K2CO3 (22.5 g, 162.5 mmol) at ambient
temperature. The reaction mixture was heated to reflux. After stirring for 12 h, the reaction
mixture was cooled to ambient temperature. The resulting mixture was quenched with
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H2O (200 mL) and diluted with EtOAc (100 mL). The organic layer was separated, and
the aqueous layer was extracted with EtOAc (2 × 50 mL). The combined organic layer
was washed with brine, dried over MgSO4, and concentrated in vacuo. The residue was
purified by flash column chromatography on silica gel (EtOAc/n-hexane = 1:10) to afford
allyl ether 5 (12.2 g, 97%) as a colorless oil: 1H NMR (500 MHz, CDCl3) δ 6.76 (d, J = 9.2 Hz,
1H), 6.54 (d, J = 2.9 Hz, 1H), 6.39 (dd, J = 8.6, 2.9 Hz, 1H), 6.04 (ddt, J = 17.2, 10.3, 5.7 Hz,
1H), 5.40 (ddd, J = 17.2, 2.9, 1.7 Hz, 1H), 5.27 (ddd, J = 10.3, 2.9, 1.2 Hz, 1H), 4.48 (dt, J = 5.7,
1.4 Hz, 2H), 3.84 (s, 3H), 3.82 (s, 3H); 13C NMR (CDCl3, 125 MHz) δ 153.3, 149.9, 143.6, 133.6,
117.7, 111.7, 104.0, 101.2, 69.5, 56.5, 55.9; FT-IR (thin film, neat) νmax 1597, 1510, 1425, 1228,
1197, 752 cm−1; HRMS (ESI+) calcd for C11H15O3 (M + H+) 195.1016, found 195.1013.

4.3. 2-Allyl-4,5-dimethoxyphenol (6)

Allyl ether 5 (12.2 g, 62.9 mmol) was dissolved in N,N-diethylaniline (250 mL) at
ambient temperature. The reaction mixture was heated to 250 ◦C, stirred for 2 h, and cooled
to ambient temperature. The solvent was removed by vacuum distillation. The crude
residue was purified by flash column chromatography on silica gel (EtOAc/n-hexane = 1:4)
to afford phenol 6 (10.8 g, 88%) as a colorless oil: 1H NMR (500 MHz, CDCl3) δ 6.60 (s, 1H),
6.44 (s, 1H), 5.97 (ddt, J = 17.8, 9.8, 3.5 Hz, 1H), 5.15-5.10 (m, 3H), 3.80 (s, 3H), 3.77 (s, 3H),
3.32 (d, J = 6.3 Hz, 2H); 13C NMR (CDCl3, 125 MHz) δ 148.5, 148.2, 143.0, 136.7, 116.3, 116.0,
114.0, 101.3, 56.7, 56.0, 34.8; FT-IR (thin film, neat) νmax 3450, 1637, 1616, 1519, 1450, 1411,
1199, 1112, 997 cm−1; HRMS (ESI+) calcd for C11H15O3 (M + H+) 195.1016, found 195.1012.

4.4. 1-Allyl-2-(benzyloxy)-4,5-dimethoxybenzene (7)

To a solution of phenol 6 (10.8 g, 55.6 mmol) in acetone (110 mL) were added benzyl
bromide (9.9 mL, 83.4 mmol) and K2CO3 (15.4 g, 111.2 mmol). The reaction mixture
was heated to reflux. After stirring for 12 h, the reaction mixture was cooled to ambient
temperature. The resulting mixture was quenched with H2O (30 mL) and diluted with
EtOAc (50 mL). The organic layer was separated, and the aqueous layer was extracted with
EtOAc (2× 50 mL). The combined organic layer was washed with brine, dried over MgSO4,
and concentrated in vacuo. The residue was purified by flash column chromatography
on silica gel (EtOAc/n-hexane = 1:15) to afford benzyl ether 7 (13.9 g, 88%) as a colorless
oil: 1H NMR (500 MHz, CDCl3) δ 7.43 (d, J = 7.5 Hz, 2H), 7.38 (t, J = 7.4 Hz, 2H), 7.31 (t,
J = 7.2 Hz, 1H), 6.71 (s, 1H), 6.57 (s, 1H), 5.97 (ddt, J = 16.6, 10.3, 6.3 Hz, 1H), 5.07-5.03 (m,
4H), 3.83 (s, 3H), 3.83 (s, 3H), 3.38 (d, J = 6.3 Hz, 2H); 13C NMR (125 MHz, CDCl3) δ 150.4,
147.9, 143.5, 137.6, 137.4, 128.6, 127.9, 127.4, 120.8, 115.4, 113.8, 99.9, 71.7, 56.6, 56.3, 34.0;
FT-IR (thin film, neat) νmax 1608, 1514, 1448, 1222, 1193, 1118, 1026 cm−1; HRMS (ESI+)
calcd for C18H21O3 (M + H+) 285.1485, found 285.1481.

4.5. 2-(2-(Benzyloxy)-4,5-dimethoxyphenyl)acetaldehyde (3)

To a solution of benzyl ether 7 (13.9 g, 49.0 mmol) in THF/t-BuOH/H2O (5:1:1, 70 mL)
were added 4-methylmorpholine N-oxide (NMO) (6.89 g, 58.8 mmol) and OsO4 (0.1 M
solution in toluene, 5 mL, 0.5 mmol) at ambient temperature. After stirring for 5 h, the
resulting mixture was quenched with sat. Na2S2O3 solution (50 mL) and diluted with H2O
(50 mL) and EtOAc (50 mL). The organic layer was separated, and the aqueous layer was
extracted with EtOAc (3 × 50 mL). The combined organic layer was washed with brine,
dried over MgSO4, and concentrated in vacuo. The residue was purified by flash column
chromatography on silica gel (EtOAc only) to afford diol S1 (13.3 g, 85%) as a white solid:
m.p. 96–98 ◦C; 1H NMR (500 MHz, CDCl3) δ 7.41-7.32 (m, 5H), 6.71 (s, 1H), 6.57 (s, 1H),
5.03 (s, 2H), 3.88-3.85 (m, 1H), 3.82 (s, 6H), 3.55 (dd, J = 11.5, 3.4 Hz, 1H), 3.45 (dd, J = 11.5,
5.8 Hz, 1H), 2.81 (dd, J = 13.7, 5.7 Hz, 1H), 2.76 (dd, J = 13.7, 7.5 Hz, 1H), 2.26 (bs, 2H); 13C
NMR (125 MHz, CDCl3) δ 150.7, 148.3, 143.6, 136.8, 128.8, 128.3, 127.6, 118.0, 115.0, 99.5,
72.6, 71.9, 65.8, 56.6, 56.3, 34.1; FT-IR (thin film, neat) νmax 3425, 2935, 1610, 1514, 1382, 1219,
1193, 1078 cm−1; HRMS (ESI+) calcd for C18H22O5Na (M + Na+) 341.1359, found 341.1357.
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To a solution of diol S1 (13.3 g, 41.7 mmol) in MeOH/H2O (10:1, 55 mL) was added
NaIO4 (10.7 g, 50.0 mmol) at ambient temperature. After stirring for 1 h, the reaction
mixture was filtered through a pad of Celite and concentrated in vacuo. The crude residue
was diluted with H2O (100 mL) and EtOAc (100 mL). The organic layer was separated,
and the aqueous layer was extracted with EtOAc (3 × 50 mL). The combined organic layer
was washed with brine, dried over MgSO4, and concentrated in vacuo. The residue was
purified by flash column chromatography on silica gel (EtOAc/n-hexane = 1:1) to afford
aldehyde 3 (11.9 g, 99%) as a colorless oil: 1H NMR (500 MHz, DMSO-d6) δ 9.54 (s, 1H),
7.38-7.27 (m, 5H), 6.82 (s, 1H), 6.79 (s, 1H), 5.04 (s, 2H), 3.73 (s, 3H), 3.65 (s, 3H), 3.55 (s, 2H);
13C NMR (125 MHz, DMSO-d6) δ 201.2, 151.1, 149.2, 143.4, 137.8, 128.9, 128.3, 128.0, 116.3,
113.4, 100.3, 70.8, 56.7, 56.4, 44.9; FT-IR (thin film, neat) νmax 2827, 2723, 1606, 1512, 1398,
1220, 923 cm−1; HRMS (ESI+) calcd for C17H19O4 (M + H+) 287.1278, found 287.1277.

4.6. 1-Bromo-2,4-bis(methoxymethyl)benzene (8)

To a solution of 4-bromoresorcinol (7.4 g, 25.8 mmol) in CH2Cl2 (100 mL) were added
DIPEA (14.4 mL, 50.0 mmol) and MOMCl (10.1 mL, 50.0 mmol) at 0 ◦C. After stirring for
3 h at ambient temperature, the resulting mixture was quenched with H2O (100 mL). The
organic layer was separated, and the aqueous layer was extracted with CH2Cl2 (3 × 50 mL).
The combined organic layer was washed with brine, dried over MgSO4, and concentrated
in vacuo. The residue was purified by flash column chromatography on silica gel (EtOAc/n-
hexane = 1:1) to afford aryl bromide 8 (11.9 g, 86%) as a colorless oil: 1H NMR (500 MHz,
CDCl3) δ 7.40 (d, J = 8.6 Hz, 1H), 6.85 (d, J = 2.3 Hz, 1H), 6.61 (dd, J = 8.6, 2.9 Hz, 1H), 5.22 (s,
2H), 5.13 (s, 2H), 3.51 (s, 3H), 3.46 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 157.7, 154.5, 133.3,
110.7, 105.5, 104.9, 95.2, 94.7, 56.5, 56.2; FT-IR (thin film, neat) νmax 1587, 1481, 1274, 1082,
1037, 921 cm−1; HRMS (ESI+) calcd for C11H14O4Br (M + H+) 277.0070, found 277.0070.

4.7. 2-(2-(Benzyloxy)-4,5-dimethoxyphenyl)-1-(2,4-bis(methoxymethyl)phenyl)ethan-1-ol (9)

To a solution of 1-bromo-2,4-bis(methoxymethyl)benzene 8 (8.2 g, 29.5 mmol) in dry
THF (100 mL) was added n-BuLi (2.5 M in n-hexane, 13.2 mL, 32.4 mmol) at −78 ◦C. After
stirring for 30 min at the same temperature, aldehyde 3 (7.4 g, 25.8 mmol) in THF (30 mL)
was added to this mixture and stirred for an additional 2 h. The resulting mixture was
quenched with sat. NH4Cl solution (100 mL) and diluted with EtOAc (50 mL). The organic
layer was separated, and the aqueous layer was extracted with EtOAc (3 × 50 mL). The
combined organic layer was washed with brine, dried over MgSO4, and concentrated in
vacuo. The residue was purified by flash column chromatography on silica gel (EtOAc/n-
hexane = 1:3) to afford alcohol 9 (8.75 g, 70%) as a colorless oil: 1H NMR (500 MHz, CDCl3)
δ 7.43 (d, J = 6.9 Hz, 2H), 7.38 (t, J = 7.5 Hz, 2H), 7.32 (m, 1H), 7.17 (d, J = 8.0 Hz, 1H), 6.74
(d, J = 2.3 Hz, 1H), 6.63 (dd, J = 8.6, 2.3 Hz, 1H), 6.58 (s, 1H), 6.55 (s, 1H), 5.14-5.11 (m, 3H),
5.02 (s, 2H), 5.00 (d, J = 2.3 Hz, 2H), 3.81 (s, 3H), 3.75 (s, 3H), 3.45 (s, 3H), 3.38 (s, 3H), 3.10
(dd, J = 10.7, 4.6 Hz, 1H), 3.00 (dd, J = 13.8, 8.0 Hz, 1H); 13C NMR (125 MHz, CDCl3) δ
157.4, 154.9, 151.0, 148.1, 143.2, 137.3, 128.7, 128.1, 127.7, 126.7, 119.1, 115.2, 108.8, 103.2,
99.4, 94.6, 94.4, 71.6, 70.3, 56.5, 56.2, 56.1, 56.1, 38.5; FT-IR (thin film, neat) νmax 3523, 2953,
1610, 1519, 1219, 1153, 1008 cm−1; HRMS (ESI+) calcd for C27H32O8Na (M + Na+) 507.1989,
found 507.1990.

4.8. 2-(2-(Benzyloxy)-4,5-dimethoxyphenyl)-1-(2,4-bis(methoxymethyl)phenyl)ethan-1-one (10)

To a solution of alcohol 9 (7.4 g, 14.9 mmol) in dry CH2Cl2 (150 mL) was added PDC
(13.2 g, 32.4 mmol) at ambient temperature. After stirring for 12 h, the reaction mixture was
filtered through a pad of Celite and concentrated in vacuo. The residue was purified by
flash column chromatography on silica gel (1% CH2Cl2 in EtOAc/n-hexane = 1:4) to afford
ketone 10 (3.68 g, 51%) as a colorless oil: 1H NMR (500 MHz, CDCl3) δ 7.69 (d, J = 9.2 Hz,
1H), 7.28-7.25 (m, 5H), 6.79 (d, J = 2.3 Hz, 1H), 6.73 (s, 1H), 6.66 (dd, J = 8.6, 2.3 Hz, 1H), 6.56
(s, 1H), 5.18 (s, 2H), 5.17 (s, 2H), 4.97 (s, 2H), 4.24 (s, 2H), 3.82 (s, 3H), 3.81 (s, 3H) 3.47 (s,
3H), 3.41 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 198.6, 161.5, 158.0, 150.8, 148.4, 143.2, 137.4,
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132.4, 128.5, 127.8, 127.4, 123.0, 116.7, 114.9, 108.9, 102.9, 99.5, 94.6, 94.3, 71.5, 56.5, 56.5, 56.4,
56.2, 44.5; FT-IR (thin film, neat) νmax 1673, 1600, 1516, 1247, 1195, 1153, 1002 cm−1; HRMS
(FAB+) calcd for C27H30O8 (M + H+) 482.1941, found 482.1939.

4.9. 2-(2-(Benzyloxy)-4,5-dimethoxyphenyl)-1-(2-hydroxy-4-(methoxymethyl)phenyl)ethan-1-one (2)

To a solution of ketone 10 (3.68 g, 7.62 mmol) in MeOH (100 mL) was added conc.
HCl (0.1 mL) at ambient temperature. After stirring for 3 h at the same temperature,
solvents were partially evaporated to 20 mL under reduced pressure. After the residue
was triturated with EtOAc/n-hexane (1:10) for 30 min, the resulting precipitate was filtered
and dried to afford 2-hydroxyketone 2 (2.67 g, 80%) as a white solid: m.p. 143-144 ◦C; 1H
NMR (500 MHz, DMSO-d6) δ 12.39 (s, 1H), 7.95 (d, J = 9.8 Hz, 1H), 7.25-7.21 (m, 5H), 6.83 (s,
1H), 6.75 (s, 1H), 6.50-6.48 (m, 2H), 5.23 (s, 2H), 5.00 (s, 2H), 4.19 (s, 2H), 3.72 (s, 3H), 3.64 (s,
3H) 3.35 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 203.1, 165.2, 163.5, 150.3, 148.9, 143.5, 137.0,
132.4, 128.7, 128.1, 127.6, 115.0, 114.4, 114.2, 108.1, 103.8, 99.2, 94.0, 71.7, 56.6, 56.5, 56.2, 38.8;
FT-IR (thin film, neat) νmax 2904, 2835, 1627, 1521, 1392, 1220, 1083, 989, 923 cm−1; HRMS
(FAB+) calcd for C25H26O7 (M+) 438.1679, found 438.1683.

4.10. 3-(2-(Benzyloxy)-4,5-dimethoxyphenyl)-7-(methoxymethyl)chroman-4-one (11)

To a solution of 2-hydroxyketone 2 (2.73 g, 6.23 mmol) in MeOH (100 mL) were
added paraformaldehyde (561 mg, 18.8 mmol) and Et2NH (1.93 mL, 18.8 mmol) at ambient
temperature. The reaction mixture was heated to reflux. After stirring for 2 h at the same
temperature, the resulting mixture was cooled to ambient temperature and concentrated in
vacuo. The crude residue was diluted with H2O (50 mL) and EtOAc (50 mL). The organic
layer was separated, and the aqueous layer was extracted with EtOAc (3 × 20 mL). The
combined organic layer was washed with brine, dried over MgSO4, and concentrated in
vacuo. The residue was purified by flash column chromatography on silica gel (EtOAc/n-
hexane = 1:3) to afford isoflavanone 11 (2.46 g, 88%) as a colorless oil: 1H NMR (500 MHz,
CDCl3) δ 7.89 (d, J = 8.6 Hz, 1H), 7.33-7.24 (m, 5H), 6.68–6.66 (m, 2H), 6.59 (s, 1H), 6.58 (d,
J = 2.3 Hz, 1H), 5.19 (s, 2H), 5.00 (s, 2H), 4.58 (dd, J = 12.0, 10.9 Hz, 1H), 4.44 (dd, J = 10.9,
5.8 Hz, 1H), 4.26 (dd, J = 12.0, 5.2 Hz, 1H), 3.82 (s, 3H), 3.79 (s, 3H), 3.47 (s, 3H); 13C NMR
(125 MHz, CDCl3) δ 191.6, 163.6, 163.2, 151.0, 149.3, 143.5, 137.0, 129.5, 128.6, 128.0, 127.5,
116.4, 115.4, 114.2, 110.9, 103.4, 99.6, 94.1, 71.7, 71.2, 56.6, 56.4, 56.2, 48.2; FT-IR (thin film,
neat) νmax 1735, 1683, 1608, 1512, 1377, 1238, 1153, 1022 cm−1; HRMS (FAB+) calcd for
C26H27O7 (M + H+) 451.1757, found 451.1754.

4.11. 3-(2-(Benzyloxy)-4,5-dimethoxyphenyl)-7-hydroxychroman-4-one (13)

To a solution of isoflavanone 11 (2.40 g, 5.33 mmol) in MeOH (100 mL) was added
conc. HCl (0.1 mL). The reaction mixture was heated to reflux. After stirring for 4 h at the
same temperature, the resulting mixture was cooled to ambient temperature, and MeOH
was evaporated to 20 mL under reduced pressure. After the residue was triturated with
EtOAc/n-hexane (1:3) for 30 min, the resulting precipitate was filtered and dried to afford
phenol 13 (1.80 g, 83%) as a white solid: m.p. 193-194 ◦C; 1H NMR (500 MHz, DMSO-d6) δ
10.51 (s, 1H), 7.64 (d, J = 8.6 Hz, 1H), 7.30 (d, J = 6.3 Hz, 2H), 7.24-7.20 (m, 3H), 6.79 (s, 1H),
6.78 (s, 1H), 6.47 (dd, J = 8.6, 2.3 Hz, 1H), 6.28 (d, J = 2.3 Hz, 1H), 5.00 (q, J = 11.7 Hz, 2H),
4.51 (t, J = 11.5 Hz, 1H), 4.33 (dd, J = 10.9, 5.7 Hz, 1H), 4.17 (dd, J = 12.6, 5.7 Hz, 1H), 3.73 (s,
3H), 3.62 (s, 3H); 13C NMR (125 MHz, DMSO-d6) δ 190.8, 164.8, 163.7, 151.1, 149.4, 143.4,
137.6, 129.6, 128.8, 128.2, 128.0, 116.0, 114.6, 111.1, 102.9, 100.7, 71.1, 70.6, 56.9, 56.4, 48.1;
FT-IR (thin film, neat) νmax 3336, 1604, 1517, 1450, 1220, 1022 cm−1; HRMS (FAB+) calcd for
C24H22O6 (M+) 406.1416, found 406.1421.

4.12. 7,2′-Dihydroxy-4′,5′-dimethoxyisoflavanone (1)

To a solution of phenol 13 (1.75 g, 4.31 mmol) in MeOH (100 mL) was added Pd(OH)2
(100 mg) at ambient temperature. After stirring for 2 h under H2 gas (balloon), the resulting
mixture was filtered through a pad of Celite and concentrated in vacuo. The residue was
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purified by flash column chromatography on silica gel (CH2Cl2/MeOH = 10:1) to afford
7,2′-dihydroxy-4′,5′-dimethoxyisoflavanone 1 (1.12 g, 82%) as a white solid: m.p. 181-182
◦C; 1H NMR (500 MHz, DMSO-d6) δ 10.62 (bs, 1H), 9.19 (bs, 1H), 7.65 (d, J = 8.6 Hz, 1H),
6.64 (s, 1H), 6.50 (dd, J = 8.9, 2.3 Hz, 1H), 6.45 (s, 1H), 6.32 (d, J = 2.3 Hz, 1H), 4.57 (t,
J = 11.5 Hz, 1H), 4.37 (dd, J = 10.9, 5.2 Hz, 1H), 4.10 (dd, J = 12.1, 5.2 Hz, 1H), 3.67 (s, 3H),
3.58 (s, 3H); 13C NMR (125 MHz, DMSO-d6) δ 190.5, 164.4, 163.3, 149.5, 148.8, 141.5, 129.0,
115.4, 114.1, 112.7, 110.6, 102.4, 100.9, 70.1, 56.5, 55.4, 47.1; FT-IR (thin film, neat) νmax
3300, 1598, 1514, 1459, 1267, 1199, 1107, 734 cm−1; HRMS (FAB+) calcd for C17H16O6 (M+)
316.0947, found 316.0947.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
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