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Abstract

Background

COVID-19 is a rapidly spreading disease that has caused extensive burden to individuals,

families, countries, and the world. Effective treatments of COVID-19 are urgently needed.

This is the second edition of a living systematic review of randomized clinical trials assessing

the effects of all treatment interventions for participants in all age groups with COVID-19.

Methods and findings

We planned to conduct aggregate data meta-analyses, trial sequential analyses, network

meta-analysis, and individual patient data meta-analyses. Our systematic review was based

on PRISMA and Cochrane guidelines, and our eight-step procedure for better validation of

clinical significance of meta-analysis results. We performed both fixed-effect and random-

effects meta-analyses. Primary outcomes were all-cause mortality and serious adverse

events. Secondary outcomes were admission to intensive care, mechanical ventilation,

renal replacement therapy, quality of life, and non-serious adverse events. According to the

number of outcome comparisons, we adjusted our threshold for significance to p = 0.033.

We used GRADE to assess the certainty of evidence. We searched relevant databases and

websites for published and unpublished trials until November 2, 2020. Two reviewers inde-

pendently extracted data and assessed trial methodology. We included 82 randomized clini-

cal trials enrolling a total of 40,249 participants. 81 out of 82 trials were at overall high risk of

bias. Meta-analyses showed no evidence of a difference between corticosteroids versus
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control on all-cause mortality (risk ratio [RR] 0.89; 95% confidence interval [CI] 0.79 to 1.00;

p = 0.05; I2 = 23.1%; eight trials; very low certainty), on serious adverse events (RR 0.89;

95% CI 0.80 to 0.99; p = 0.04; I2 = 39.1%; eight trials; very low certainty), and on mechanical

ventilation (RR 0.86; 95% CI 0.55 to 1.33; p = 0.49; I2 = 55.3%; two trials; very low certainty).

The fixed-effect meta-analyses showed indications of beneficial effects. Trial sequential

analyses showed that the required information size for all three analyses was not reached.

Meta-analysis (RR 0.93; 95% CI 0.82 to 1.07; p = 0.31; I2 = 0%; four trials; moderate cer-

tainty) and trial sequential analysis (boundary for futility crossed) showed that we could

reject that remdesivir versus control reduced the risk of death by 20%. Meta-analysis (RR

0.82; 95% CI 0.68 to 1.00; p = 0.05; I2 = 38.9%; four trials; very low certainty) and trial

sequential analysis (required information size not reached) showed no evidence of differ-

ence between remdesivir versus control on serious adverse events. Fixed-effect meta-anal-

ysis showed indications of a beneficial effect of remdesivir on serious adverse events. Meta-

analysis (RR 0.40; 95% CI 0.19 to 0.87; p = 0.02; I2 = 0%; two trials; very low certainty)

showed evidence of a beneficial effect of intravenous immunoglobulin versus control on all-

cause mortality, but trial sequential analysis (required information size not reached) showed

that the result was severely underpowered to confirm or reject realistic intervention effects.

Meta-analysis (RR 0.63; 95% CI 0.35 to 1.14; p = 0.12; I2 = 77.4%; five trials; very low cer-

tainty) and trial sequential analysis (required information size not reached) showed no evi-

dence of a difference between tocilizumab versus control on serious adverse events. Fixed-

effect meta-analysis showed indications of a beneficial effect of tocilizumab on serious

adverse events. Meta-analysis (RR 0.70; 95% CI 0.51 to 0.96; p = 0.02; I2 = 0%; three trials;

very low certainty) showed evidence of a beneficial effect of tocilizumab versus control on

mechanical ventilation, but trial sequential analysis (required information size not reached)

showed that the result was severely underpowered to confirm of reject realistic intervention

effects. Meta-analysis (RR 0.32; 95% CI 0.15 to 0.69; p < 0.00; I2 = 0%; two trials; very low

certainty) showed evidence of a beneficial effect of bromhexine versus standard care on

non-serious adverse events, but trial sequential analysis (required information size not

reached) showed that the result was severely underpowered to confirm or reject realistic

intervention effects. Meta-analyses and trial sequential analyses (boundary for futility

crossed) showed that we could reject that hydroxychloroquine versus control reduced the

risk of death and serious adverse events by 20%. Meta-analyses and trial sequential analy-

ses (boundary for futility crossed) showed that we could reject that lopinavir-ritonavir versus

control reduced the risk of death, serious adverse events, and mechanical ventilation by

20%. All remaining outcome comparisons showed that we did not have enough information

to confirm or reject realistic intervention effects. Nine single trials showed statistically signifi-

cant results on our outcomes, but were underpowered to confirm or reject realistic interven-

tion effects. Due to lack of data, it was not relevant to perform network meta-analysis or

possible to perform individual patient data meta-analyses.

Conclusions

No evidence-based treatment for COVID-19 currently exists. Very low certainty evidence

indicates that corticosteroids might reduce the risk of death, serious adverse events, and

mechanical ventilation; that remdesivir might reduce the risk of serious adverse events; that

intravenous immunoglobin might reduce the risk of death and serious adverse events; that
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tocilizumab might reduce the risk of serious adverse events and mechanical ventilation; and

that bromhexine might reduce the risk of non-serious adverse events. More trials with low

risks of bias and random errors are urgently needed. This review will continuously inform

best practice in treatment and clinical research of COVID-19.

Systematic review registration

PROSPERO CRD42020178787.

Introduction

In December 2019, the emergence of a novel coronavirus, the severe acute respiratory syn-

drome coronavirus 2 (SARS-CoV-2), caused a rapid international outbreak of the respiratory

illness COVID-19 [1]. Since the initial outbreak in China, SARS-CoV-2 has spread globally

and COVID-19 is currently labeled a public health emergency of global concern by the World

Health Organization [2]. The full clinical spectrum of COVID-19 ranges from asymptomatic

infection to mild, self-limiting respiratory tract illness to severe progressive pneumonia, multi-

organ failure, and death [3]. Critically ill patients might die from massive alveolar damage and

progressive respiratory failure [4–6].

Many randomized clinical trials assessing the effects of different potential treatments for

COVID-19 are currently underway. However, it is rare that a single trial can sufficiently assess

the effects of any intervention. Therefore, there is an urgent need to continuously surveil the

emerging evidence and present aggregate data so that effective treatments, if such exist, are

rapidly implemented in clinical practice [7].

The present living systematic review with aggregate meta-analyses and trial sequential anal-

yses aims to continuously inform evidence-based guideline recommendations for the treat-

ment of COVID-19, taking risks of systematic errors (‘bias’), risks of random errors (‘play of

chance’), and certainty of the findings into consideration [8].

Methods

We report this systematic review based on the Preferred Reporting Items for Systematic

Reviews and Meta-Analysis (PRISMA) guidelines (S1 Text) [9, 10]. The updated methodology

used in this living systematic review is according to the Cochrane Handbook of Systematic

Reviews of Interventions [11] and described in our protocol [8], which was registered in the

PROSPERO database (ID: CRD42020178787) prior to the systematic literature search.

Search strategy and selection criteria

Electronic searches. An information specialist searched the Cochrane Central Register of

Controlled Trials (CENTRAL) in The Cochrane Library, Medical Literature Analysis and

Retrieval System Online (MEDLINE Ovid), Excerpta Medica database (Embase Ovid), Latin

American and Caribbean Health Sciences Literature (LILACS; Bireme), Science Citation

Index Expanded (SCI-EXPANDED; Web of Science), Conference Proceedings Citation

Index–Science (CPCI-S; Web of Science), BIOSIS (Web of Science), CINAHL (EBSCO host),

Chinese Biomedical Literature Database (CBM), China Network Knowledge Information

(CNKI), Chinese Science Journal Database (VIP), and Wanfang Database to identify relevant

trials. We searched all databases from their inception and until November 2, 2020. Trials were
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included irrespective of language, publication status, publication year, and publication type.

For the detailed search strategies for all electronic searches, see S2 Text.

Searching other resources. The reference lists of relevant trial publications were checked

for any unidentified randomized clinical trials. To identify unpublished trials, we searched

clinical trial registries (e.g. clinicaltrials.gov, clinicaltrialregister.eu, who.int/ictrp, chictr.org.

cn) of Europe, USA, and China, and websites of pharmaceutical companies and of U.S.

Food and Drug Administration (FDA) and European Medicines Agency (EMA). We also

searched the COVID-19 Study Registry [12] and the real-time dashboard of randomized trials

[13].

We included unpublished and grey literature trials and assessed relevant retraction state-

ments and errata for included trials. We also searched preprint servers (bioRxiv, medRxiv) for

unpublished trials. We contacted all corresponding authors to obtain individual patient data.

Living systematic review

In this living systematic review, two independent investigators receive a weekly updated litera-

ture search file, and continuously include relevant newly published or unpublished trials. The

relevant meta-analyses, trial sequential analyses, and network meta-analysis will be continu-

ously updated, and if new evidence is available (judged by the author group), the results will be

submitted for publication. Every month, the author group will discuss whether searching once

a week is necessary. For a detailed overview of the living systematic review work flow, see our

protocol [8]. As this is a living systematic review analyzing results of randomized clinical trials,

no ethical approval is required.

Data extraction

Two authors (EEN and JF) independently screened relevant trials. Seven authors in pairs (SJ,

EEN, JF, FS, CKJ, EB, JH) independently extracted data using a standardized data extraction

sheet. Any discrepancies were resolved through discussion, or if required, through discussion

with a third author (JCJ). We contacted corresponding authors if relevant data were unclear or

missing.

Risk of bias assessment

Risk of bias was assessed with the Cochrane Risk of Bias tool–version 2 (RoB 2) [11, 14]. Seven

authors in pairs (SJ, EEN, JF, FS, CKJ, EB, JH) independently assessed risk of bias. Any dis-

crepancies were resolved through discussion or, if required, through discussion with a third

author (JCJ). Bias was assessed with the following domains: bias arising from the randomiza-

tion process, bias due to deviations from the intended interventions, bias due to missing out-

come data, bias in measurement of outcomes, and bias arising from selective reporting of

results [11, 14]. We contacted corresponding authors of trials with unclear or missing data.

Outcomes and subgroup analyses

Primary and secondary outcomes were predefined in our protocol [8]. Primary outcomes were

all-cause mortality and serious adverse events (as defined by the ICH-GCP guidelines) [8, 15].

Secondary outcomes were admission to intensive care (as defined by trialists), mechanical ven-

tilation (as defined by trialists), renal replacement therapy (as defined by trialists), quality of

life, and non-serious adverse events. We classified non-serious adverse events as any adverse

event not assessed as serious according to the ICH-GCP definition.
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We chose to add time to clinical improvement as a post hoc outcome. We planned several

subgroup analyses, which are described in detail in our protocol [8]. For all outcomes, we used

the trial results reported at maximum follow-up.

Assessment of statistical and clinical significance

We performed our aggregate data meta-analyses according to Cochrane [11], Keus et al. [16],

and the eight-step assessment by Jakobsen et al. [17] for better validation of meta-analytic

results in systematic reviews. Review Manager version 5.4 [18] and Stata 16 (StataCorp LLC,

College Station, TX, USA) [19] were used for all statistical analyses. We used risk ratios (RR)

for dichotomous outcomes. We assessed a total of two primary outcomes per comparison, and

we therefore adjusted our thresholds for significance [17] and considered a p-value of 0.033 or

less as the threshold for statistical significance [8, 17]. Because we primarily considered results

of secondary outcomes as hypothesis generating, we did not adjust the p-value for secondary

outcomes. We conducted both random-effects (DerSimonian-Laird) and fixed-effect (Mantel-

Haenszel) meta-analyses for all analyses and chose the most conservative result as our primary

result [11, 17, 20, 21]. We used trial sequential analysis to control for random errors [22–30].

Trial sequential analysis estimates the diversity-adjusted required information size (DARIS),

which is the number of participants needed in a meta-analysis to detect or reject a certain

intervention effect. Statistical heterogeneity was quantified by calculating heterogeneity (I2)

for traditional meta-analyses and diversity (D2) for trial sequential analysis. We used Grading

Recommendations Assessment Development Evaluation (GRADE) to assess the certainty of

evidence. We downgraded imprecision in GRADE by two levels if the accrued number of par-

ticipants were below 50% of the DARIS, and one level if between 50% and 100% of DARIS

[17]. We did not downgrade if benefit, harm, futility or DARIS were reached. We used Fisher’s

exact test to calculate p-values for all single trial results.

Results

Study characteristics

On November 2, 2020 our literature searches identified 15,359 records after duplicates were

removed. We included a total of 82 clinical trials randomizing 40,249 participants (Fig 1) [31–

113]. We identified several trials including participants suspected of COVID-19 [114, 115].

None of these trials reported separate data on COVID-19 positive participants compared to

the remaining participants. We included trials if approximately 50% or more participants had

a confirmed COVID-19 diagnosis. We wrote to all authors requesting separate data on

COVID-19 confirmed participants, but we have received no responses yet. For at detailed

overview of excluded trials, see S1 Table.

Characteristics of included trials and the trial results can be found in S2 Table. Most trials

were at high risk of bias (S3 Table).

The identified trials compared the following interventions: 10 trials compared corticoste-

roids versus standard care [51, 55, 86, 88, 95–98] or placebo [67, 87]; four trials compared

remdesivir versus standard care [85, 109] or placebo [42, 64]; 13 trials compared hydroxy-

chloroquine versus standard care [33, 34, 41, 47, 53, 54, 57, 58, 104, 109], or placebo [52, 107];

five trials compared lopinavir-ritonavir versus standard care [3, 39, 105, 109] or a co-interven-

tion alone [44]; two trials compared interferon beta-1a versus standard care [35, 109]; four tri-

als compared convalescent plasma versus standard care [38, 50, 77, 90]; three trials compared

azithromycin versus standard care [82] or co-interventions with standard care [53] or without

standard care [81]; three trials compared colchicine versus standard care [48], placebo plus

standard care [91], or placebo plus a co-intervention [106]; two trials compared
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Fig 1. PRISMA flow diagram.

https://doi.org/10.1371/journal.pone.0248132.g001
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immunoglobulin versus standard care [56] or placebo [94]; six trials compared tocilizumab

versus standard care [92, 110–112], placebo with standard care [89] or favipiravir alone as co-

intervention [113];two trials compared bromhexine versus standard care [93, 103]; and three

trials compared favipiravir versus standard care [40, 66] or a co-intervention alone [113].

The remaining trial comparisons included: favipiravir versus umifenovir [32]; umifenovir

versus lopinavir-ritonavir [39]; umifenovir versus standard care [39]; novaferon versus nova-

feron plus lopinavir-ritonavir [44]; novaferon plus lopinavir-ritonavir versus lopinavir-ritona-

vir [44]; novaferon versus lopinavir-ritonavir [44]; alpha lipotic acid versus placebo [45];

baloxavir marboxil versus favipiravir [40]; baloxavir marboxil versus standard care [40]; triple

combination of interferon beta-1b plus lopinavir-ritonavir plus ribavirin versus lopinavir-rito-

navir [37]; remdesivir for 5 days versus remdesivir for 10 days [36]; high-flow nasal oxygen-

ation versus standard bag-valve oxygenation [43]; hydroxychloroquine versus chloroquine

[47]; chloroquine versus standard care [47]; high dosage chloroquine diphosphate versus low

dosage chloroquine diphosphate [49]; hydroxychloroquine plus azithromycin versus standard

care [53]; triple combination of darunavir plus cobicistat plus interferon alpha-2b versus inter-

feron alpha-2b [60]; lopinavir-ritonavir plus interferon alpha versus ribavirin plus interferon

alpha [60]; ribavirin plus lopinavir-ritonavir plus interferon alpha versus ribavirin plus inter-

feron alpha [60]; ribavirin plus lopinavir-ritonavir plus interferon alpha versus lopinavir-rito-

navir plus interferon alpha [60]; lincomycin versus azithromycin [61]; 99-mTc-methyl

diphosphonate (99mTc-MDP) injection versus standard care [62]; interferon alpha-2b plus

interferon gamma versus interferon alpha-2b [63]; telmisartan versus standard care [65]; avifa-

vir 1800/800 versus avifavir 1600/600 [66]; dexamethasone plus aprepitant versus dexametha-

sone [68]; anti-C5a antibody versus standard care [69]; azvudine versus standard care [72];

human plasma-derived C1 esterase/kallikrein inhibitor versus standard care [71]; icatibant

acetate versus standard care [71]; icatibant acetate versus human plasma-derived C1 esterase/

kallikrein inhibitor [71]; pulmonary rehabilitation program versus isolation at home [70]; aux-

ora (calcium release-activated calcium channel inhibitors) versus standard care [73]; umbilical

cord stem cell infusion versus standard care [74]; vitamin C versus placebo [75]; sofosbuvir

plus daclatasvir versus standard care [79]; sofosbuvir plus daclatasvir plus ribavirin versus

hydroxychloroquine plus lopinavir-ritonavir with or without ribavirin [78]; interferon beta-1b

versus standard care [80]; calcifediol versus standard care [83]; recombinant human granulo-

cyte colony–stimulating factor versus standard care [84]; intravenous and/or nebulized elec-

trolyzed saline with dose escalation versus standard care [99]; nasal irrigation with hypertonic

saline plus surfactant versus no intervention [100]; nasal irrigation with hypertonic saline plus

surfactant versus nasal irrigation with hypertonic saline [100]; nasal irrigation with hypertonic

saline versus no intervention [100]; triazavirin versus placebo [101]; N-acetylcysteine versus

placebo [102]; tocilizumab versus favipiravir [113].

The maximum follow-up time ranged from five [33, 34] to 60 days [89, 98] after randomiza-

tion. For several of our outcomes it was not possible to conduct meta-analysis due to insuffi-

cient data.

Corticosteroids versus control

We identified 10 trials (11 comparisons) randomizing 7,918 participants to corticosteroids ver-

sus standard care [51, 55, 86, 88, 95–98] or placebo [67, 87]. One trial was assessed at low risk

of bias [87]. The remaining trials were assessed at high risk of bias (S3 Table). Five trials

assessed the effects of methylprednisolone [55, 67, 95–97], three trials assessed the effects of

dexamethasone [51, 86, 98], and two trials (three comparisons) assessed the effects of hydro-

cortisone [87, 88]. One trial assessing the effects of methylprednisolone was not eligible for
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meta-analysis, as approximately half of the participants in the experimental group were non-

randomized [55]. We contacted the trial authors and asked for separate data for all random-

ized participants, but did not receive any response. Another trial assessing the effects of meth-

ylprednisolone was not eligible for meta-analysis, as the trial did not report on any of our

review outcomes [95]. We requested data for our review outcomes from the trial authors but

did not receive a response.

Meta-analysis of all-cause mortality. Random-effects meta-analysis showed no evidence

of a difference between corticosteroids and control on all-cause mortality (RR 0.89; 95% CI

0.79 to 1.00; p = 0.05) (Fig 2, S4 Table). Fixed-effect meta-analysis showed evidence of a bene-

ficial effect of corticosteroids versus control on all-cause mortality (RR 0.88; 95% CI 0.82 to

0.95; p = 0.00) (S1 Fig). Visual inspection of the forest plot and measures to quantify

Fig 2. Random-effects meta-analysis for corticosteroids versus control (standard care or placebo) on all-cause mortality.

https://doi.org/10.1371/journal.pone.0248132.g002
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heterogeneity (I2 = 23.1%) indicated no substantial heterogeneity. The time-points of assess-

ment varied from 21 [87] to 30 days after randomization [96, 116]. The trial sequential analysis

showed that we did not have enough information to confirm or reject that corticosteroids ver-

sus control reduce the risk of all-cause mortality with a relative risk reduction of 20% (Fig 3).

The subgroup analysis assessing the effects of the different corticosteroids versus control

showed no significant subgroup differences (p = 0.57) (Fig 2). The subgroup analysis assessing

the effects of disease severity as defined by trialists (mild, moderate, severe, or a combination)

showed no significant subgroup differences (p = 0.42) (S2 Fig).

Meta-analysis of serious adverse events. Random-effects meta-analysis showed no evi-

dence of a difference between corticosteroids and control on serious adverse events (RR 0.89;

95% CI 0.80 to 0.99; p = 0.04) (S3 Fig, S4 Table). Fixed-effect meta-analysis showed evidence

of a beneficial effect of corticosteroids versus control on serious adverse events (RR 0.88; 95%

CI 0.82 to 0.95; p = 0.00) (S4 Fig). Visual inspection of the forest plot and measures to quantify

Fig 3. Trial sequential analysis for corticosteroids versus control (standard care or placebo) on all-cause mortality.

https://doi.org/10.1371/journal.pone.0248132.g003
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heterogeneity (I2 = 39.1%) indicated no substantial heterogeneity. The time-points of assess-

ment varied from 21 [87] to 30 days after randomization [96, 116]. The trial sequential analysis

showed that we did not have enough information to confirm or reject that corticosteroids ver-

sus control reduce the risk of serious adverse events with a relative risk reduction of 20% (S5

Fig). The subgroup analysis assessing the effects of the different corticosteroids versus control

showed no significant subgroup differences (p = 0.71) (S3 Fig). The serious adverse event data

is predominately based on mortality data, and assessed according to the ICH-GCP definition

of a serious adverse event [15].

Meta-analysis of mechanical ventilation. Random-effects meta-analysis showed no evi-

dence of a difference between corticosteroids versus control on mechanical ventilation (RR

0.86; 95% CI 0.55 to 1.33; p = 0.49) (S6 Fig, S4 Table). Fixed-effect meta-analysis showed evi-

dence of a beneficial effect of corticosteroids versus control on mechanical ventilation (RR

0.77; 95% CI 0.63 to 0.94; p = 0.01) (S7 Fig). Visual inspection of the forest plot and measures

to quantify heterogeneity (I2 = 55.3%) indicated moderate heterogeneity. The time-points of

assessment varied from 7 days [67] to 28 days after randomization [46]. The trial sequential

analysis showed that we did not have enough information to confirm or reject that corticoste-

roids versus control reduce the risk of receiving mechanical ventilation with a relative risk

reduction of 20% (S8 Fig). The subgroup analysis assessing the effects of the different cortico-

steroids versus control showed no significant subgroup differences (p = 0.13) (S6 Fig). One of

the two trials [67] had substantial missing data for this outcome, but it was a small trial that

did not contribute with much data compared to the second trial.

Remdesivir versus control

We identified four trials randomizing 7,370 participants to remdesivir versus standard care

[85, 109] or placebo [42, 64]. All trials were assessed at high risk of bias (S3 Table). One trial

assessed two different dosages of remdesivir versus standard care [85], and the two compari-

sons were both included in the meta-analysis. We halved the control group to avoid double

counting [11].

Meta-analysis of all-cause mortality. Random-effects meta-analysis showed no evidence

of a difference between remdesivir versus control on all-cause mortality (RR 0.93; 95% CI 0.82

to 1.07; p = 0.31) (Fig 4, S5 Table). Visual inspection of the forest plot and measures to quan-

tify heterogeneity (I2 = 0%) indicated no heterogeneity. The assessment time points were 28

[42, 85, 109] and 29 days after randomization [64]. The trial sequential analysis showed that

we had enough information to reject that remdesivir versus control reduces the risk of all-

cause mortality with a relative risk reduction of 20% (Fig 5). The subgroup analysis assessing

the effects of the different control interventions showed no significant subgroup differences

(p = 0.21) (Fig 4). The subgroup analysis assessing the effects of early versus late intervention

(defined as no oxygen versus oxygen or respiratory support at baseline) showed no significant

subgroup differences (p = 0.85) (S9 Fig).

Meta-analysis of serious adverse events. Random-effects meta-analysis showed no evi-

dence of difference between remdesivir versus control on serious adverse events (RR 0.82; 95%

CI 0.68 to 1.00; p = 0.05) (S10 Fig, S5 Table). Fixed-effect meta-analysis showed evidence of a

beneficial effect of remdesivir versus control on serious adverse events (RR 0.88; 95% CI 0.79

to 0.99; p = 0.03) (S11 Fig). Visual inspection of the forest plot and measures to quantify het-

erogeneity (I2 = 38.9%) indicated some heterogeneity. The assessment time points were 28 [42,

85, 109] and 29 days after randomization [64]. The trial sequential analysis showed that we did

not have enough information to confirm or reject that remdesivir versus control reduces the

risk of serious adverse events with a relative risk reduction of 20% (S12 Fig). The subgroup
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analysis assessing the effects of the different control interventions showed no significant sub-

group differences (p = 0.83) (S10 Fig).

Meta-analysis of mechanical ventilation. Random-effects meta-analysis showed no evi-

dence of a difference between remdesivir versus control on mechanical ventilation (RR 0.73;

95% CI 0.42 to 1.27; p = 0.27) (S13 Fig, S5 Table). Visual inspection of the forest plot and mea-

sures to quantify heterogeneity (I2 = 83.1%) indicated substantial heterogeneity. The assess-

ment time points were 28 [42, 109] and 29 days after randomization [64]. The trial sequential

analysis showed that we did not have enough information to confirm or reject that remdesivir

versus control reduces the risk of receiving mechanical ventilation with a relative risk reduc-

tion of 20% (S14 Fig). The subgroup analysis assessing the effects of the different control inter-

ventions showed evidence of a significant subgroup difference between placebo and standard

care (p = 0.00) (S13 Fig).

Meta-analysis of non-serious adverse events. Fixed-effect meta-analysis showed no evi-

dence of a difference between remdesivir versus control on non-serious adverse events (RR

0.99; 95% CI 0.91 to 1.08; p = 0.86) (S15 Fig, S5 Table). Visual inspection of the forest plot and

measures to quantify heterogeneity (I2 = 56.4%) indicated moderate heterogeneity. The assess-

ment time point was 28 days after randomization [42, 64, 85]. The Trial Sequential Analysis

showed that we had enough information to reject that remdesivir versus control reduces the

risk of non-serious adverse events with a relative risk reduction of 20% (S16 Fig). The sub-

group analysis assessing the effects of the different control interventions showed evidence of

subgroup difference between placebo and standard care (p = 0.02) (S15 Fig).

Fig 4. Random-effects meta-analysis for remdesivir versus control (standard care or placebo) on all-cause mortality.

https://doi.org/10.1371/journal.pone.0248132.g004
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Hydroxychloroquine versus control

We identified 13 trials randomizing 10,276 participants to hydroxychloroquine versus stan-

dard care [33, 34, 41, 47, 53, 54, 57, 58, 104, 109], or placebo [52, 107]. All trials were assessed

at high risk of bias (S3 Table). One trial was not eligible for meta-analysis, as the results were

not reported in a usable way; i.e., the results were reported as per-protocol and several partici-

pants crossed over [41].

Meta-analysis of all-cause mortality. Fixed-effect meta-analysis showed no evidence of a

difference between hydroxychloroquine versus control on all-cause mortality (RR 1.09; 95%

CI 0.99 to 1.20; p = 0.08) (S17 Fig, S6 Table). Visual inspection of the forest plot and measures

to quantify heterogeneity (I2 = 0%) indicated no heterogeneity. The assessment time points

varied from five days after randomization [33, 34] to 30 days after randomization [107]. The

trial sequential analysis showed that we had enough information to reject that hydroxychloro-

quine versus control reduces the risk of all-cause mortality with a relative risk reduction of

20% (S18 Fig). The subgroup analysis assessing the effects of hydroxychloroquine versus dif-

ferent control interventions showed no significant subgroup differences (p = 0.92) (S17 Fig).

Meta-analysis of serious adverse events. Fixed-effect meta-analysis showed no evidence

of a difference between hydroxychloroquine versus control on serious adverse events (RR 1.08;

95% CI 0.98 to 1.19; p = 0.11) (S19 Fig, S6 Table). Visual inspection of the forest plot and mea-

sures to quantify heterogeneity (I2 = 0%) indicated no heterogeneity. The assessment time

Fig 5. Trial sequential analysis for remdesivir versus control (standard care or placebo) on all-cause mortality.

https://doi.org/10.1371/journal.pone.0248132.g005
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points varied from five days after randomization [33, 34] to 30 days after randomization [107].

The trial sequential analysis showed that we had enough information to reject that hydroxy-

chloroquine versus control reduces the risk of serious adverse events with a relative risk reduc-

tion of 20% (S20 Fig). The subgroup analysis assessing the effects of hydroxychloroquine

versus different control interventions showed no significant subgroup differences (p = 0.90)

(S19 Fig).

Meta-analysis of admission to intensive care. Fixed-effect meta-analysis showed no evi-

dence of a difference between hydroxychloroquine versus control on admission to intensive

care (RR 0.74; 95% CI 0.44 to 1.25; p = 0.26) (S21 Fig, S6 Table). Visual inspection of the forest

plot and measures to quantify heterogeneity (I2 = 0%) indicated no substantial heterogeneity.

The assessment time points were 28 days after randomization [76] and 30 days after randomi-

zation [107]. The trial sequential analysis showed that we did not have enough information to

confirm or reject that hydroxychloroquine versus control reduces the risk of admission to

intensive care with a relative risk reduction of 20% (S22 Fig). The subgroup analysis assessing

the effects of hydroxychloroquine versus different control interventions showed no significant

subgroup differences (p = 0.61) (S21 Fig).

Meta-analysis of mechanical ventilation. Fixed-effect meta-analysis showed no evidence

of a difference between hydroxychloroquine versus control on mechanical ventilation (RR

1.10; 95% CI 0.84 to 1.45; p = 0.48) (S23 Fig, S6 Table). Visual inspection of the forest plot and

measures to quantify heterogeneity (I2 = 0%) indicated no heterogeneity. The assessment time

points were 15 days after randomization [53] and 30 days after randomization [107]. The trial

sequential analysis showed that we did not have enough information to confirm or reject that

hydroxychloroquine versus control reduces the risk of receiving mechanical ventilation with a

relative risk reduction of 20% (S24 Fig). The subgroup analysis assessing the effects of hydro-

xychloroquine versus different control interventions showed no significant subgroup differ-

ences (p = 0.84) (S23 Fig).

Meta-analysis of non-serious adverse events. Random-effects meta-analysis showed evi-

dence of a harmful effect of hydroxychloroquine versus control on non-serious adverse events

(RR 2.09; 95% CI 1.14 to 3.80; p = 0.02) (S25 Fig, S6 Table). Visual inspection of the forest

plot and measures to quantify heterogeneity (I2 = 92.1%) indicated substantial heterogeneity.

The assessment time points were five days after randomization [33] and 30 days after randomi-

zation [107]. The trial sequential analysis showed that we did not have enough information to

confirm or reject that hydroxychloroquine versus control reduces the risk of non-serious

adverse events with a relative risk reduction of 20%. The subgroup analysis assessing the effects

of hydroxychloroquine versus different control interventions showed a significant subgroup

difference between standard care and placebo (p = 0.39) (S25 Fig).

Lopinavir-ritonavir versus control

We identified four trials randomizing 8,081 participants to lopinavir-ritonavir versus standard

care [3, 39, 105, 109]. We also identified one trial randomizing 60 participants to lopinavir-

ritonavir and novaferon versus novaferon alone [44]. All trials were assessed at high risk of

bias (S3 Table).

Meta-analysis of all-cause mortality. Fixed-effect meta-analysis showed no evidence of a

difference between lopinavir-ritonavir versus control on all-cause mortality (RR 1.01; 95% CI

0.92 to 1.12; p = 0.77) (S26 Fig, S7 Table). Visual inspection of the forest plot and measures to

quantify heterogeneity (I2 = 0.0%) indicated no heterogeneity. The time-points of assessment

were nine days after randomization in one trial [44], 21 days after randomization in one trial

[39], 28 days after randomization in two trials [3, 109], and 28 days or until discharge or death
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in one trial [105]. The trial sequential analysis showed that we had enough information to

reject that lopinavir-ritonavir versus control reduces the risk of all-cause mortality with a rela-

tive risk reduction of 20% (S27 Fig). The subgroup analysis assessing the effects of lopinavir-

ritonavir in combination with novaferon versus lopinavir-ritonavir alone showed no signifi-

cant subgroup differences (p = 0.99) (S26 Fig).

Meta-analysis of serious adverse events. Random-effects meta-analysis showed no evi-

dence of a difference between lopinavir-ritonavir versus control on serious adverse events (RR

1.00; 95% CI 0.91 to 1.11; p = 0.93) (S28 Fig, S7 Table). Visual inspection of the forest plot and

measures to quantify heterogeneity (I2 = 1.2%) indicated no substantial heterogeneity. The

time-points of assessment were nine days after randomization in one trial [44], 21 days after

randomization in one trial [39], 28 days after randomization in two trials [3, 109], and 28 days

or until discharge or death in one trial [105]. The trial sequential analysis showed that we had

enough information to reject that lopinavir-ritonavir versus control reduces the risk of serious

adverse events with a relative risk reduction of 20% (S29 Fig). The subgroup analysis assessing

the effects of lopinavir-ritonavir in combination with novaferon versus lopinavir-ritonavir

alone showed no significant subgroup differences (p = 0.99) (S28 Fig).

Meta-analysis of mechanical ventilation. Random-effects meta-analysis showed no evi-

dence of a difference between lopinavir-ritonavir versus control on mechanical ventilation

(RR 1.08; 95% CI 0.94 to 1.25; p = 0.29) (S30 Fig, S7 Table). Visual inspection of the forest

plot and measures to quantify heterogeneity (I2 = 0.0%) indicated no heterogeneity. The time-

points of assessment were 28 days after randomization in two trials [3, 78] and 28 days or until

discharge or death for one trial [105]. The trial sequential analysis showed that we had enough

information to reject that lopinavir-ritonavir versus control reduces the risk of receiving

mechanical ventilation with a relative risk reduction of 20% (S31 Fig).

Meta-analysis of renal replacement therapy. Random-effects meta-analysis showed no

evidence of a difference between lopinavir-ritonavir versus control on renal replacement ther-

apy (RR 0.97; 95% CI 0.73 to 1.28; p = 0.81) (S32 Fig, S7 Table). Visual inspection of the forest

plot and measures to quantify heterogeneity (I2 = 0.0%) indicated no heterogeneity. The time-

points of assessment was 28 days for the first trial [3] and 28 days or until discharge or death

for the second trial [105]. The trial sequential analysis showed that we did not have enough

information to confirm or reject that lopinavir-ritonavir versus control reduces the risk of

renal replacement therapy with a relative risk reduction of 20% (S33 Fig).

Meta-analysis of non-serious adverse events. Random-effects meta-analysis showed no

evidence of a difference between lopinavir–ritonavir versus standard care on non-serious

adverse events (RR 1.14; 95% CI 0.85–1.53; p = 0.38) (S34 Fig; S7 Table). Visual inspection of

the forest plot and measures to quantify heterogeneity (I2 = 75%) indicated substantial hetero-

geneity. The assessment time point was 21 days after randomization in the first trial [39] and

28 days after randomization in the second trial [3]. The trial sequential analysis showed that

we did not have enough information to confirm or reject that lopinavir–ritonavir compared

with standard care reduces nonserious adverse events with a relative risk reduction of 20%.

Interferon β-1a versus control

We identified two trials randomizing 4,219 participants to interferon β-1a versus standard

care [35, 109]. In one of the trials, the first 1,200 participants received interferon β-1a and lopi-

navir-ritonavir or lopinavir-ritonavir alone, while the remaining 2,927 participants received

interferon β-1a or standard care [109]. All trials were assessed at high risk of bias (S3 Table).

Meta-analysis of all-cause mortality. Random-effects meta-analysis showed no evidence

of a difference between interferon β-1a versus standard care on all-cause mortality (RR 0.75;
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95% CI 0.30 to 1.88; p = 0.54) (S35 Fig, S8 Table). Visual inspection of the forest plot and mea-

sures to quantify heterogeneity (I2 = 84.1%) indicated substantial heterogeneity. The time-

point of assessment was 28 days after randomization in both trials [35, 109]. The trial sequen-

tial analysis showed that we did not have enough information to confirm or reject that inter-

feron β-1a versus standard care reduces the risk of all-cause mortality with a relative risk

reduction of 20%.

Meta-analysis of serious adverse events. Random-effects meta-analysis showed no evi-

dence of a difference between interferon β-1a versus standard care on serious adverse events

(RR 0.75; 95% CI 0.30 to 1.88; p = 0.54) (S36 Fig, S8 Table). However, the data was solely

based on all-cause mortality data, since no other serious adverse events were reported [15].

Visual inspection of the forest plot and measures to quantify heterogeneity (I2 = 84.1%) indi-

cated substantial heterogeneity. The time-point of assessment was 28 days after randomization

in both trials [35, 109]. The trial sequential analysis showed that we did not have enough infor-

mation to confirm or reject that interferon β-1a versus standard care reduces the risk of serious

adverse events with a relative risk reduction of 20%.

Convalescent plasma versus control

We identified four trials randomizing 734 participants to convalescent plasma versus standard

care [38, 50, 77, 90]. All trials were assessed as at high risk of bias (S3 Table).

Meta-analysis of all-cause mortality. Random-effects meta-analysis showed no evidence

of difference between convalescent plasma versus standard care on all-cause mortality (RR

0.77; 95% CI 0.47 to 1.24; p = 0.28) (S37 Fig, S9 Table). Visual inspection of the forest plot and

measures to quantify heterogeneity (I2 = 27.5%) indicated some heterogeneity. The outcome

was assessed 28 days after randomization in two trials [38, 90], at 29 days after randomization

in one trial [77] and up to hospital discharge or 60 days in one trial [50]. The trial sequential

analysis showed that we did not have enough information to confirm or reject that conva-

lescent plasma versus standard care reduces the risk of all-cause mortality with a relative risk

reduction of 20% (S38 Fig).

Meta-analysis of serious adverse events. Fixed-effect meta-analysis showed no evidence

of a difference between convalescent plasma versus standard care on serious adverse events

(RR 0.93; 95% CI 0.64 to 1.35; p = 0.70) (S39 Fig, S9 Table). Visual inspection of the forest

plot and measures to quantify heterogeneity (I2 = 0.0%) indicated no substantial heterogeneity.

The time-point of assessment was 28 days after randomization in two trials [38, 90], 29 days

after randomization in one trial [77], and up to hospital discharge or 60 days in the last trial

[50]. The trial sequential analysis showed that we did not have enough information to confirm

or reject that convalescent plasma versus standard care reduces the risk of serious adverse

events with a relative risk reduction of 20% (S40 Fig).

Azithromycin versus control

We identified three trials randomizing 996 participants to azithromycin versus standard care

[82] or versus co-interventions with standard care [53], or without standard care [81]. All trials

were assessed at high risk of bias (S3 Table). One trial assessed the effects of azithromycin ver-

sus standard care [53], one trial assessed the effects of azithromycin plus lopinavir-ritonavir

and hydroxychloroquine versus lopinavir-ritonavir and hydroxychloroquine alone [81], and

one trial assessed the effects of azithromycin plus hydroxychloroquine and standard care ver-

sus hydroxychloroquine and standard care alone [53].

Meta-analysis of all-cause mortality. Fixed-effect meta-analysis showed no evidence of a

difference between azithromycin versus control on all-cause mortality (RR 0.99; 95% CI 0.79
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to 1.25; p = 0.95) (S41 Fig, S10 Table). Visual inspection of the forest plot and measures to

quantify heterogeneity (I2 = 7.4%) indicated no substantial heterogeneity. The time-point of

assessment was 15 days after randomization in the first trial [53], 29 days after randomization

in the second trial [82], and unclear in the third trial [81]. We have contacted the trial authors

and requested information on the assessment time-point, but we have not received a response

yet. The trial sequential analysis showed that we did not have enough information to confirm

or reject that azithromycin versus control reduces the risk of all-cause mortality with a relative

risk reduction of 20% (S42 Fig). The subgroup analysis assessing the effects of azithromycin

versus different control interventions showed no significant subgroup differences (p = 0.35)

(S41 Fig).

Meta-analysis of serious adverse events. Random-effects meta-analysis showed no evi-

dence of a difference between azithromycin versus control on serious adverse events (RR 0.95;

95% CI 0.55 to 1.63; p = 0.84) (S43 Fig, S10 Table). Visual inspection of the forest plot and mea-

sures to quantify heterogeneity (I2 = 16%) indicated no substantial heterogeneity. The time-point

of assessment was 15 days after randomization in the first trial [53], and 29 days after randomiza-

tion in the second trial [82], and unclear in the third trial [51]. We have contacted the trial authors

and requested information on the assessment time-point, but we have not received a response yet.

The trial sequential analysis showed that we did not have enough information to confirm or reject

that azithromycin versus control reduces the risk of serious adverse events with a relative risk

reduction of 20%. The subgroup analysis assessing the effects of azithromycin versus different

control interventions showed no significant subgroup differences (p = 0.30) (S43 Fig).

Meta-analysis of mechanical ventilation. Fixed-effect meta-analysis showed no evidence

of a difference between azithromycin versus control on mechanical ventilation (RR 1.07; 95%

CI 0.59 to 1.94; p = 0.83 (S44 Fig, S10 Table). Visual inspection of the forest plot and measures

to quantify heterogeneity (I2 = 53%) indicated moderate heterogeneity. The time-point of

assessment was 15 days after randomization in the first trial [53], and unclear in the second

trial [81]. We have contacted the trial authors and requested information on the assessment

time-point, but we have not received a response yet. The trial sequential analysis showed that

we did not have enough information to confirm or reject that azithromycin versus control

reduces the risk of receiving mechanical ventilation with a relative risk reduction of 20%. The

subgroup analysis assessing the effects of azithromycin versus different control interventions

showed no significant subgroup differences (p = 0.15) (S44 Fig).

Meta-analysis of non-serious adverse events. Fixed-effect meta-analysis showed no evi-

dence of a difference between azithromycin versus control on non-serious adverse events (RR

1.09; 95% CI 0.89 to 1.34; p = 0.38) (S45 Fig, S10 Table). Visual inspection of the forest plot

and measures to quantify heterogeneity (I2 = 0%) indicated no heterogeneity. The time-point

of assessment was 15 days after randomization in the first trial [53], and 29 days after randomi-

zation in the second trial [82]. The trial sequential analysis showed that we did not have

enough information to confirm or reject that azithromycin versus control reduces the risk of

non-serious adverse events with a relative risk reduction of 20% (S46 Fig). The subgroup anal-

ysis assessing the effects of azithromycin versus different control interventions showed no sig-

nificant subgroup differences (p = 0.71) (S45 Fig).

Colchicine versus control

We identified three trials randomizing 248 participants to colchicine versus standard care

[48], placebo plus standard care [91], or placebo plus hydroxychloroquine [106]. In the latter

trial, the colchicine group also received hydroxychloroquine as a co-intervention [106]. All tri-

als were assessed as at high risk of bias (S3 Table).
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Meta-analysis of all-cause mortality. Fixed-effect meta-analysis showed no evidence of a

difference between colchicine versus control on all-cause mortality (RR 1.03; 95% CI 0.07 to

16.01; p = 0.98) (S47 Fig, S11 Table). Visual inspection of the forest plot and measures to

quantify heterogeneity (I2 = 0%) indicated no heterogeneity. The time-point of assessment was

unclear in both trials [91, 106]. We have contacted the trial authors and requested information

on the assessment time-points, but we have not received a response yet. The trial sequential

analysis showed that we did not have enough information to confirm or reject that colchicine

versus control reduces the risk of all-cause mortality with a relative risk reduction of 20%. The

subgroup analysis assessing the effects of colchicine versus different control interventions

showed no evidence of a significant subgroup difference (p = 0.98) (S47 Fig).

Meta-analysis of non-serious adverse events. Random-effects meta-analysis showed no

evidence of a difference between colchicine versus control on non-serious adverse events (RR

0.88; 95% CI 0.18 to 4.39; p = 0.87) (S48 Fig, S11 Table). Visual inspection of the forest plot

and measures to quantify heterogeneity (I2 = 79.1%) indicated substantial heterogeneity. The

time-point of assessment was 21 days after randomization in one trial [48], but unclear in the

other two trials [91, 106]. We have contacted the trial authors and requested information on

the assessment time-points, but we have not received a response yet. The trial sequential analy-

sis showed that we did not have enough information to confirm or reject that colchicine versus

control reduces the risk of non-serious adverse events with a relative risk reduction of 20%.

The subgroup analysis assessing the effects of colchicine versus different control interventions

showed evidence of significant subgroup differences (p = 0.01) (S48 Fig).

Intravenous immunoglobin versus control

We identified two trials randomizing 93 participants to intravenous immunoglobulin versus

standard care [56] or placebo [94]. Both trials included immunoglobulin from healthy donors

[56, 94]. Both trials were assessed at high risk of bias (S3 Table).

Meta-analysis of all-cause mortality. Fixed-effect meta-analysis showed evidence of a

beneficial effect of intravenous immunoglobulin versus control on all-cause mortality (RR

0.40; 95% CI 0.19 to 0.87; p = 0.02) (S49 Fig, S12 Table). Visual inspection of the forest plot

and measures to quantify heterogeneity (I2 = 0%) indicated no heterogeneity. The outcome

was assessed only in hospital in the first trial [94] and up to 30 days in the second trial [56].

The trial sequential analysis showed that we did not have enough information to confirm or

reject that intravenous immunoglobulin versus control reduces the risk of all-cause mortality

with a relative risk reduction of 20% (S50 Fig). The subgroup analysis assessing the effects of

different control interventions showed no evidence of a significant subgroup difference

between placebo and standard care (p = 0.89) (S49 Fig).

Meta-analysis of serious adverse events. Fixed-effect meta-analysis showed evidence of a

beneficial effect of intravenous immunoglobulin versus control on serious adverse events (RR

0.40; 95% CI 0.19 to 0.87; p = 0.02) (S51 Fig, S12 Table). This data is solely based on all-cause

mortality data according to the ICH-GCP guidelines [15], since no other serious adverse

events were reported. Visual inspection of the forest plot and measures to quantify heterogene-

ity (I2 = 0%) indicated no heterogeneity. The outcome was assessed only in hospital in the first

trial [94] and up to 30 days in the second trial [56]. The trial sequential analysis showed that

we did not have enough information to confirm or reject that intravenous immunoglobulin

versus control reduces the risk of all-cause mortality with a relative risk reduction of 20% (S52

Fig). The subgroup analysis assessing the effects of different control interventions showed no

evidence of a significant subgroup difference between placebo and standard care (p = 0.89)

(S51 Fig).
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Tocilizumab versus control

We identified six trials randomizing 1038 patients to tocilizumab versus standard care [92,

110–112], placebo with standard care [89] or favipiravir alone as co-intervention [113]. All tri-

als were assessed as at high risk of bias (S3 Table).

Meta-analysis of all-cause mortality. Random-effects meta-analysis showed no evidence

of a difference between tocilizumab and control interventions on all-cause mortality (RR 1.03;

95% CI 0.72 to 1.46; p = 0.89) (S53 Fig, S13 Table). Visual inspection of the forest plot and

measures to quantify heterogeneity (I2 = 0.0%) indicated no heterogeneity. The time-points of

assessment were 28 days [89, 110, 112] and 30 days [111] after randomization. The trial

sequential analysis showed that we did not have enough information to confirm or reject that

tocilizumab versus control reduces the risk of all-cause mortality with a relative risk reduction

of 20% (S54 Fig). The subgroup analysis assessing the effects of different control interventions

showed no significant subgroup differences (p = 0.87) (S53 Fig).

Meta-analysis of serious adverse events. Random-effects meta-analysis showed no evi-

dence of a difference between tocilizumab and control interventions on serious adverse events

(RR 0.63; 95% CI 0.35 to 1.14; p = 0.12) (S55 Fig, S13 Table). Fixed-effect meta-analysis

showed evidence of a beneficial effect of tocilizumab versus control on serious adverse events

(RR 0.68; 95% CI 0.57 to 0.81; p = 0.00) (S56 Fig). Visual inspection of the forest plot and mea-

sures to quantify heterogeneity (I2 = 77.4%) indicated heterogeneity. The time-point of assess-

ment was either unclear [89, 113], 28 days [110, 112], or 30 days [111] after randomization.

The trial sequential analysis showed that we did not have enough information to confirm or

reject that tocilizumab versus control reduces the risk of serious adverse events with a relative

risk reduction of 20%. The subgroup analysis assessing the effects of different control interven-

tions showed no significant subgroup differences (p = 0.13) (S55 Fig).

Meta-analysis of admission to intensive care. Random-effects meta-analysis showed no

evidence of a difference between tocilizumab and control interventions on admission to inten-

sive care (RR 0.71; 95% CI 0.37 to 1.38; p = 0.32) (S57 Fig, S13 Table). Visual inspection of the

forest plot and measures to quantify heterogeneity (I2 = 36%) indicated no substantial hetero-

geneity. The time-point of assessment was either unclear [89] or 30 days [111] after randomi-

zation. The trial sequential analysis showed that we did not have enough information to

confirm or reject that tocilizumab versus control reduces the risk of admission to intensive

care with a relative risk reduction of 20%. The subgroup analysis assessing the effects of control

interventions showed no significant subgroup differences (p = 0.21) (S57 Fig).

Meta-analysis of mechanical ventilation. Random-effects meta-analysis showed evi-

dence of a beneficial effect of tocilizumab versus control on mechanical ventilation (RR 0.70;

95% CI 0.51 to 0.96; p = 0.02) (S58 Fig, S13 Table). Visual inspection of the forest plot and

measures to quantify heterogeneity (I2 = 0%) indicated no heterogeneity. The time-point of

assessment was either unclear [89] or 28 days [110, 112] after randomization. The trial sequen-

tial analysis showed that we did not have enough information to confirm or reject that tocilizu-

mab reduce the risk of mechanical ventilation with a relative risk reduction of 20% (S59 Fig).

The subgroup analysis assessing the effects of control interventions showed no significant sub-

group differences (p = 0.34) (S58 Fig).

Meta-analysis of non-serious adverse events. Fixed-effect meta-analysis showed no evi-

dence of a difference between tocilizumab versus control on non-serious adverse events (RR

1.03; 95% CI 0.92 to 1.14; p = 0.63) (S60 Fig, S13 Table). Visual inspection of the forest plot

and measures to quantify heterogeneity (I2 = 57.9%) indicated moderate heterogeneity. The

time-point of assessment was either unclear [89, 92, 113], 28 days [110], or 30 days [111] after

randomization. The trial sequential analysis showed that we did not have enough information
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to confirm or reject that tocilizumab versus control reduces the risk of non-serious adverse

events with a relative risk reduction of 20%. The subgroup analysis assessing the effects of dif-

ferent control interventions showed no significant subgroup differences (p = 0.27) (S60 Fig).

Bromhexine versus control

We identified two trials randomizing 96 participants to bromhexine versus standard care [93,

103]. Both trials were assessed at high risk of bias (S3 Table).

Meta-analysis of all-cause mortality. Random-effects meta-analysis showed no evidence

of a difference between bromhexine versus standard care on all-cause mortality (RR 0.17; 95%

CI 0.02 to 1.70; p = 0.13) (S61 Fig, S14 Table). Visual inspection of the forest plot and mea-

sures to quantify heterogeneity (I2 = 0%) indicated no heterogeneity. The time-point of assess-

ment was 28 days for the first trial [103] and unclear for the second trial [93]. The trial

sequential analysis showed that we did not have enough information to confirm or reject that

bromhexine versus standard care reduces the risk of all-cause mortality with a relative risk

reduction of 20%.

Meta-analysis of non-serious adverse events. Random-effects meta-analysis showed evi-

dence of a beneficial effect of bromhexine versus standard care on non-serious adverse events

(RR 0.32; 95% CI 0.15 to 0.69; p< 0.00) (S62 Fig, S14 Table). Visual inspection of the forest

plot and measures to quantify heterogeneity (I2 = 0%) indicated no heterogeneity. The time-

point of assessment was 28 days for the first trial [103] and unclear for the second trial [93].

The trial sequential analysis showed that we did not have enough information to confirm or

reject that bromhexine versus standard care reduces the risk of non-serious adverse events

with a relative risk reduction of 20%.

Remaining trial data

Because of lack of relevant data, it was not possible to conduct other meta-analyses, individual

patient data meta-analyses, or network meta-analysis. Nine single trials showed statistically

significant results but were all underpowered to confirm or reject realistic intervention effects.

We post hoc defined a ‘realistic intervention effect’ as a relative risk between 0.7 and 0.9.

One trial randomizing 402 participants compared five versus ten days of remdesivir and

showed evidence of a beneficial effect of five days of remdesivir on serious adverse events

(p = 0.003 (Fisher’s exact test)) [36]. One trial randomizing 92 participants compared the

immunomodulator interferon β-1a added to standard care versus standard care alone and

showed evidence of a beneficial effect of interferon β-1a on all-cause mortality (p = 0.029) [35].

This trial also showed evidence of a harmful effect of interferon β-1a on non-serious adverse

events (p = 0.006) [35]. One single trial randomizing 81 participants compared high-dosage

versus low-dosage chloroquine diphosphate and showed evidence of a beneficial effect of low-

dosage chloroquine on all-cause mortality (p = 0.024) [49]. One single three group trial ran-

domizing 667 participants to hydroxychloroquine with or without azithromycin versus stan-

dard care and showed evidence of a harmful effect of hydroxychloroquine with azithromycin

on adverse events not considered serious (p = 0.015) [53]. One single trial randomizing 76 par-

ticipants compared calcifediol versus standard care and showed evidence of a beneficial effect

of calcifediol on admittance to intensive care (p = 0.0001) [83]. One single trial randomizing

200 participants compared recombinant human granulocyte colony–stimulating factor

(rhG-CSF) versus standard care and showed evidence of a beneficial effect of rhG-CSF on all-

cause mortality (p = 0.017), and receipt of mechanical ventilation (p = 0.003) [84]. This trial

also showed evidence of a harmful effect of rhG-CSF on non-serious adverse events

(p = 0.0001) [84]. One single trial randomizing 84 participants compared electrolyzed saline
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versus standard care and showed evidence of a beneficial effect of electrolyzed saline on all-

cause mortality (p = 0.019) [99]. One single trial randomizing 78 participants compared brom-

hexine hydrochloride versus standard care and showed evidence of a beneficial effect of brom-

hexine hydrochloride on admittance to intensive care (p = 0.013) and receipt of mechanical

ventilation (p = 0.014) [103]. One single trial randomizing 100 participants compared hydro-

xychloroquine combined with arbidol versus hydroxychloroquine combined with lopinavir-

ritonavir and showed evidence of a beneficial effect of hydroxychloroquine combined with

arbidol on admission to intensive care (p = 0.0001) [108].

None of the remaining single trial results showed evidence of a difference on our predefined

review outcomes. Two trials did not report the results in a usable way; one trial reported results

of the experimental group with a proportion of participants being non-randomized [55], and

the second trial reported the results as per-protocol, and there was participant crossover [41].

Seven trials did not report on our review outcomes [43, 61, 62, 66, 70, 95, 100]. We have con-

tacted all corresponding authors, but we have not been able to obtain outcomes for our analy-

ses from the trialists yet. Most trials were assessed at high risk of bias (S3 Table).

Characteristics of the trials and their results on the review outcomes can be found in S2 Table.

Certainty of the evidence was assessed as ‘low’ or ‘very low’ for all outcomes (S15–S66 Tables).

Possible future contributions of ongoing trials

On November 2, 2020, a search on the Cochrane COVID-19 Study Register revealed 2527 reg-

istered randomized clinical trials [13]. From these, 106 different interventions for treatment of

COVID-19 patients were identified [13]. The ten most investigated experimental interventions

were hydroxychloroquine (162 trials), convalescent plasma (55 trials), azithromycin (52 trials),

lopinavir and ritonavir (40 trials), tocilizumab (33 trials), chloroquine (30 trials), favipiravir

(24 trials), remdesivir (15 trials), sarilumab (15 trials), and dexamethasone (13 trials). Eligible

trials will continuously be included in the present living systematic review once results become

available.

Discussion

We conducted the second edition of our living systematic review assessing the beneficial and

harmful effects of any intervention for COVID-19. We searched relevant databases and web-

sites for published and unpublished trials until November 2, 2020. We included a total of 82

trials randomizing 40,249 participants. Our present study showed that no evidence-based

treatment for COVID-19 currently exists.

Very low certainty evidence indicated that corticosteroids might reduce the risk of death,

serious adverse events, and mechanical ventilation.

Moderate certainty evidence showed that we could reject that remdesivir reduces the risk of

death by 20%. Very low certainty evidence indicated that remdesivir might reduce the risk of

serious adverse events.

Very low certainty evidence indicated that intravenous immunoglobin might reduce the

risk of death and serious adverse events, that tocilizumab might reduce the risk of serious

adverse events and mechanical ventilation, and that bromhexine might reduce the risk of non-

serious adverse events.

Moderate certainty evidence showed that we could reject that hydroxychloroquine reduces

the risk of death and serious adverse events by 20%, and that we could reject that lopinavir-

ritonavir reduces the risk of death, serious adverse events, and risk of mechanical ventilation

by 20%.
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Otherwise, we could neither confirm nor reject the effects of other interventions for

COVID-19. More trials with low risks of bias and random errors are urgently needed. For sev-

eral interventions we found a large number of currently ongoing trials.

The present review concludes that no evidence-based treatment currently exists for

COVID-19. Previous studies [116–118] including our first edition of the present review [118]

have concluded that both corticosteroids and remdesivir showed promising results. Since our

last edition, we have included 49 more trials randomizing 26.937 more participants, and we

therefore have more information, causing this difference. One previous systematic review pub-

lished in JAMA assessed the association between corticosteroids and 28-day all-cause mortality

and concluded that corticosteroids are effective for treating critically ill patients with COVID-

19 in reducing all-cause mortality [116]. However, the conclusions of this review are limited to

critically ill patients. This review assessed the certainty of evidence for all-cause mortality to be

moderate, while we assessed the certainty of evidence to be very low (see S4 Table).

Our present results showed a discrepancy between the random-effects meta-analysis result

and the fixed-effect meta-analysis result (due to heterogeneity) of corticosteroids versus con-

trol interventions when assessing all-cause mortality, i.e., the fixed-effect meta-analysis indi-

cated a more beneficial effect of corticosteroids. Due to the discrepancy between the random-

effects and the fixed-effect model we believe that these results should be interpreted with great

caution considering the uncertainty of the evidence. Furthermore, the meta-analytic effect esti-

mate was 0.89 which may be considered relatively small.

The U.S. Food and Drug Administration (FDA) recently approved remdesivir for use in

adult and pediatric patients 12 years of age and older for the treatment of COVID-19 requiring

hospitalization [119]. Based on the current evidence, we conclude that remdesivir is not effec-

tive in reducing all-cause mortality, neither for patients not requiring oxygen nor for patients

requiring oxygen or respiratory support at baseline. There was a discrepancy between the ran-

dom-effects and the fixed-effect meta-analysis (due to heterogeneity) of remdesivir versus con-

trol on serious adverse events, i.e., the fixed-effect meta-analysis indicated a more beneficial

effect of remdesivir. Due to the discrepancy between the random-effects and the fixed-effect

model we believe that these results should be interpreted with great caution considering the

uncertainty of the evidence. On all other outcomes when assessing the effects of remdesivir, we

conclude that more information is needed to confirm or reject the effects of remdesivir.

Hence, the clinical effects of remdesivir are unclear based on current evidence.

Our results are similar to the results of a preprint of an international collaborative meta-

analysis of randomized clinical trials assessing mortality outcomes with hydroxychloroquine

and chloroquine for participants with COVID-19 [120]. This review included some unpub-

lished data [120]. We have contacted the trialists of the trials that provided unpublished data

for this review, but we have not received any data yet. Nevertheless, our conclusions that

hydroxychloroquine does not reduce mortality in COVID-19 patients are the same [120].

Although we could exclude an intervention effect at 20% or above for most of our interven-

tions with our trial sequential analyses, we did not assess smaller and still worthwhile interven-

tion effects. If patients and investigators feel that such smaller intervention effects are worth

pursuing, then we recommend the conduct of trials with much larger sample sizes than the

ones we have identified in the present systematic review. That will require more national and

international collaboration [121].

Our living systematic review has a number of strengths. The predefined methodology was

based on the Cochrane Handbook for Systematic Reviews of Interventions [11], the eight-step

assessment suggested by Jakobsen et al. [17], and trial sequential analysis [22]. Hence, this

review considers both risks of systematic errors and risk of random errors. Another strength is

the living systematic review design, which allows us to continuously surveil and update the
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evidence-base of existing interventions for treatment of COVID-19 resulting in a decreased

timespan from publication of our results to optimization of clinical practice. This is particu-

larly important in this international health-care crisis, where a large number of new random-

ized clinical trials are continuously registered and published.

Our living systematic review also has limitations. First, the primary limitation is the paucity

of trials currently available, and the results from most current meta-analyses are of low or very

low certainty. This must be considered when interpreting our meta-analysis results. Second,

the trials that we included were all at risks of systematic errors so our results presumably over-

estimate the beneficial effects and underestimate the harmful effects of the included interven-

tions [122–129]. Third, it was not relevant to perform individual patient data meta-analyses,

network-meta-analysis, or several of the planned subgroup analyses due to lack of relevant

data. We contacted all trial authors requesting individual patient data, but until now we only

received five datasets [37, 68, 78, 79, 106]. We did not perform network meta-analysis because

the ranking of the interventions is not unclear, i.e., no evidence-based intervention currently

exits for COVID-19. Fourth, we included ‘time to clinical improvement’ as an outcome post

hoc. We did not initially plan to assess ‘time to clinical improvement’ [8] because this outcome

is poorly defined and if outcome assessors are not adequately blinded, assessments of

‘improvement’ may be biased. Furthermore, time to clinical improvement is not one of the

most patient-important outcomes. As an example, most patients would rather survive without

complications than recover a few days sooner. Fifth, the included trials assessed the outcomes

at different time points, which might contribute to increased heterogeneity. Sixth, some data

are included from preprints, and these might be subject to change following peer-review.

Therefore, some results, bias risk assessments, and GRADE summaries might change in later

editions of this living systematic review following inclusion of the published peer-reviewed

manuscripts. Seventh, we follow our protocol [8] as well as Cochrane Handbook for Systematic

Reviews of Interventions [11], and hence, we only consider formal tests for publication bias

when approximately more than 10 trials are included in a meta-analysis. Therefore, we have

not performed such analysis in the present edition of the review.

We have identified two reviews that are comparable to our present project [117, 130]. The

first is a network meta-analysis published in BMJ [117]. However, that review only includes

drug treatments for COVID-19, does not include individual patient data meta-analyses, and

does not use trial sequential analysis or similar methods to handle problems with multiplicity

(repeating updating of meta-analysis, multiple comparisons due to inclusion of multiple inter-

ventions, assessing multiple outcomes). Therefore, the conclusiveness of the presented evi-

dence in that review is unclear.

The second project is a living mapping of ongoing randomized clinical trials with network

meta-analysis on all interventions for COVID-19 [130]. The authors are producing and dissemi-

nating preliminary results through an open platform [130]. This review includes both prevention

and treatment and does not use trial sequential analysis or similar methods to handle problems

with multiplicity [8]. Therefore, the conclusiveness of the presented evidence is unclear.

Our assessment of the certainty of the evidence primarily concerning the effects of cortico-

steroids and remdesivir was lower compared to the two above-mentioned similar projects.

These discrepancies are primarily caused by the described differences in choice of review

methods.

Conclusions

No evidence-based treatment for COVID-19 currently exists. Very low certainty evidence

indicates that corticosteroids might reduce the risk of death, serious adverse events, and
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mechanical ventilation; that remdesivir might reduce the risk of serious adverse events; that

intravenous immunoglobin might reduce the risk of death and serious adverse events; that

tocilizumab might reduce the risk of serious adverse events and mechanical ventilation, and

that bromhexine might reduce the risk of non-serious adverse events. More trials with low

risks of bias and random errors are urgently needed. This review will continuously inform best

practice in treatment and clinical research of COVID-19.

Differences between the protocol and the review

We erroneously reported the adjusted TSA alpha as 2% in our published protocol [8]. This has

now been corrected to 3.3% according to two primary outcomes [17]. Further, we included

‘time to clinical improvement’ as an outcome post hoc.
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