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Abstract
Clinicians and researchers often need to measure proprioception (position sense), for

example to monitor the progress of disease, to identify the cause of movement or balance

problems, or to ascertain the effects of an intervention. While researchers can use sophisti-

cated equipment to estimate proprioceptive acuity with good precision, clinicians lack this

option and must rely on the subjective and imprecise methods currently available in the

clinic. Here we describe a novel technique that applies psychometric adaptive staircase pro-

cedures to hand proprioception with a simple tablet-style apparatus that could easily be

adapted for the clinic. We report test-retest reliability, inter-rater reliability, and construct

validity of the adaptive staircase method vs. two other methods that are commonly used in

clinical settings: passive motion direction discrimination (PMDD) and matching. As a first

step, we focus on healthy adults. Subjects ages 18–82 had their proprioception measured

with each of the three techniques, at the metacarpophalangeal joint in the second finger of

the right hand. A subset completed a second session in which the measures were repeated,

to assess test-retest reliability. Another subset had the measurements done by two different

testers to assess inter-rater reliability. Construct validity was assessed using stepwise

regression on age and activity level, and correlations calculated across the three methods.

Results suggest that of the three methods, the adaptive staircase method yields the best

test-retest reliability, inter-rater reliability, and construct validity. The adaptive staircase

method may prove to be a valuable clinical tool where more accurate assessment of propri-

oception is needed.

Introduction
To interact efficiently with our environment, for example reaching to pick up a mug, we need a
sense of where our hand is and how it is moving. This arises from the proprioceptive senses,
including static position sense, movement sense or kinesthesia, and sense of force or heaviness,
among others [1]. Proprioception is critical for accurate movement, but is frequently impaired
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following stroke [2, 3]. This has important functional consequences [4], including poor recov-
ery of mobility [5], ability to function in daily activities [6], and impaired motor learning [7].
Proprioceptive deficits are thought to play a role in the motor impairments associated with
other conditions as well, including multiple sclerosis [8], Parkinson’s and Huntington’s dis-
eases [9], fall risk in the elderly [10, 11], concussion [12], autism [13, 14], and chronic pain [15,
16]. Hand/finger proprioception is particularly important because of the role it plays in manual
dexterity and associated tasks of daily living.

To manage therapy plans and reevaluate patients after interventions, clinicians often must
assess proprioceptive acuity [17]. One common clinical test is passive movement direction dis-
crimination (PMDD), which measures movement sense: the joint is passively extended or
flexed and the subject must report the perceived direction [18–21]. In a matching test, the sub-
ject actively moves the testing joint to match the reference joint on the opposite side of the
body; the closeness of the match is thought to reflect static position sense. However, these and
other available clinical tests are subjective, poorly standardized, and too coarse to detect subtle
changes [21, 22]. In addition, these tests do not control for the influence of muscle contraction
history on proprioceptors (spindles) in the muscle, i.e. muscle thixotropy, which can bias pro-
prioceptive measurements [1, 21]; and they require active or passive movement of the patient,
creating a confound for patients with pain, spasticity, or motor deficits. For example, a patient
with pain may tense up with movement, providing extra stimulation to spindles and leading to
over-estimation of proprioceptive acuity. The patient may have less pain on a return visit,
yielding a more accurate proprioceptive estimate but erroneously indicating a decrease in acu-
ity since the first visit.

An additional limitation of current clinical tests is that proprioceptive sensitivity and bias
are not distinguished. If a series of numerical measurements of proprioception is made, the
spread of the subject’s errors reflects the inverse of his proprioceptive sensitivity. If the mean of
the errors is offset from true position, this offset represents a bias in perception. Sensitivity and
bias are independent; in other words, proprioception can be very sensitive but highly biased.
Perceptual sensitivity is thought to be represented in the brain in a Bayesian fashion [23], but
sensory bias is less understood. It is possible that some clinical populations have a deficit in
proprioceptive sensitivity while others have difficulties because their proprioception is biased.
It would thus be advantageous to develop a test that incorporates both sensitivity and bias,
making it possible to tailor rehabilitation to the specific proprioceptive deficit.

Although clinical tests of static position sense, such as matching, involve a movement before
each trial, this need not be the case. Activity in a population of muscle spindle afferents does
not stop when we stop moving. Background spindle activity continues, which, along with joint
receptors and skin stretch input, the brain integrates into a body map to create a perception of
position: static position sense [1]. Static position and movement senses are both critical for
accurate movement. For example, to correctly plan a reach, the brain needs an accurate esti-
mate of the hand’s starting position. To monitor the movement in progress and make any
needed corrections, the brain needs a good sense of movement. These sub-modalities share a
common neural apparatus, including primarily spindles at non-extreme joint angles [1, 24],
spinal pathway, and processing in the somatosensory cortices and cerebellum. Static position
sense may arise from summation of background activity in spindles, while movement sense
may arise from changes in spindle activity that occur in proportion to changes in muscle length
[1]. Research in cats and monkeys suggests that position and movement information are simul-
taneously processed in the same neural networks [25, 26]. Thus, a disease or injury that impairs
one sense is likely to impair the other. From a clinical standpoint, because of the limitations of
tests involving movement, a movement-free clinical test of static position sense would have
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substantial advantages. Such a test would need to be standardized and objective, reliable, simple
to apply, portable, inexpensive, and easy for patients to complete [27, 28].

Here we propose a novel proprioception measurement technique for the hand and fingers.
The adaptive staircase method is an application of psychometric techniques to the measure-
ment of static position sense, which allows us to estimate both proprioceptive sensitivity and
bias [29]. Specifically, we place a tablet-style computer screen over the pronated hand with a
white line presented at varying angular increments from the joint being tested. We measure
proprioception in the plane of abduction/abduction at the metacarpophalangeal (MP) joint in
2nd (index) finger of the right hand, chosen because of its importance for fine motor skill such
as pinching small objects between the thumb and index finger. With each stimulus presenta-
tion, the subject reports whether he feels that the white line is left or right of his index fingertip.
The procedure is related to the Parameter Estimation by Sequential Testing method developed
by Taylor & Creelman [30] and recently applied in robot-assisted measurement of propriocep-
tion for research applications [31]. We compare the adaptive staircase method to carefully
controlled versions of two common clinical tests, matching and PMDD, addressing three ques-
tions: (1) Which method has the best test-retest reliability? (2) Which method has the best
inter-rater reliability? (3) Which method best reflects known proprioceptive changes associated
with aging [10] and skilled movement [32, 33], i.e. construct validity?

Methods

Subjects
48 healthy right-handed adults (aged 18–82, 16 male) participated in the study. All three tests
were performed in each session, with the order randomized. Study procedures were approved
by the Indiana University Institutional Review Board. Subjects gave written informed consent
and completed questionnaires about general health and activities: years playing a sport or
musical instrument and average hours played per week. For all three techniques, subjects were
seated in front of a table, with the apparatus on the table positioned centrally. The elbow was
bent about 90° and slightly in front of the body, with the forearm resting on the table. The
hand was pronated on the 25° apparatus, about 20cm in front of the body and centered with
the trunk midline. The index finger was positioned at 55° to the subject’s trunk and the other
fingers were slightly spread.

Measurement procedures
Adaptive staircase technique. The blindfolded subject’s right hand was positioned on an

angled stand (Fig 1Ai), with the MP joint of the 2nd finger on a tactile marker and the index fin-
ger pointing along a 55° line (Fig 1Aiii). The experimenter was aided by the outline of a hand
drawn on the stand. The subject was instructed to press firmly against the experimenter’s finger
and then relax to ensure a consistent history of muscle contraction across subjects (a control
for muscle thixotropy; Fig 1Aii). Finally, a tablet-style computer screen (13 x 9 inches, 8mm
thick) was placed over the subject’s hand. The blindfold was removed and the subject
instructed not to move the right hand further.

Subjects viewed the display of a custom MATLAB (R2013a MathWorks) program, a white
line on a dark background (Fig 1Aiv). The line began directly over the tested joint (represented
by a circle) and extended the length of the finger. Subjects were asked to report whether the
end of the line was located to the right or left of their index fingertip. 6 staircases were com-
pleted for each application of this method. The first two staircases began 30° to the left and
right of the true finger position (55°). If the subject’s response was correct (e.g. “left” when the
white line was 30° to the left of the finger), the line moved 10° towards true finger position and
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the subject was again asked to report their perception. As the line approached true finger posi-
tion, the choice of right or left became less obvious; eventually the subject felt the white line
had overshot their finger and changed their reported direction. Whenever reported direction
changed, the line reversed direction and step size decreased by half to yield more measure-
ments near the subject’s perceptual boundary (the angle at which the subject is equally likely to
report “left” or “right”). The first two staircases terminated when the subject had reversed
direction 4 times. To increase the number of angles sampled near the subject’s actual percep-
tual boundary, a rough estimate of the boundary (mean of the last 4 angles tested in each stair-
case) and sensitivity (0.75 of the range of these 8 angles) in the subject’s perception was then
calculated online. The subsequent 4 staircases were centered on the subject’s rough perceptual
boundary, rather than true finger position, and began to the left or right (2 each) at an angular

Fig 1. Setup procedures for eachmethod. A. i. Subject positioning for the adaptive staircase method. Right hand placed on a 25° stand beneath the
display screen. ii. The blindfolded subject was instructed to press firmly against the experimenter’s finger (dashed outline) and then relax to control for muscle
thixotropy. iii. The hand was positioned in an outline drawn on the angled stand. The MP joint of the 2nd finger was on a tactile marker with the index finger
pointing along a 55° line and the other fingers slightly spread. iv. The display screen was placed over the subject’s hand and the blindfold removed. Subject
was asked, “Do you feel like the end of the white line is to the left or to the right of your index fingertip?” B. i. Subject positioning for the matching method. Both
hands placed in outlines on the angle board, inclined at 25°. Subject blindfolded throughout. ii. Controlling for muscle thixotropy in both index fingers. iii. The
experimenter (dashed outlines) moved each index finger in turn with a variety of motions. iv. The experimenter placed the right index finger along the 55° line
and the left in a variety of positions about the mirrored position. Subjects were instructed to “Move your left index finger so it mirrors your right index finger.” C.
i. Subject positioning for the PMDDmethod. Right hand on the left half of the angle board, inclined at 25°. Index finger taped to a smooth stick. Subjects
blindfolded throughout. ii. Controlling for muscle thixotropy. iii. Experimenter placed hand with fingers slightly spread and index finger in a neutral position. iv.
Touching only the stick, experimenter moved subject’s index finger right or left (~0.062°/s) to a standard angular magnitude. Subject was asked, “Did I move
your finger to the left or to the right?”

doi:10.1371/journal.pone.0135757.g001
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distance equal to the subject’s rough sensitivity. Initial step size for these staircases was 5°, and
each staircase terminated when the subject had reversed direction 4 times. The mean number
of proprioceptive estimates subjects made in the 6 staircases was 58 ±12. Subjects were given
no feedback on their performance.

For each angle tested during the 6 staircases, the program calculated the number of
responses obtained and the proportion that were “right” rather than “left.” This individual
dataset was fit with a logistic regression model, chosen both because the data come from a
binomial distribution and because this limits the predicted proportions to [0 1]. The 50% point
of the fitted function was interpreted as the subject’s perceptual boundary, equivalent to the
bias in the proprioceptive estimate of that joint’s position. The angular difference between the
25% and 75% points of the function was interpreted as a representation of the sensitivity in the
subject’s proprioceptive estimate, with a smaller value reflecting greater sensitivity. Across indi-
viduals, the boundary and sensitivity obtained from the fitted function were nearly identical to
those obtained from the mean and standard deviation of the angles at which the subject
reversed direction (correlation r> 0.98, p< 10−30 for boundary and r> 0.92, p< 10−20 for
sensitivity), suggesting the function fit was good. To assess whether a shortened version of this
test would compare favorably with the other methods, we also re-analyzed this data using only
the first 2 staircases.

Matching. To maximize consistency across subjects and experimenters, we devised a
matching task that is less subjective than what might be done in a clinical setting, but still sim-
ple enough to be used clinically. Blindfolded subjects placed both hands on an inclined custom
angle board (Fig 1Bi.): the right hand (reference hand) on the right panel and the left (indicator
hand) on the left panel. The experimenter placed the hands such that the MP joint of each
index finger was on a tactile marker where the lines intersect. Both panels had the outline of a
hand drawn to aid the experimenter with positioning, plus a thick line at ±55° to indicate mir-
rored positions. Lines of different colors were drawn on the left panel in steps of 10, 5, 2.5, and
1.25°. After controlling for muscle thixotropy (Fig 1Bii), the experimenter moved each index
finger in turn (Fig 1Biii) and then placed the right index finger along the 55° line (Fig 1Biv).
Participants were then instructed to move the left index finger to mirror the right. The left fin-
ger’s final position was recorded in terms of angular deviation from a perfectly mirrored posi-
tion (0°). This trial was repeated 10 times, with the experimenter moving and placing both
index fingers before each trial to discourage subjects from using remembered positions. The
subject’s proprioceptive bias and sensitivity were calculated as the mean and SD of the 10
errors.

Passive movement direction discrimination threshold (PMDD). Rather than test the
clinically-used PMDD, we devised a less-subjective version that could still be used clinically.
PMDD was tested on the left panel of the inclined angle board (Fig 1Ci). Experimenters placed
the blindfolded subject’s right hand so that the MP joint of the index finger was on the tactile
marker where the lines intersect. To reduce extraneous sensations during passive movement,
the index finger was taped to a smooth stick 1.5 x 0.75 x 10cm (Fig 1Cii). After controlling for
muscle thixotropy (Fig 1Cii), the experimenter moved the finger 5° left or right. Subjects were
asked to report perceived movement direction, then the finger was moved back to neutral.
Experimenters touched only the stick during movements, to avoid giving the subject pressure
cues. To control for movement speed, experimenters counted 2s between each 1.25° line on the
board, equivalent to 0.625°/s [34]. For each tested angular magnitude, the subject experienced
6 movements: 3 to the left and 3 to the right, in randomized order. If the subject made a mis-
take at 5 degrees, angular magnitude was increased to 10°, and subsequently to 15° if mistakes
were made at 10°. If the subject did not make mistakes at 5 degrees, angular magnitude was
decreased to 2.5°, and then to 1.25° if no mistakes were made at 2.5°. The PMDD threshold was
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recorded as the smallest angle at which the subject did not make mistakes. The largest angular
magnitude tested, due to biomechanical constraints, was 15°. The smallest angle tested, due to
constraints of the angle board, was 1.25°.

Statistical analysis
Test-retest reliability: we calculated intraclass correlation coefficients for each of 5 dependent
variables (adaptive staircase boundary and sensitivity; matching mean and SD; PMDD thresh-
old), comparing Session 1 to Session 2 [35]. Inter-rater reliability: we calculated intraclass cor-
relation coefficients for each of the 5 dependent variables, comparing Rater 1 (YL) to Rater 2
(BS). Construct validity: we used a stepwise method to perform a multiple regression of each of
the 5 dependent variables on 3 predictive terms: age, sport years x hours per week, music years
x hours per week. We also computed correlations between each pair of tests: adaptive staircase
boundary vs. PMDD threshold, adaptive staircase boundary vs. matching mean, matching
mean vs. PMDD threshold, as well as equivalent pairs involving measures of sensitivity.

Results
20 of the 48 subjects (age 18–73, 5 male) completed 2 experimental sessions each and were
included in the test-retest analysis. The sessions were on average 14.9 ±10.7 days apart. The
remaining 28 subjects completed one session each. For the 11 subjects (age 20–73, 3 male)
included in the inter-rater analysis, measurements were performed twice in a single session by
two different experimenters. At the end of each session, subjects were asked to rate their quality
of sleep, fatigue from the session, and attention during the session on a scale from one to 10,
with 10 being the most. Subjects reported an average (±SD) of 7.5±1.3, 3.3±2.2, and 8.2±1.1,
respectively. All individual data is available in S1–S6 Files.

Test-retest reliability
Perceptual boundary (proprioceptive bias) as measured by the adaptive staircase technique
showed the most stability. This was evident across the age range of subjects. Young subjects
typically showed very small proprioceptive biases (e.g., Fig 2), while older subjects often
showed larger proprioceptive biases (e.g., Fig 3). The spread of proprioceptive estimates (sensi-
tivity) with the adaptive staircase method also appeared consistent across sessions, but no dif-
ference between older and younger adults was evident.

This pattern was observed in the group data as well. Proprioceptive bias as assessed with the
adaptive staircase technique yielded the strongest test-retest reliability, whether the full 6 stair-
cases were analyzed (ICC R = 0.62, p = 0.001; Fig 4A) or a short version including only the first
two staircases (ICC R = 0.59, p = 0.002). One subject is an outlier according to quartile analysis,
but as ICC is still significant after exclusion (ICC R = 0.52, p = 0.008), this subject does not
appear to drive the relationship. Proprioceptive sensitivity, however, was not as stable (ICC
R< 0.22, p> 0.17), which may be accounted for by the lack of spread in this population. The
matching method appears the least stable (bias ICC R = -0.07, p> 0.6; sensitivity ICC R = 0.18,
p> 0.22; Fig 4B), with the PMDDmethod in between (ICC R = 0.34, p = 0.007; Fig 4C). The
PMDD data also suggests a learning effect, with thresholds decreasing for nearly all subjects in
their second session (Fig 4C).

Inter-rater reliability
Adaptive staircase measurement of perceptual boundary also yielded the greatest inter-rater
reliability (Fig 5A). This was the case for both the long (ICC R = 0.86, p<0.001) and short (ICC
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R = 0.76, p = 0.0015) versions of the test. However, inter-rater reliability was poor for proprio-
ceptive sensitivity with both versions (ICC R<0.20, p>0.13), again perhaps due to the small
range of sensitivity in this healthy population. Matching showed the next highest inter-rater
reliability for proprioceptive bias as assessed by the mean of 10 trials (ICC R = 0.60, p = 0.016),
and the highest for proprioceptive sensitivity as assessed by the SD of 10 trials (ICC R = 0.77,
p = 0.0012; Fig 5B). In contrast the PMDDmeasurement yielded weak inter-rater reliability
(ICC R = 0.40, p = 0.089; Fig 5C). Clear differences between the raters are evident, with Rater 2
finding higher thresholds than Rater 1 (Fig 5C).

Construct validity
Stepwise regression on age, sport years x hours per week, and music years x hours per week
yielded only age as a significant predictive term for any of the three techniques. Age most
strongly predicted proprioceptive bias as assessed by the adaptive staircase perceptual

Fig 2. Adaptive staircase performance of a young subject (age 21) in two sessions conducted 10 days
apart. A. i. Subject performance on 6 staircases in session 1: trial number vs. angle of the white line relative
to true index finger angle (0°). Black: staircases that began with a leftward trial. Grey: staircases that began
with a rightward trial. ii. Proportion of rightward responses at each tested angle (black circles) with fitted
function. Perceptual boundary (proprioceptive bias) was 1.1°, proprioceptive sensitivity (width of grey shaded
area on x-axis) was 5.5°.B. i. Subject performance 10 days later on 6 staircases. ii. Both perceptual
boundary and sensitivity (3.4° and 6.3°, respectively) appear similar to the first session.

doi:10.1371/journal.pone.0135757.g002
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boundary (long method R2 = 0.17, p = 0.003; short method R2 = 0.13, p = 0.012). This is illus-
trated at the individual level by Figs 2 and 3; older subjects tended to have larger proprioceptive
biases than younger subjects (Fig 6A), a difference that was maintained across multiple ses-
sions. No significant predictors were found for proprioceptive sensitivity with the adaptive
staircase method. PMDD threshold was also predicted by age (R2 = 0.13, p = 0.011, Fig 6C).
However, no significant predictors were found for either mean or SD of the 10 estimates
obtained in the matching method (Fig 6B).

There was a tendency for adaptive staircase boundary to be correlated with PMDD thresh-
old (R = 0.21, p = 0.081) and for adaptive staircase sensitivity to be correlated with matching
SD (R = 0.21, p = 0.079), which may support the construct validity of the adaptive staircase
method. There were no other significant or trend correlations across methods, using either pro-
prioceptive bias or sensitivity measures (p’s> 0.1).

Fig 3. Adaptive staircase performance of an older subject (age 56) in two sessions conducted 7 days
apart. A. i. Subject performance on 6 staircases in session 1: trial number vs. angle of the white line relative
to true index finger angle (0°). Black: staircases that began with a leftward trial. Grey: staircases that began
with a rightward trial. ii. Proportion of rightward responses at each tested angle (black circles) with fitted
function. Perceptual boundary (proprioceptive bias) was -12.4°, proprioceptive sensitivity (width of grey
shaded area on x-axis) was 3.3°.B. i. Subject performance 7 days later on 6 staircases. ii. Both perceptual
boundary and sensitivity (-9.6° and 2.5°, respectively) appear similar to the first session.

doi:10.1371/journal.pone.0135757.g003
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Discussion
We compared a novel technique for measuring proprioception (adaptive staircase method)
with modified versions of two tests already used clinically (matching and PMDD). We found
substantial differences in test-retest reliability, inter-rater reliability, and construct validity
(Fig 7). Proprioceptive bias assessed by adaptive staircase method was strongest in all three

Fig 4. Group data on test-retest reliability (N = 20). A. Adaptive staircase measurement yielded a strong positive correlation between subject performance
in Session 1 and 2 for perceptual boundary (proprioceptive bias, black circles). Best fit line (solid) is close to the 1:1 line (dashed), suggesting no overall
difference between the two sessions. Proprioceptive sensitivity (grey squares) was not significantly correlated across sessions.B.Matching did not produce
a significant correlation across sessions for either mean (reflects proprioceptive bias, black circles) or SD (reflects proprioceptive sensitivity, grey squares).
C. PMDD showed a positive correlation across sessions for threshold (black filled circles with grey outlines reflect more than one subject), but the shallow
slope indicates that thresholds were smaller overall in session 2 compared to session 1.

doi:10.1371/journal.pone.0135757.g004

Fig 5. Group data on inter-rater reliability (N = 11). A. There was strong agreement across raters for perceptual boundary (proprioceptive bias, black
circles) measured by the adaptive staircase method. Best fit line (solid) is close to the 1:1 line (dashed), suggesting no overall difference between the two
raters. Proprioceptive sensitivity (grey squares) was not significantly correlated across raters. B. Both mean and SD of matching estimates were correlated
across raters. C. Inter-rater reliability for PMDD was poor, with Rater 2 determining larger thresholds than Rater 1. Black filled circles with grey outlines reflect
more than one subject.

doi:10.1371/journal.pone.0135757.g005
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analyses. A shortened version (~20 trials instead of ~60) performed nearly as well in all areas,
and better than matching or PMDD. The matching method may be the weakest of those tested,
having statistically significant inter-rater reliability only. The PMDD trended toward test-retest
and inter-rater reliability, although with noticeable biases between days and raters, and was sig-
nificantly predicted by age, indicating good construct validity.

The adaptive staircase method is an application of psychophysical techniques to proprio-
ception. As a scientific discipline, psychophysics investigates the connection between physical
stimuli and subjective responses via the psychometric function [29]. Responses are often
obtained using a staircase procedure: the stimuli are presented in ascending or descending
order of strength, with the subject choosing one of two options for each stimulus (two alterna-
tive forced choice), e.g. left or right. A series of staircases can then be used to create the psycho-
metric function. This technique has historically been used to test visual perception, e.g. to
assess the perception of color, brightness, and other properties. In recent years, this method
has been applied to proprioception by researchers of motor control. E.g., with the subject
unable to see his hand, a robot moves the hand in an adaptive staircase algorithm, with subjects
judging final hand position relative to a visual marker or to proprioceptive straight-ahead [36,
37], or judging which direction the robot moved them [31, 38]. While these techniques are
powerful, they require costly equipment.

Strengths and limitations of the techniques
Assessing proprioception is a complex endeavor no matter what method is chosen. It cannot
be measured directly, but must be based on the subject’s responses. In addition, proprioception
is not one homogenous sensory modality. Rather, it consists of sub-modalities, e.g. static
position sense, passive motion sense, sense of effort [1]. The adaptive staircase assesses static
position sense with the hand unmoving, while matching assesses static position sense after
movement. The PMDDmethod, in contrast, assesses passive motion sense. All three measures
were applied with the finger at 55° to the subject’s trunk, about 20cm in front of and centered
with the trunk. The hand was pronated, fingers slightly spread, forearm resting on the table,
and elbow bent about 90° and slightly in front of the body. We did not test generalizability to

Fig 6. Group data on construct validity, with regression lines (N = 48). A. Perceptual boundary (absolute value) as measured with the adaptive staircase
method showed a positive relationship with subject age, with older subjects having larger proprioceptive biases.B.Mean matching estimate (absolute value)
is not predicted by subject age.C. PMDD threshold was also positively predicted by subject age, with older subjects tending to have higher thresholds.

doi:10.1371/journal.pone.0135757.g006
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Fig 7. Comparison of the three measurement techniques.

doi:10.1371/journal.pone.0135757.g007
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other postures or finger angles, seeking instead to find a single posture and angle that could be
tested easily and accurately. Proprioceptive bias and sensitivity as measured in these conditions
may not generalize to other arm postures, as finger perception can be affected by forearm mus-
cles [1], or to extreme finger angles, as joint receptors can bias perception in these circum-
stances [24]. It should also be noted that we asked subjects to make judgments about their
fingertip position, not their joint angle. The brain is thought to be better at perceiving the end-
point effector than individual joints [24], so proprioceptive estimates generated this way will
not necessarily agree with measures asking subjects to estimate joint angles explicitly.

Adaptive staircase method. Strongest in terms of test-retest reliability, inter-rater reliabil-
ity, and construct validity, this method assesses static position sense in a single unmoving fin-
ger. Once the subject’s hand is positioned, the test is automated and not dependent on
subjective judgments by the experimenter, which is advantageous in terms of training and flexi-
bility. This method requires sustained attention from subjects, which was a challenge for the
5–6 minute long version with 6 staircases. However, analysis indicates that shortening the test
to 2 staircases (2–3 minutes including setup) would yield results very close to the long version,
and would still be stronger than matching or PMDD. The shortened version may thus be pref-
erable in clinical settings.

An added strength of the adaptive staircase method is the independent estimation of propri-
oceptive bias and sensitivity. In terms of functional dexterity, bias measured during the adap-
tive staircase test is expected to correspond to bias errors in the subject’s movements: e.g.,
when relying on proprioception to pick up a small object like a pen with the index finger and
thumb, a subject with high sensitivity but a large leftward bias might direct his index finger too
far to the right of the pen. If he attempted this task many times, because of his high sensitivity
he would be too far to the right of the pen very consistently. In contrast, a subject with low bias
and low sensitivity would simply be more variable at the task: sometimes his index finger
would end up exactly on the pen, but other times he would be to the left or to the right. Bias
and sensitivity deficits could also be combined in any proportion. Both would impair func-
tional dexterity and potentially be detrimental to the subject’s quality of life; the primary reason
for measuring both of these parameters is that some clinical populations may be impaired on
only one, others on both, etc., so a test that only measures sensitivity could miss the proprio-
ceptive deficits in a population that has impairment only in bias. These predictions for func-
tional dexterity need to be tested in clinical populations, which are likely to have a wider spread
of bias (and potentially sensitivity) than the healthy subjects in the present study.

Matching. Assesses static position sense after movement. Although more sophisticated
versions of this test have been used effectively in proprioception research [17, 39], it does not
translate well to the clinic, as researchers often use their own custom apparatus to increase
accuracy [17, 21]. Despite the popularity of this method in clinical settings, its reliability and
validity have rarely been investigated [40]. The technique did poorly in our tests of test-retest
reliability and construct validity, but did show evidence of inter-rater reliability, perhaps
because we used the angle board to reduce subjectivity. There does appear to be a learning
effect, however, with subjects’means ranging from -5 to 12° in session 1 but clumped closely
around 0° in session 2. We also found a potential confound related to body biomechanics;
because the right index finger’s position was close to neutral, relaxing the left hand could place
the left index finger in an approximately mirrored position, a strategy that several subjects
reported using. A major limitation of the matching method is that it is impossible to determine
which side plays what role in perception; i.e., it cannot be determined whether one side is more
affected than the other [36], and any deficit could be motor as well as sensory. There may also
be interactions between the brain’s proprioceptive estimates of each index finger; the noticeably
smaller range in error for matching compared to the other methods suggests that involving
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both hands may yield a perceptual advantage, potentially an added complication for a clinical
test. An additional limitation is the requirement for active movement. Any patient with move-
ment difficulties, pain, impaired manual dexterity, etc, cannot be reliably tested this way.

PMDD. Reflects a subject’s sense of passive movement [41] and is a widely used clinical
method. However, the technique is highly subjective as applied in the clinic. Movement magni-
tude and speed are poorly standardized, yet both parameters influence movement sense [42].
Correlation between PMDD and clinical outcome is only low to moderate [42]. In our tests,
PMDD had good construct validity (strong relationship with subject age), but test-retest and
inter-rater reliability did not reach significance. Although we used the angle board to reduce sub-
jectivity and standardized movement extent and speed, the trained experimenters still found it
difficult to keep movement speed constant. The method usually applied clinically, without any
of these controls, is likely even less reliable. Despite our care, several subjects spontaneously
reported that they gained knowledge of results by paying attention on the return movements.
The required passive movement may also be problematic with some populations: it can’t reliably
be used in patients with injury, pain, or spasticity. It should be noted that adaptive staircase pro-
cedures can be applied to movement sense, as has been done in research applications [31, 38].
However, performing the large number of trials needed to build a psychometric function, at the
slow speed required, would be prohibitively time consuming for a clinical test.

Other considerations
Bias vs. sensitivity in static position sense measurement. For both the adaptive staircase

and matching methods, only proprioceptive bias yielded significant results. With one exception
(inter-rater reliability for matching), no relationships involving the spread of proprioceptive
estimates (analogous to sensitivity) were found. While it is possible that proprioceptive sensi-
tivity is not as useful a measure as bias, this cannot be concluded definitively from our data.
Sensitivity was tightly grouped across subjects in our data; there was not enough spread to
determine a correlation in most cases. This could be due to our focus on healthy subjects; it is
possible that a patient group with impaired proprioception would have a larger spread in sensi-
tivity. Well-controlled studies in patient populations are needed to determine whether mea-
surements of proprioceptive sensitivity have reliability and validity in these groups.

Skilled movement and comparison across methods. Stepwise regression did not identify
music or sport involvement as a predictor for proprioception with any of the techniques. This
does not necessarily mean these factors do not affect proprioception; our subject pool could
again be responsible. Although we were able to recruit healthy subjects with a wide range of
age, only a handful had substantial music or sport involvement. The non-uniform distribution
in these variables could account for the lack of relationship with proprioception.

Correlations calculated between the three methods identified only two trends: adaptive stair-
case boundary correlated with PMDD threshold, and adaptive staircase sensitivity correlated
with matching SD, supporting the construct validity of the adaptive staircase method. Interest-
ingly, matching and PMDD did not approach a significant correlation with each other. This is
perhaps surprising considering that these methods are commonly used in the clinical setting, but
considering the limited evaluation of the clinimetric properties of these tests [21, 22], and their
poor test-retest reliability, inter-rater reliability, and construct validity in the healthy population
tested here, there may be reason to question the usefulness of these tests in clinical settings.

Conclusions
We have introduced an adaptive staircase technique in healthy adults to measure propriocep-
tion in the hand and fingers. This method requires no movement but has strong test-retest and
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inter-rater reliability as well as construct validity. It is simple to use and portable, and could
easily be translated into a clinical tool. Both proprioceptive bias and sensitivity are estimated,
which could be useful in tailoring rehabilitation to specific proprioceptive deficits. Studies that
include other finger joints and the wrist are needed to determine how generalizable the tech-
nique may be, and studies in patient populations are needed to examine the utility of this
method when proprioception is impaired.

Supporting Information
S1 File. All session 1 data. Tab-delimited text file of de-identified individual data from 48 sub-
jects used to evaluate construct validity. 48 columns, each representing a subject, by 27 rows,
each representing a variable listed in Variables1.txt.
(TXT)

S2 File. Test-retest session 1 data. Tab-delimited text file of de-identified individual data from
the first session of 20 subjects used to evaluate test-retest reliability. 20 columns, each repre-
senting a subject, by 27 rows, each representing a variable listed in Variables1.txt.
(TXT)

S3 File. Test-retest session 2 data. Tab-delimited text file of de-identified individual data from
the second session of 20 subjects used to evaluate test-retest reliability. 20 columns, each repre-
senting a subject, by 27 rows, each representing a variable listed in Variables1.txt.
(TXT)

S4 File. Inter-rater data. Tab-delimited text file of de-identified individual data from the
11 subjects used to evaluate inter-rater reliability. 11 columns, each representing a subject, by
18 rows, each representing a variable listed in Variables2.txt.
(TXT)

S5 File. Variable names in S1–S3 Files. List of the variable names represented by rows in
All_S1.dat, Test-retest_S1.dat, and Test-retest_S2.dat.
(TXT)

S6 File. Variable names in S4 File. List of the variable names represented by rows in Inter-
rater.dat.
(TXT)

Author Contributions
Conceived and designed the experiments: NH HJB BMS KK. Performed the experiments: BMS
KK YL. Analyzed the data: NH HJB YL BMS KK. Wrote the paper: NH BMS KK YL HJB.

References
1. Proske U, Gandevia SC. The proprioceptive senses: their roles in signaling body shape, body position

and movement, and muscle force. Physiological reviews. 2012; 92(4):1651–97. doi: 10.1152/physrev.
00048.2011 PMID: 23073629.

2. Tyson SF, Hanley M, Chillala J, Selley AB, Tallis RC. Sensory loss in hospital-admitted people with
stroke: characteristics, associated factors, and relationship with function. Neurorehabil Neural Repair.
2008; 22(2):166–72. doi: 10.1177/1545968307305523 PMID: 17687023.

3. Twitchell TE. The restoration of motor function following hemiplegia in man. Brain. 1951; 74(4):443–80.
PMID: 14895765.

4. Dukelow SP, Herter TM, Bagg SD, Scott SH. The independence of deficits in position sense and visu-
ally guided reaching following stroke. Journal of neuroengineering and rehabilitation. 2012; 9:72. doi:
10.1186/1743-0003-9-72 PMID: 23035968; PubMed Central PMCID: PMC3543214.

Measurement of Proprioception

PLOS ONE | DOI:10.1371/journal.pone.0135757 August 14, 2015 14 / 16

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0135757.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0135757.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0135757.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0135757.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0135757.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0135757.s006
http://dx.doi.org/10.1152/physrev.00048.2011
http://dx.doi.org/10.1152/physrev.00048.2011
http://www.ncbi.nlm.nih.gov/pubmed/23073629
http://dx.doi.org/10.1177/1545968307305523
http://www.ncbi.nlm.nih.gov/pubmed/17687023
http://www.ncbi.nlm.nih.gov/pubmed/14895765
http://dx.doi.org/10.1186/1743-0003-9-72
http://www.ncbi.nlm.nih.gov/pubmed/23035968


5. Campfens SF, Zandvliet SB, Meskers CG, Schouten AC, van Putten MJ, van der Kooij H. Poor motor
function is associated with reduced sensory processing after stroke. Exp Brain Res. 2015. doi: 10.
1007/s00221-015-4206-z PMID: 25651979.

6. Smith DL, Akhtar AJ, GarrawayWM. Proprioception and spatial neglect after stroke. Age and ageing.
1983; 12(1):63–9. PMID: 6846094.

7. Vidoni ED, Boyd LA. Preserved motor learning after stroke is related to the degree of proprioceptive
deficit. Behavioral and brain functions: BBF. 2009; 5:36. doi: 10.1186/1744-9081-5-36 PMID:
19715593; PubMed Central PMCID: PMC2740848.

8. Nilsagard Y, Lundholm C, Denison E, Gunnarsson LG. Predicting accidental falls in people with multi-
ple sclerosis—a longitudinal study. Clinical rehabilitation. 2009; 23(3):259–69. doi: 10.1177/
0269215508095087 PMID: 19218300.

9. Abbruzzese G, Berardelli A. Sensorimotor integration in movement disorders. Movement disorders:
official journal of the Movement Disorder Society. 2003; 18(3):231–40. doi: 10.1002/mds.10327 PMID:
12621626.

10. Schmitt K, Kressig RW. [Mobility and balance]. Therapeutische Umschau Revue therapeutique. 2008;
65(8):421–6. doi: 10.1024/0040-5930.65.8.421 PMID: 18677690.

11. Bullock-Saxton JE, WongWJ, Hogan N. The influence of age on weight-bearing joint reposition sense
of the knee. Exp Brain Res. 2001; 136(3):400–6. PMID: 11243482.

12. Register-Mihalik JK, Mihalik JP, Guskiewicz KM. Balance deficits after sports-related concussion in
individuals reporting posttraumatic headache. Neurosurgery. 2008; 63(1):76–80; discussion -2. doi: 10.
1227/01.NEU.0000335073.39728.CE PMID: 18728571.

13. Mundy P, Gwaltney M, Henderson H. Self-referenced processing, neurodevelopment and joint atten-
tion in autism. Autism: the international journal of research and practice. 2010; 14(5):408–29. doi: 10.
1177/1362361310366315 PMID: 20926457; PubMed Central PMCID: PMC2990352.

14. Weimer AK, Schatz AM, Lincoln A, Ballantyne AO, Trauner DA. "Motor" impairment in Asperger syn-
drome: evidence for a deficit in proprioception. Journal of developmental and behavioral pediatrics:
JDBP. 2001; 22(2):92–101. PMID: 11332785.

15. Gill KP, CallaghanMJ. The measurement of lumbar proprioception in individuals with and without low
back pain. Spine. 1998; 23(3):371–7. PMID: 9507628.

16. Treleaven J, Jull G, LowChoy N. The relationship of cervical joint position error to balance and eye
movement disturbances in persistent whiplash. Manual therapy. 2006; 11(2):99–106. doi: 10.1016/j.
math.2005.04.003 PMID: 15919229.

17. Li KY, Wu YH. Clinical evaluation of motion and position sense in the upper extremities of the elderly
using motion analysis system. Clinical interventions in aging. 2014; 9:1123–31. doi: 10.2147/CIA.
S62037 PMID: 25075181; PubMed Central PMCID: PMC4106968.

18. Friden T, Roberts D, Ageberg E, Walden M, Zatterstrom R. Review of knee proprioception and the rela-
tion to extremity function after an anterior cruciate ligament rupture. The Journal of orthopaedic and
sports physical therapy. 2001; 31(10):567–76. doi: 10.2519/jospt.2001.31.10.567 PMID: 11665744.

19. Epstein O, Perkin GD, Cookson J, Watt IS, Rakhit R, Robins AW, et al. Clinical Examination. 4, editor.
London: Elsevier Health Sciences; 2008.

20. Gilman S. Joint position sense and vibration sense: anatomical organisation and assessment. Journal
of neurology, neurosurgery, and psychiatry. 2002; 73(5):473–7. PMID: 12397137; PubMed Central
PMCID: PMC1738112.

21. Hillier S, Immink M, Thewlis D. Assessing Proprioception: A Systematic Review of Possibilities. Neuror-
ehabil Neural Repair. 2015. doi: 10.1177/1545968315573055 PMID: 25712470.

22. Lincoln NB ea. The unreliability of sensory assessments. Clinical rehabilitation. 1991; 5:273–82.

23. Knill DC, Pouget A. The Bayesian brain: the role of uncertainty in neural coding and computation.
Trends Neurosci. 2004; 27(12):712–9. doi: 10.1016/j.tins.2004.10.007 PMID: 15541511.

24. Fuentes CT, Bastian AJ. Where is your arm? Variations in proprioception across space and tasks. J
Neurophysiol. 2010; 103(1):164–71. doi: 10.1152/jn.00494.2009 PMID: 19864441; PubMed Central
PMCID: PMC4116392.

25. Vargas-Irwin CE, Shakhnarovich G, Yadollahpour P, Mislow JM, Black MJ, Donoghue JP. Decoding
complete reach and grasp actions from local primary motor cortex populations. The Journal of neurosci-
ence: the official journal of the Society for Neuroscience. 2010; 30(29):9659–69. doi: 10.1523/
JNEUROSCI.5443-09.2010 PMID: 20660249; PubMed Central PMCID: PMC2921895.

26. Bosco G, Poppele RE. Representation of multiple kinematic parameters of the cat hindlimb in spinocer-
ebellar activity. J Neurophysiol. 1997; 78(3):1421–32. PMID: 9310433.

Measurement of Proprioception

PLOS ONE | DOI:10.1371/journal.pone.0135757 August 14, 2015 15 / 16

http://dx.doi.org/10.1007/s00221-015-4206-z
http://dx.doi.org/10.1007/s00221-015-4206-z
http://www.ncbi.nlm.nih.gov/pubmed/25651979
http://www.ncbi.nlm.nih.gov/pubmed/6846094
http://dx.doi.org/10.1186/1744-9081-5-36
http://www.ncbi.nlm.nih.gov/pubmed/19715593
http://dx.doi.org/10.1177/0269215508095087
http://dx.doi.org/10.1177/0269215508095087
http://www.ncbi.nlm.nih.gov/pubmed/19218300
http://dx.doi.org/10.1002/mds.10327
http://www.ncbi.nlm.nih.gov/pubmed/12621626
http://dx.doi.org/10.1024/0040-5930.65.8.421
http://www.ncbi.nlm.nih.gov/pubmed/18677690
http://www.ncbi.nlm.nih.gov/pubmed/11243482
http://dx.doi.org/10.1227/01.NEU.0000335073.39728.CE
http://dx.doi.org/10.1227/01.NEU.0000335073.39728.CE
http://www.ncbi.nlm.nih.gov/pubmed/18728571
http://dx.doi.org/10.1177/1362361310366315
http://dx.doi.org/10.1177/1362361310366315
http://www.ncbi.nlm.nih.gov/pubmed/20926457
http://www.ncbi.nlm.nih.gov/pubmed/11332785
http://www.ncbi.nlm.nih.gov/pubmed/9507628
http://dx.doi.org/10.1016/j.math.2005.04.003
http://dx.doi.org/10.1016/j.math.2005.04.003
http://www.ncbi.nlm.nih.gov/pubmed/15919229
http://dx.doi.org/10.2147/CIA.S62037
http://dx.doi.org/10.2147/CIA.S62037
http://www.ncbi.nlm.nih.gov/pubmed/25075181
http://dx.doi.org/10.2519/jospt.2001.31.10.567
http://www.ncbi.nlm.nih.gov/pubmed/11665744
http://www.ncbi.nlm.nih.gov/pubmed/12397137
http://dx.doi.org/10.1177/1545968315573055
http://www.ncbi.nlm.nih.gov/pubmed/25712470
http://dx.doi.org/10.1016/j.tins.2004.10.007
http://www.ncbi.nlm.nih.gov/pubmed/15541511
http://dx.doi.org/10.1152/jn.00494.2009
http://www.ncbi.nlm.nih.gov/pubmed/19864441
http://dx.doi.org/10.1523/JNEUROSCI.5443-09.2010
http://dx.doi.org/10.1523/JNEUROSCI.5443-09.2010
http://www.ncbi.nlm.nih.gov/pubmed/20660249
http://www.ncbi.nlm.nih.gov/pubmed/9310433


27. Wycherley AS, Helliwell PS, Bird HA. A novel device for the measurement of proprioception in the
hand. Rheumatology. 2005; 44(5):638–41. doi: 10.1093/rheumatology/keh568 PMID: 15728416.

28. Leibowitz N, Levy N, Weingarten S, Grinberg Y, Karniel A, Sacher Y, et al. Automated measurement of
proprioception following stroke. Disability and rehabilitation. 2008; 30(24):1829–36. doi: 10.1080/
09638280701640145 PMID: 19037777.

29. Klein SA. Measuring, estimating, and understanding the psychometric function: a commentary. Percep-
tion & psychophysics. 2001; 63(8):1421–55. PMID: 11800466.

30. Taylor M, Greelman C. PEST: Efficient Estimates on Probability Function. The Journal of Acoustical
Society of America. 1967; 41(4):782–7.

31. Ostry DJ, Darainy M, Mattar AA, Wong J, Gribble PL. Somatosensory plasticity and motor learning. The
Journal of neuroscience: the official journal of the Society for Neuroscience. 2010; 30(15):5384–93.
doi: 10.1523/JNEUROSCI.4571-09.2010 PMID: 20392960; PubMed Central PMCID: PMC2858322.

32. Smitt MS, Bird HA. Measuring and enhancing proprioception in musicians and dancers. Clinical rheu-
matology. 2013; 32(4):469–73. doi: 10.1007/s10067-013-2193-7 PMID: 23397145.

33. Hrysomallis C. Balance ability and athletic performance. Sports medicine. 2011; 41(3):221–32. doi: 10.
2165/11538560-000000000-00000 PMID: 21395364.

34. Grob KR, Kuster MS, Higgins SA, Lloyd DG, Yata H. Lack of correlation between different measure-
ments of proprioception in the knee. The Journal of bone and joint surgery British volume. 2002; 84
(4):614–8. PMID: 12043789.

35. Lexell JE, DownhamDY. How to assess the reliability of measurements in rehabilitation. American jour-
nal of physical medicine & rehabilitation / Association of Academic Physiatrists. 2005; 84(9):719–23.
PMID: 16141752.

36. Henriques DY, Cressman EK. Visuomotor adaptation and proprioceptive recalibration. Journal of motor
behavior. 2012; 44(6):435–44. doi: 10.1080/00222895.2012.659232 PMID: 23237466.

37. Cressman EK, Henriques DY. Sensory recalibration of hand position following visuomotor adaptation.
J Neurophysiol. 2009; 102(6):3505–18. doi: 10.1152/jn.00514.2009 PMID: 19828727.

38. Vahdat S, Darainy M, Ostry DJ. Structure of plasticity in human sensory and motor networks due to per-
ceptual learning. The Journal of neuroscience: the official journal of the Society for Neuroscience.
2014; 34(7):2451–63. doi: 10.1523/JNEUROSCI.4291-13.2014 PMID: 24523536; PubMed Central
PMCID: PMC3921420.

39. Dukelow SP, Herter TM, Moore KD, Demers MJ, Glasgow JI, Bagg SD, et al. Quantitative assessment
of limb position sense following stroke. Neurorehabil Neural Repair. 2010; 24(2):178–87. doi: 10.1177/
1545968309345267 PMID: 19794134.

40. Goble DJ. Proprioceptive acuity assessment via joint position matching: from basic science to general
practice. Physical therapy. 2010; 90(8):1176–84. doi: 10.2522/ptj.20090399 PMID: 20522675.

41. Brindle TJ, Lebiedowska MK, Miller JL, Stanhope SJ. The influence of ankle joint movement on knee
joint kinesthesia at various movement velocities. Scandinavian journal of medicine & science in sports.
2010; 20(2):262–7. doi: 10.1111/j.1600-0838.2009.00887.x PMID: 19486484.

42. Gokeler A, Benjaminse A, Hewett TE, Lephart SM, Engebretsen L, Ageberg E, et al. Proprioceptive def-
icits after ACL injury: are they clinically relevant? British journal of sports medicine. 2012; 46(3):180–
92. doi: 10.1136/bjsm.2010.082578 PMID: 21511738.

Measurement of Proprioception

PLOS ONE | DOI:10.1371/journal.pone.0135757 August 14, 2015 16 / 16

http://dx.doi.org/10.1093/rheumatology/keh568
http://www.ncbi.nlm.nih.gov/pubmed/15728416
http://dx.doi.org/10.1080/09638280701640145
http://dx.doi.org/10.1080/09638280701640145
http://www.ncbi.nlm.nih.gov/pubmed/19037777
http://www.ncbi.nlm.nih.gov/pubmed/11800466
http://dx.doi.org/10.1523/JNEUROSCI.4571-09.2010
http://www.ncbi.nlm.nih.gov/pubmed/20392960
http://dx.doi.org/10.1007/s10067-013-2193-7
http://www.ncbi.nlm.nih.gov/pubmed/23397145
http://dx.doi.org/10.2165/11538560-000000000-00000
http://dx.doi.org/10.2165/11538560-000000000-00000
http://www.ncbi.nlm.nih.gov/pubmed/21395364
http://www.ncbi.nlm.nih.gov/pubmed/12043789
http://www.ncbi.nlm.nih.gov/pubmed/16141752
http://dx.doi.org/10.1080/00222895.2012.659232
http://www.ncbi.nlm.nih.gov/pubmed/23237466
http://dx.doi.org/10.1152/jn.00514.2009
http://www.ncbi.nlm.nih.gov/pubmed/19828727
http://dx.doi.org/10.1523/JNEUROSCI.4291-13.2014
http://www.ncbi.nlm.nih.gov/pubmed/24523536
http://dx.doi.org/10.1177/1545968309345267
http://dx.doi.org/10.1177/1545968309345267
http://www.ncbi.nlm.nih.gov/pubmed/19794134
http://dx.doi.org/10.2522/ptj.20090399
http://www.ncbi.nlm.nih.gov/pubmed/20522675
http://dx.doi.org/10.1111/j.1600-0838.2009.00887.x
http://www.ncbi.nlm.nih.gov/pubmed/19486484
http://dx.doi.org/10.1136/bjsm.2010.082578
http://www.ncbi.nlm.nih.gov/pubmed/21511738

