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Abstract: Accurate and rapid molecular diagnosis of COVID-19 is a crucial step to tackle the ongoing
pandemic. The primary objective of this study was to estimate the real-world performance of the novel
RT-PCR STANDARD M10 SARS-CoV-2 assay in a large number of nasopharyngeal (NP) specimens
eluted in universal transport medium. The secondary objective was to evaluate the compatibility of
this kit in testing NP samples eluted in an inactivated transport medium (essential for point-of-care
testing) and lower respiratory tract (LRT) specimens, which are commonly collected in critical care. A
total of 591 samples were analyzed. Compared with the standard extraction-based RT-PCR Allplex
2019-nCoV (time-to-result of 270 min), the sensitivities of the STANDARD M10 were 100% (95% CI:
98.1–100%), 95.5% (95% CI: 91.7–97.6%), and 99.5% (95% CI: 97.2–99.9%) for ≥1 gene, the ORF1ab
gene, and the E gene, respectively, while the specificity was 100% (95% CI: 98.7–100%). The diagnostic
accuracy was 100% in testing both NP samples eluted in an inactivated transport medium and LRT
specimens. STANDARD M10 reliably detects SARS-CoV-2 in 60 min, may be used as a POC tool, and
is suitable for testing LRT specimens in the critical care setting.

Keywords: COVID-19; SARS-CoV-2; RT-PCR; diagnostic accuracy; point-of-care testing; critical care

1. Introduction

Detection of SARS-CoV-2 viral RNA by means of real-time reverse transcription-
polymerase chain reaction (RT-PCR) is considered the gold standard for the diagnosis
of both symptomatic and asymptomatic COVID-19 cases [1,2]. Alongside non-specific
interventions and massive immunization campaigns, the accurate diagnosis of SARS-CoV-2
is the key measure able to tackle the ongoing pandemic [3].

Standard RT-PCR assays are performed under proctored conditions and require so-
phisticated laboratory equipment and skilled staff. Moreover, despite some recent progress,
the traditional techniques are still associated with suboptimal turnaround times [4,5]. Quick
and accurate laboratory diagnosis of COVID-19 is required in some situations, such as the
clinical management of critically ill patients [6]. If sufficiently accurate, faster diagnostic
kits are particularly advantageous for screening programs when large numbers of samples
are tested daily [7]. To address these needs, several fast point-of-care (POC) techniques
have been developed and include, for example, lateral flow and fluorescent rapid antigen-
detecting (RADT) and rapid nucleic acid amplification (NAAT) tests [8,9]. Although RADTs
are relatively inexpensive and able to provide results in a few minutes, the use of RADTs
may be associated with a high proportion of false-negative results (especially in subjects
with low viral loads [8,10]), thus compromising their utility in low-incidence settings [11].
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Rapid RT-PCR assays are intended to detect SARS-CoV-2 RNA in the POC and critical
care settings in a reasonably short time and have become increasingly common. Indeed, a
Cochrane review [8] identified a total of 32 evaluations of the diagnostic performance of
five different rapid molecular assays; among these, Xpert Xpress SARS-CoV-2 (Cepheid,
Sunnyvale, CA, USA) (n = 15) and ID Now SARS-CoV-2 (Abbott, Chicago, IL, USA) (n = 13)
were the most frequently assessed. Compared with the standard RT-PCR assays, the pooled
sensitivity and specificity of the rapid molecular tests were 95.1% (95% CI: 90.5–97.6%) and
98.8% (95% CI: 98.3–99.2%), respectively [8]. A significant between-brand variation has
been also reported. For instance, the sensitivity of the Xpert Xpress kit was, on average,
19.8% (95% CI: 14.9–24.7%) higher than that of ID Now (p < 0.0001).

STANDARD M10 SARS-CoV-2 (SD Biosensor, Seoul, Korea) is an all-in-one cartridge
multiplex qualitative RT-PCR assay currently approved for the molecular diagnosis of
COVID-19 from nasopharyngeal (NP) or oropharyngeal swab specimens. The manufac-
turer’s declared sensitivity and specificity for these sample types are 100% [12]. However,
validation studies conceived for regulatory purposes may have low external validity since
they are usually conducted by testing a limited number of well-characterized samples.
Indeed, no in-field evaluations of this assay have been conducted so far. The primary
objective of this study was to estimate the diagnostic accuracy of the STANDARD M10
assay in a relatively large sample of routinely collected NP swab specimens. Moreover, con-
sidering that the assay is potentially relevant for rapid POC diagnosis outside centralized
laboratory facilities, we aimed to validate the STANDARD M10 in detecting SARS-CoV-2
in NP samples eluted in inactivated transport media (which ensures safe sample handling
and processing). Analogously, the performance of this assay in testing lower respiratory
tract (LRT) samples, which are commonly used in intensive care units, was also assessed.

2. Materials and Methods
2.1. Overall Study Design and Procedures

The present study is reported according to the STARD (standards for reporting of
diagnostic accuracy studies) statement [13] (Supplementary Materials Table S1).

The study was conducted between September 2021 and March 2022 at the regional
reference laboratory for COVID-19 diagnostics, located at San Martino Policlinico Hospital
in the Metropolitan City of Genoa (Italy). During the study period, most detections were
due to the Delta and Omicron variants of concern (VOCs) [14].

For the main study, all samples with a conclusive result in the reference test were
potentially eligible. A total of 500 (200 positive and 300 negative) NP samples swabbed
by means of a sterilized cotton flock and eluted in the universal transport medium (UTM)
(Copan Italia, Brescia, Italy) were tested in both reference and index tests (see below). These
specimens came from both community-dwelling and hospitalized subjects. The age, sex,
and sample date were readily available on the sample tube, while no clinical data could be
associated with a given sample. The adopted sample size was judged sufficiently powered
and determined on the basis of the Foundation for Innovative New Diagnostics (FIND) [15]
and European Commission [16] recommendations; in particular, a minimum of 100 positive
and 300 negative samples are recommended for clinical evaluation of rapid tests [15,16].
Indeed, considering that the false positivity rate is typically very low [17], a higher number
of true negative samples is required.

All samples were analyzed in fresh and within eight hours of arrival at the laboratory.
These were first tested by the reference standard RT-PCR assay available (see below). Once
the results of the reference tests were obtained, the leftover samples were consecutively
collected and tested in the STANDARD M10 assay. Both reference and index tests were
performed on the same day.

For the complementary evaluations of the STANDARD M10 kit, we assessed its
compatibility and performance in detecting SARS-CoV-2 in NP swabs eluted in the eNAT
sample collection system (Copan Italia, Brescia, Italy). The eNAT system is a guanidine-
thiocyanate-based medium used for virus inactivation and is particularly useful for the
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POC assays performed outside biosafety level 2 [18]. The eNAT samples came from patients
attending the hospital emergency department for priority and rapid RT-PCR detection of
SARS-CoV-2 (usually for patients who had to be urgently hospitalized). The performance
of the STANDARD M10 kit was compared with other all-in-one cartridge-based RT-PCR
assays available in the laboratory at that time (see below). The positivity status was further
confirmed by searching the internal database for the standard RT-PCR output. To assess
the compatibility of the eNAT system with the STANDARD M10 assay, a sample size of 60
(30 positive and 30 negative) eNAT samples was judged to be adequate.

Finally, we evaluated the compatibility and performance of the STANDARD M10 kit
in detecting SARS-CoV-2 in LRT specimens, including broncoaspirate and bronchoalveolar
lavage samples. These sample types came from the hospital intensive care units and were
collected in sterile plastic tubes. Owing to their particular viscosity characteristics, LRT
samples were first pre-treated with a liquifying dithiothreitol-based solution (Sputasol
Liquid, Oxoid Limited, Basingstoke, UK) at a 1:4 ratio, vortexed, and left to stand for
15 min.

2.2. Index Test

The STANDARD M10 assay is an all-in-one cartridge-based ready-to-use multiplex
(FAM, HEX, and Cy5 channels) RT-PCR kit intended for the qualitative detection of SARS-
CoV-2 RNA. RT-PCR is performed on the STANDARD M10 analyzer (SD Biosensor, Seoul,
Korea) with up to 8 scalable modules. The assay targets the ORF1ab and E genes, and
the resulting amplification curves are displayed for both gene targets. Detection of the
ORF1ab gene independently from the E gene precludes a “Positive” result, while samples
for which only the E gene is detected are deemed “Presumptive positive”. “Invalid” results
are displayed when the internal control was not amplified or target signals did not have
a Ct within the valid range [12]. Providing a sufficient sample volume, all samples with
invalid results were repeated. For this reason, there was no possibility to repeat tests on
1 mL eNAT samples.

Testing on the STANDARD M10 was performed according to the manufacturer’s
instructions [12]. Briefly, following a short period of vortexing, a sample input volume of
600 µL was added directly to the cartridge and set up for RT-PCR. The hands-on sample
preparation time is approximately 1 min, while the time-to-result is 60 min. An early call
option is also available for positive samples. The index assay is currently approved for
the molecular diagnosis of COVID-19 from NP or oropharyngeal swab specimens, and
according to the manufacturer, the limit of detection (LOD) is 100 copies/mL [12].

Finally, the LOD for the eNAT samples was determined by using the AccuPlex SARS-
CoV-2 reference kit (SeraCare, Milford, MA, USA), which contains positive reference
materials for the whole genome at a concentration of 5000 copies/mL. A total of six serial
dilutions (600, 300, 150, 75, 37.5, and 18.75 copies/mL) were prepared using the eNAT
liquid and the positive control. Each dilution was tested in six replicates.

2.3. Reference Tests

Reference RT-PCR assays used in the present study were those available in the lab-
oratory for routine diagnostics. For the main study of testing NP swabs eluted in UTM,
the standard extraction-based qualitative RT-PCR Allplex 2019-nCoV (Seegene, Seoul,
Korea) was used. The whole procedure followed the instructions provided by the manufac-
turer [19]. Briefly, the total RNA was first extracted by means of the STARMag Universal
Cartridge Kit (Seegene, Seoul, Korea) on the automated Nimbus IVD (Seegene, Seoul,
Korea) system. For this purpose, 200 µL of each sample was extracted and eluted with
100 µL of elution buffer and set up for RT-PCR. RT-PCR was then performed on a CFX96
instrument (Bio-Rad Laboratories, Hercules, CA, USA) with Allplex 2019-nCoV assay.
The latter is a multiplex RT-PCR assay that simultaneously detects three different genes
targeting the nucleoprotein (N), RNA-dependent RNA-polymerase (RdRp), and envelope
(E) regions. Amplification was performed at the following temperature regimens: 50 ◦C
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for 20 min followed by 95 ◦C for 15 min, 45 cycles at 95 ◦C for 10 s, and 60 ◦C for 15 s
for first acquisition and 72 ◦C for 10 s for second acquisition on the CFX96 thermal cycler.
For each RT-PCR, a total of 5 µL of the extracted RNA in a final volume of 20 µL was
used. Amplificons were then tested by FAM (E gene), HEX (internal control), Cal Red 610
(RdRP), and Quasar 670 (N) fluorophores. The amplification curves were finally read using
the 2019-nCoV viewer (Seegene, Seoul, Korea), and samples showing a cycle threshold
(Ct) value of <40 for at least two genes were deemed true positives. According to the
manufacturer, the LODs are 4167, 1250, and 4167 copies/mL for E, RdRp, and N genes,
respectively, while the analytical specificity is 100% [19]. The average time-to-result of this
method is 270 min [4].

The Alinity m Resp-4-Plex kit (Abbott, Abbott Park, IL, USA) was used as a reference
test for LRT specimens and as a resolver test for NP swabs eluted in UTM and eNAT.
This assay is a multiplex RT-PCR for use with the automated Alinity m system (Abbott,
Abbott Park, IL, USA) for the qualitative detection and differentiation of RNA from SARS-
CoV-2, influenza A and B, and respiratory syncytial viruses. Concerning SARS-CoV-2, the
RdRp and N genes are targeted, and positive results are displayed as a unique Ct value.
According to the manufacturer, the LOD is 30 genome equivalent units/mL, and the time
to the first result is <115 min [20].

Finally, for NP swabs eluted in the eNAT system, two different all-in-one cartridge-
based rapid RT-PCR assays were used, namely Vivalytic SARS-CoV-2 (Bosch Healthcare
Solutions, Waiblingen, Germany) [21] and Novodiag COVID-19 (Mobidiag, a Hologic
Company, Espoo, Finland) [22]. This choice was determined by the change in the hospital
procurement for rapid RT-PCR tests. In particular, samples collected before 31 December
2021 were tested in the Vivalytic SARS-CoV-2 assay, while samples collected on and after
1 January 2022 were processed using the Novodiag COVID-19 kit. The former kit targets
the E gene only, while the latter targets the E and N genes. According to the manufacturers,
the LODs are 750 and 313 copies/mL for the Vivalytic SARS-CoV-2 [21] and Novodiag
COVID-19 [22] assays, respectively. The times to obtain results are 39 and 80 min for
Vivalytic SARS-CoV-2 and Novodiag COVID-19 kits, respectively.

2.4. Data Analysis

Categorical variables are expressed as proportions with 95% CIs, while continuous
variables are expressed as means ± standard deviations or medians with interquartile
ranges (IQRs). No imputation was performed since no missing data occurred. Pearson’s r
coefficient was computed to establish a correlation between Ct values for the E gene (being
the only common target) provided by the index and reference tests. Paired t-tests were
used to compare average E gene Ct values. The relative diagnostic accuracy of the index
vs. reference standard tests was quantified by the overall accuracy, sensitivity, specificity,
and Cohen’s κ. Hypothetical positive (PPV) and negative (NPV) predictive value curves
were constructed from the observed sensitivity and specificity and by varying the disease
incidence from 0 to 50%. Probit regression was used to estimate the 95% LOD for the eNAT
samples.

Statistical analysis was carried out using R stat packages v. 4.1.0 (R Core Team,
Vienna, Austria).

3. Results

A total of 200 positive and 300 negative NP swabs eluted in UTM were analyzed in
both Allplex 2019-nCoV and STANDARD M10 assays (Supplementary Materials Figure S1).
The median age of the subjects was 58 (IQR: 38–76) years, and both sexes were equally
distributed (49.8% of females). Samples that tested positive in the Allplex 2019-nCoV
reference assay had a wide range of viral loads, with average Ct values of 24.6 ± 6.6 (range:
14–39), 25.6 ± 6.0 (range: 15–40), and 24.0 ± 6.3 (range: 13–38) for the N, RdRp, and E
genes, respectively. In the Allplex 2019-nCoV assay, the prevalence of target gene dropouts
were 0.5, 10.0, and 3.0% for the N, RdRp, and E genes, respectively.
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A total of 9 of 500 samples (1.8%; 95% CI: 0.8–3.4%) produced invalid results in the
first STANDARD M10 run and were repeated. The second run was successful for all nine
samples. Table 1 reports the raw data on the detections. Briefly, the detection rates of
the E and ORF1ab genes in the STANDARD M10 assay were 99.5 and 95.5%, respectively.
Regarding the automatic result interpretation, 95.5% (191/200) and 4.5% (9/200) of samples
were displayed as “Positive” (detection of both targets or detection of the ORF1ab gene
only) and “Presumptive positive” (detection of the E gene only), respectively. As shown in
Table 2, in the reference standard assay, most of these samples had RdRp dropout and Ct
values of ≥35.

Table 1. Raw data on target detections by gene target and assay (n = 500).

Sample Type Gene Target

Allplex 2019-nCoV Assay, %
(n)

STANDARD M10 Assay, %
(n)

Detected Not
Detected Detected Not

Detected

Positive

N 99.5 (199) 0.5 (1) – –
RdRp 90.0 (180) 10.0 (20) – –

E 97.0 (194) 3.0 (6) 99.5 (199) 0.5 (1)
ORF1ab – – 95.5 (191) 4.5 (9)

≥1 100 (200) 0 (0) 100 (200) 0 (0)

Negative

N 0 (0) 100 (300) – –
RdRp 0 (0) 100 (300) – –

E 0 (0) 100 (300) 0 (0) 100 (300)
ORF1ab – – 0 (0) 100 (300)

≥1 0 (0) 100 (300) 0 (0) 100 (300)

Table 2. Characteristics of samples with “Presumptive positive” result label in the STANDARD M10
assay (n = 9).

Sample
Ct Values in the Allplex 2019-nCoV Assay Ct Values in the

STANDARD M10 Assay

N RdRp E ORF1ab E

1 27 29 27 ND 33
2 32 34 31 ND 30
3 38 ND 38 ND 32
4 37 ND 38 ND 32
5 39 ND 36 ND 29
6 29 ND 30 ND 28
7 33 ND 34 ND 36
8 37 ND 35 ND 33
9 34 40 32 ND 21

ND—not detected.

The overall relative accuracies of the STANDARD M10 assay were 99.8 and 98.2% for
the E and ORF1ab genes, respectively. The corresponding sensitivity parameters were 99.5
and 95.5%, respectively. When considering the detection of at least one gene target, the
between-assay agreement was perfect, with a relative sensitivity of the STANDARD M10
of 100%. No false-positive results emerged, giving a specificity of 100% (Table 3).
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Table 3. Relative diagnostic accuracy of the STANDARD M10 assay by parameter and gene target
(n = 500).

Parameter ORF1ab Gene E Gene ≥1 Gene

Accuracy, % (95% CI) 98.2 (96.6–99.1) 99.8 (98.9–100) 100 (99.2–100)
Sensitivity, % (95% CI) 95.5 (91.7–97.6) 99.5 (97.2–99.9) 100 (98.1–100)
Specificity, % (95% CI) 100 (98.7–100) 100 (98.7–100) 100 (98.7–100)

Cohen’s κ (95% CI) 0.962 (0.875–1) 0.996 (0.908–1) 1 (0.912–1)

As the specificity was 100%, the PPV was 100% independent of the SARS-CoV-2
positivity prevalence. As shown in Figure 1, by varying the hypothetical disease prevalence
from 0% to 50%, the NPVs for the ORF1ab and E genes were constantly above 95 and 99%,
respectively.
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Figure 1. Negative predictive value (NPV) curves of the STANDARD M10 assay, by hypothetical
prevalence and gene target.

The Ct values for the E gene in the Allplex 2019-nCoV assay (mean 24.0 ± 6.3) were,
on average, 2.2 (95% CI: 2.0–2.5) points higher (p < 0.001) than those determined by the
STANDARD M10 kit (mean 21.8 ± 6.1), confirming the lower LOD of the latter. The E gene
Ct values determined by both assays were highly correlated (p < 0.001), with a Pearson’s r
of 0.954 (95% CI: 0.939–0.965) (Supplementary Materials Figure S2).

For the first complementary study, a total of 30 positive and 30 negative eNAT NP
samples were tested in both STANDARD M10 and reference tests. All positive patients were
also positive in the standard Allplex 2019-nCoV assay performed on samples collected in the
UTM system. The reference test for the first 23 samples was the Vivalytic SARS-CoV-2 assay,
while the remaining 37 samples were processed using the Novodiag COVID-19 kit. The
agreement between the STANDARD M10 and Vivalytic SARS-CoV-2 was perfect (100%).
By contrast, concerning the comparison between the STANDARD M10 and Novodiag
COVID-19, there was one discordant result. In particular, this eNAT sample was negative
for both gene targets in the Novodiag COVID-19 assay but positive for both the ORF1ab (Ct
33) and E (Ct 31) targets in the STANDARD M10 kit. This sample was therefore tested in the
Alinity m Resp-4-Plex assay, and the result was positive (Ct 32). The rate of invalid results
was identical (5.0%, 3/60) for both index and reference tests; because of the limited sample
volume, these eNAT samples could not be retested. The overall accuracy, sensitivity, and
specificity of the STANDARD M10 assay were thus 100% (95% CI: 93.7–100%), 100% (95%
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CI: 87.5–100%), and 100% (95% CI: 88.7–100%), respectively. The estimated LOD to achieve
a 95% detection rate for NP swabs eluted in eNAT was 235 copies/mL (Supplementary
Materials Table S2).

Finally, a total of 31 LRT samples were tested. Of these, 9 and 22 were determined
as positive and negative in the Alinity m Resp-4-Plex assay, respectively. In the first
STANDARD M10 run, there was one invalid result (3.2%), which turned positive in the
second run. In the STANDARD M10 assay, the ORF1ab and E genes were detected in 88.9%
(8/9) and 100% (9/9) of samples, respectively. The corresponding sensitivity parameters
for ≥1 target, the ORF1ab gene, and the E gene were 100% (95% CI: 70.1–100%), 88.9%
(95% CI: 56.5–98.0%), and 100% (95% CI: 70.1–100%), respectively. The only “Presumptive
positive” results had Alinity m Resp-4-Plex Ct values of 35. No false-negative results were
observed (specificity 100%; 95% CI: 85.1–100%).

4. Discussion

This study is the first in-field study to evaluate the diagnostic performance of the
novel RT-PCR kit STANDARD M10 for the rapid molecular diagnosis of SARS-CoV-2 in
NP specimens with a wide range of viral loads. Generating real-world evidence on the
performance of diagnostic tools for SARS-CoV-2 has become increasingly important [23].
The observed diagnostic accuracy parameters were in line with those declared by the
manufacturer [12]. The performance of the STANDARD M10 kit was fully comparable to
that of the widely used Xpert Xpress kit [8]. Furthermore, we demonstrated the consistency
of the STANDARD M10 assay in detecting viral RNA from NP collected in alternative
inactivating collection kits and LRT specimens.

In the main study, the sensitivity for at least 1 gene target and the specificity were both
100%. On the other hand, the estimated sensitivity of the STANDARD M10 was higher
for the E gene than for the ORF1ab gene; indeed, the latter was not detected in 4.5% of
positive samples. A significant proportion of the ORF1ab dropout has been reported for
both Alpha [24] and Delta [25] VOCs. Notably, among Alpha VOCs detected in Lebanon,
the ORF1ab dropout was observed in all samples with S gene dropout [24]. Similarly, in
our study, 6 of 9 samples negative for the ORF1ab gene had RdRp gene dropout in the
Allplex 2019-nCoV assay. Although the ORF1ab gene is highly specific, it is considered to
be less sensitive than other targets [26]. By contrast, among the possible RT-PCR targets,
the E gene is the least specific, as it shows substantial sequence homology to other seasonal
coronaviruses [27]. Therefore, we believe that in low-incidence settings (especially outside
the winter season when circulation of other coronaviruses is uncommon), the detection of
the E gene alone is suggestive of SARS-CoV-2 infection. Otherwise, these “presumptive
positive” samples may be retested using an alternative assay with different gene targets.

The handling and processing of specimens present a certain level of biohazard. In
this regard, immediate viral inactivation prior to sample processing is an ideal solution for
the POC setting since chemical inactivation may eliminate any risk of aerosol or droplet
generation [28,29]. In this study, we showed that the STANDARD M10 SARS-CoV-2 kit
is fully compatible with guanidine-based inactivating swab collection kits, which makes
the assay extremely useful for POC or near-POC COVID-19 diagnosis. Similar results
were reported in some previous studies evaluating the eNAT samples in alternative rapid
RT-PCR assays, such as Xpert Xpress [18,28,29].

We then demonstrated that the STANDARD M10 assay may be also used for the
efficient detection of SARS-CoV-2 in LRT specimens. Critically ill patients are often under
invasive mechanical ventilation, and the collection of upper respiratory tract samples is
usually not possible under these circumstances. Moreover, testing LRT samples may be
useful in patients under clinical investigation whose NP swabs are negative [30]. To our
knowledge, only a few studies [6,30–33] have evaluated the diagnostic accuracy of the
commercially available rapid RT-PCR kits for detecting SARS-CoV-2 RNA in these types of
specimens. The protocol adopted for the pretreatment of LRT samples was judged to be
efficient from the point of view of both sample handling time and test performance. LRT
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specimens (especially bronchoalveolar liquid) may present different densities/viscosities,
and therefore, the volume of a liquifying solution may be different. In the present study,
however, we decided to make the protocol uniform since, from our experience, a dilution
of 1:4 is efficient for both low- and high-density LRT samples.

Finally, the observed “invalid” result rate was relatively low (1.8%). In our opinion, the
rate of invalid results should always be recorded in validation studies as well as product-
related materials. Indeed, high invalid result rates may compromise both the speed and
efficiency of laboratory diagnostics (e.g., the necessity to repeat the RT-PCR run for urgent
samples or even repeat a swab in the case of an insufficient sample volume) and the product
cost-effectiveness profile.

The main limitation of the present study is that we were not able to link the RT-PCR
output to patients’ clinical characteristics, such as the presence or absence of symptoms or
days since the onset of symptoms. Indeed, our evaluation was conducted under real-world
conditions, and such information is often unknown to the laboratory personnel. However,
we believe that this shortcoming has a limited impact on the conclusions since the STAN-
DARD M10 index test results were highly congruent with those obtained by the routinely
used standard RT-PCR assay targeting three genes. Second, the two complementary studies
were designed as feasibility evaluations of the compatibility of the index test with alterna-
tive collection kits and specimen types and are thus not sufficiently powered to estimate
the false-positive and false-negative rates. Larger in-field evaluations of the STANDARD
M10 assay on NP swab samples eluted in the eNAT or similar inactivating systems and
LRT specimens are warranted. Third, the present study included only samples positive
for the two most recent Delta and Omicron VOCs, and therefore, our findings may be not
generalizable to both previously circulating and future viral populations. Indeed, consider-
ing a continuous evolution of SARS-CoV-2 [34], the performance of the assay should be
constantly monitored, and any relevant issues (e.g., unusual gene-specific amplification
curve patterns or gene dropouts) should be promptly notified to both the manufacturer
and the regulators.

In conclusion, the STANDARD M10 assay is a reliable kit for the rapid molecular
diagnosis of SARS-CoV-2 infection, may be used as a POC tool, and is suitable for testing
LRT specimens in the critical care setting.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jcm11092465/s1, Figure S1: STARD (Standards for Reporting
of Diagnostic Accuracy Studies) flowchart; Figure S2: Correlation between E gene cycle thresholds
provided by the STANDARD M10 and Allplex 2019-nCoV assays; Table S1: STARD (Standards for
Reporting of Diagnostic Accuracy Studies) checklist; Table S2: Limit of detection (LOD) for eNAT
samples by gene target and SARS-CoV-2 concentration.
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