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SUMMARY

Repeated cycles of infection-associated lower airway
inflammation drive the pathogenesis of persistent
wheezing disease in children. In this study, the occur-
renceofacute respiratory tract illnesses (ARIs)and the
nasopharyngeal microbiome (NPM) were character-
ized in 244 infants through their first five years of life.
Through this analysis, we demonstrate that >80%
of infectious events involve viral pathogens, but are
accompaniedby a shift in theNPM towarddominance
byasmall rangeofpathogenicbacterial genera.Unex-
pectedly, this change frequently precedes the detec-
tion of viral pathogens and acute symptoms. Coloni-
zation of illness-associated bacteria coupled with
early allergic sensitization is associated with persis-
tentwheeze in school-aged children,which is the hall-
markof the asthmaphenotype. In contrast, thesebac-
terial genera are associated with ‘‘transient wheeze’’
that resolves after age 3 years in non-sensitized chil-
dren. Thus, to complement early allergic sensitization,
monitoringNPMcompositionmay enable early detec-
tion and intervention in high-risk children.

INTRODUCTION

Despite advances in modern medicine, acute respiratory tract

illnesses (ARIs) continue to be a global health concern. They
Cell Host & M
are amajor cause of morbidity andmortality, especially in infants

and young children whose immune systems have not yet

matured (Ferkol and Schraufnagel, 2014; Zar and Ferkol,

2014), and are themost common reason for antibiotic use in chil-

dren (Australian Commission on Safety and Quality in Health

Care, 2017). The upper airway is a reservoir for microbial com-

munities including viruses, bacteria, and fungi, and these have

implications for respiratory health and disease. However, current

research into the etiology of ARIs focuses primarily on viruses,

most notably respiratory syncytial virus (RSV) and human rhino-

viruses (RV). The bacterial microbiome is increasingly recog-

nized as playing an important role in the susceptibility and

severity of ARIs, as well as non-communicable respiratory dis-

eases such as asthma (de Steenhuijsen Piters et al., 2015; Du-

rack et al., 2016; Man et al., 2017; Vissers et al., 2014). Infancy

is a critical time when microbial colonization may influence an

individual’s future respiratory health or disease; indeed, epidemi-

ological data show that repeated ARIs during early childhood

are a major risk factor for wheeze and asthma that persist into

adulthood (Holt and Sly, 2012).

In recent years, we and others have described the nasopha-

ryngeal microbiome (NPM) in early life (from birth to 1 or 2 years

of age) (Biesbroek et al., 2014; Bisgaard et al., 2007; Bogaert

et al., 2011; Bosch et al., 2017; Teo et al., 2015; Tsai et al.,

2015). These independent studies in different human popula-

tions have reported strikingly similar findings. Firstly, the NPM

appears to be simple in structure, with distinct profiles domi-

nated by a single bacterial operational taxonomic unit (OTU) or

genus. A Staphylococcus-dominated profile can be observed

in early infancy (from 1 week) but its prevalence decreases
icrobe 24, 341–352, September 12, 2018 ª 2018 Elsevier Inc. 341
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sharply over the first year, to be replaced by Corynebacterium-,

Alloiococcus (Dolosigranulum)-, or Moraxella-dominated pro-

files, with transient incursions of Streptococcus- or Haemophi-

lus-dominated profiles during ARIs. Secondly, NPM composition

influences both microbiota stability and ARI risk and severity.

One study of 60 infants from the Netherlands in the first

two years of life reported a Moraxella-dominated or mixed

Corynebacterium/Dolosigranulum profile at 1.5 months of age

was associated with high NPM stability and low frequency of

parent-reported ARIs in the subsequent period (Biesbroek

et al., 2014). Our study of 234 infants from Australia in the first

year of life also found that Moraxella-dominated and Alloiococ-

cus-dominated profiles were more stable than others, but a

Moraxella-dominated NPM at 2 months of age was associated

with earlier onset of first ARI (Teo et al., 2015). There were also

common environmental correlates of the NPM that differed

slightly across studies but included mode of delivery, infant

feeding, season, crowding or exposure to other children, recent

antibiotic use, and prior infections. Many of these studies,

however, were limited to samples collected either during illness

or during periods of health, and none have yet elucidated the

dynamics of the NPM over the entire pre-school period.

Understanding patterns of airway microbial colonization and

its association with ARIs and subsequent wheeze phenotypes

is an important step toward the potential manipulation of the mi-

crobiome in treating or preventing acute or chronic respiratory

disease. In this study, we performed a comprehensive charac-

terization of the largest longitudinal collection of nasopharyngeal

samples reported to date: more than 3,000 samples from 244

children collected during periods of respiratory health and acute

illness over the first five years of life, as part of the prospective

Childhood Asthma Study (CAS) (Kusel et al., 2006, 2007, 2008,

2012; Teo et al., 2015). We have previously reported an associ-

ation between viral-associated lower respiratory infections

(LRIs) in infancy, especially those accompanied by fever, and

the development of persistent wheeze and asthma in later child-

hood at 5 and 10 years of age in this cohort, particularly for

infants who developed allergic sensitization by age 2 (Kusel

et al., 2007, 2012). In addition, we recently reported patterns of

bacterial colonization in samples collected during the first year

of life, and found that specific NPM profiles were associated

with ARI symptom severity, independent of the effect of common

respiratory viruses (Teo et al., 2015). Here, we address several

major research gaps: (1) we examine the relationships and longi-

tudinal dynamics of NPM colonization within children, in health

and during ARI episodes, across the first five years of life;

(2) we investigate changes in the association of ARI symptoms

with specific NPM taxa over the pre-school years; (3) we address

whether the appearance of viral pathogens in the NPM is a

harbinger of change in local bacterial populations, or vice versa;
Figure 1. Definition and Distribution of Microbiome Profile Groups

(A) Heatmap shows relative abundances of 20 common operational taxonomic

and aggregated values for all other rare OTUs within each sample. Tree to the le

21 common OTU sequences. Dendrogram at the top indicates complete linkag

assignment to microbiome profile groups (MPGs) based on this clustering. Bar pl

the whole dataset; OTUs that dominate a common MPG are colored to match th

(B) Distribution of MPGs within each time period, shown separately for healthy a

See also Figures S1 and S2; Table S2.
and (4) we investigate the relationship between NPM coloniza-

tion, early allergic sensitization, and future persistent wheeze

at 5 years of age.

RESULTS

We characterized the bacterial microbiome of 3,014 nasopha-

ryngeal samples from 244 infants in their first five years of life, us-

ing 16S rRNA V4 region amplicon sequencing (STAR Methods).

Composition of Upper AirwayMicrobiota in the First Five
Years of Life
Across all samples, the dominant bacterial genera were

Moraxella (40.1%), Streptococcus (13.3%), Corynebacterium

(12.1%), Alloiococcus (11.1%), Haemophilus (8.6%), and

Staphylococcus (4.2%). These made up 89% of all reads,

consistent with previously reported results in this cohort for the

first year of life (Teo et al., 2015) (Figures 1A and S1A). Each of

the six major genera comprised multiple OTUs, although the

majority were extremely rare. OTU distributions withinMoraxella,

Alloiococcus, and Corynebacterium were less diverse, with %5

OTUs making upR97% of all reads from each respective genus

at any time period (Figure S1B). OTU distributions within

Streptococcus, Haemophilus, and Staphylococcus were more

diverse, although still dominated by one or two OTUs (Fig-

ure S1B). The phylogenetic relationships between OTUs are indi-

cated by the tree in Figure 1A, and details of their distribution and

predicted species associations are discussed in Figure S2 and

Table S1.

The distribution of the relative abundances of common OTUs

across samples was highly structured (Figure 1A). We used

hierarchical clustering to assign each sample to one of 15 micro-

biome profile groups (MPGs) (Figure 1). Most MPGs were

dominated by one OTU, which was used to label each MPG (Fig-

ure 1 and Table S2). The exceptions were two ‘‘mixed’’ MPGs.

‘‘Mixed1’’ MPG contains samples (n = 327) in which the common

OTUswere all at low abundance, and the vast majority of mixed1

samples (97%) were not dominated by any OTU; the rest

were mostly ARI samples dominated by genera that likely repre-

sent known respiratory pathogens (Mycoplasma, Bordetella,

Neisseria, Pseudomonas, Prevotella). ‘‘Mixed2’’ MPG (n = 51)

represents a heterogeneous cluster with no distinct profile. The

distribution of MPGs across ages is shown in Figure 1B.

Within-sample (alpha) diversity of the NPM increased with age

in both healthy and ARI samples, with a noticeable increase after

2 years of age (generalized estimating equations linear regres-

sion of Shannon’s diversity index versus age, adjusted for symp-

tom status and gender: p = 1.13 10�12 after 2 years; Figure 2A).

The increasing diversity after 2 years of age was due to both

increasing number and increasing equitability (evenness) of the
units (OTUs), aggregated values for other OTUs from the common genera,

ft shows phylogenetic relationships between the sequenced V4 region of the

e clustering of Bray-Curtis distances between samples; colored bars indicate

ot to the right shows the total abundance of each OTU or group of OTUs within

at MPG.

nd acute respiratory illness (ARI) samples.
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Figure 2. Within-Sample Diversity Is Associated with Age and Acute Respiratory Illness Symptoms

(A) Shannon diversity index (SDI) per sample over time, colored by symptom status as indicated (URI, upper respiratory illness; LRI, lower respiratory illness). Solid

lines, loess smoothed curves; dashed lines, 95% confidence intervals.

(B) SDI distributions within common MPGs. Asterisk indicates FDR adjusted p value of <0.05 in GEE linear regression of SDI against healthy versus LRI, adjusted

for age at collection (as in Table S3).

(C) Relative abundances of the dominant OTU within each MPG (as specified in Table S1).

See also Figure S3 and Table S3.
OTUs (Figures S3A and S3B), and this trend was observed within

all MPGs (Figure S3C).

Upper Airway Bacteria and Respiratory Infection
Consistent with our previously reported observations from the

first year of life (Teo et al., 2015), ARI was positively associated

with MPGs dominated by Haemophilus (odds ratio [OR] 4.6,

p = 1.9 3 10�12), Streptococcus (OR 3.9, p = 1.7 3 10�17), or

Moraxella (OR 1.3, p = 1.8 3 10�4) (Table S2). Within these

MPGs, the relative abundance of the dominant OTU increased

and the alpha diversity decreased with symptom severity

(comparing healthy, with upper respiratory illness [URI], with

LRI; Figure 2B and Table S3). Thus overgrowth of these taxa ac-

companies spread of infection to the lower airways, although the

direction of causation is not resolvable here.

At the OTU level, the relative abundances of 236 OTUs (pre-

sent in >10% of samples) were significantly different between

ARI and healthy samples (absolute difference >1.5-fold and false

discovery rate [FDR] adjusted p value <0.05). However, these as-

sociations were age dependent and appeared to shift following

the increase in within-sample diversity observed from 2 years

of age. Comparing the time periods before year 2 and on or after

the second birthday, a total of 310 OTUs were found to be signif-

icantly associated with ARI in at least one interval (absolute dif-

ference >1.5-fold and FDR adjusted p value <0.025; Figure S4A).

The majority of Moraxella, Haemophilus, and Streptococcus

OTUs were consistently positively associated with ARI in both

time periods. Staphylococcus, Corynebacterium, and Alloiococ-

cusOTUs were negatively associated with ARI in the first 2 years

but these associations waned after 2 years, particularly for

Corynebacterium and Alloiococcus (Figure S4A). Adjusting for
344 Cell Host & Microbe 24, 341–352, September 12, 2018
the most common ARI-associated OTU, Moraxella 4398454

(Figure S4B) resulted in little change to these associations,

suggesting that Moraxella 4398454 and other OTUs contribute

independently to ARI risk. Interestingly, we found two Strepto-

coccus OTUs that were negatively associated with ARI (OTUs

4365744 and 509773, which show closest match to species

gordonnii and thermophilus/salivarius/vestibularis, respectively;

Table S1 and Figure S2A). These were positively correlated

with one other (SparCC correlation 0.09, p = 0.001), but nega-

tively correlated with Streptococcus OTU 1059655 (SparCC

correlation �0.09 and �0.1, respectively; p = 0.001), which has

closest match to pneumoniae/pseudopneumoniae. The set of

five MPGs dominated by ARI-associated Moraxella, Strepto-

coccus, or Haemophilus OTUs are collectively termed here

‘‘illness-associated MPGs’’ (Table S2). Among the rare OTUs,

eight including from genera Nitriliruptor and Bacilllus were

consistently health associated and often co-occurred together

(at median relative abundance 9%) in samples belonging to the

Staphylococcus MPG, while a further eight OTUs including

from genera Porphyromonas,Candidatus, Aquiluna,Clavibacter,

Mycobacterium,Granulicatella, and Fusobacteriumwere consis-

tently ARI associated but generally of low abundance across all

MPGs (Figures S4C and S4D).

To more precisely estimate how these associations change

with age, we performed time-varying analysis for eight charac-

teristic OTUs using smoothing splines ANOVA (STAR Methods).

The results showed that the strength of association of Coryne-

bacterium, Alloiococcus, and Staphylococcus with healthy

samples was greatest in the first 1–2 years; interestingly the as-

sociation waned toward the null by 3 years of age forCorynebac-

terium and 4 years of age for Staphylococcus, but Alloiococcus



Figure 3. Time-Varying Associations of Bacterial Taxa with Acute Respiratory Illness Symptoms
(A) Log2 fold change (solid lines) and 95% confidence intervals (dashed lines) comparing symptomatic versus healthy samples, estimated using smoothing

splines ANOVA. Non-significant segments are colored gray.

(B) Same as (A) but including further adjustment for Moraxella OTU 4398454 abundance (dark-green curve) and vice versa (dark-red curve).

See also Figure S4.
changed direction and was significantly associated with ARI in

the interval 2.8–3.9 years (mean difference 1.8-fold, p = 0.01)

(Figure 3A). Alloiococcus otitidis in the ear canal has been impli-

cated in otitis media (OM) (Harimaya et al., 2006; Tano et al.,

2008), along with Streptococcus pneumoniae and Haemophilus

influenzae (Ngo et al., 2016). In this cohort, 11% of ARI episodes

co-occurred with OM. Streptococcus OTU 1059655 abundance

in the NPM during ARI was positively associated with concurrent

OM from 18 months (mean difference 2.4-fold, p = 0.01), but

Alloiococcus and Haemophilus showed no significant associa-

tions with OM. The Alloiococcus-illness association is further

addressed below.

Co-occurrence of Bacteria and Viruses in the Upper
Airways and Their Association with Respiratory Illness
We calculated pairwise correlation networks between OTUs

separately for samples collected before 2 years of age and on

or after the second birthday; values for the eight most common

OTUs are shown in Figure 4A. Illness-associated OTUs ofMorax-

ella, Haemophilus, and Streptococcus formed a group that were

all positively correlated with one another in both time periods,

and negatively correlated with the health-associated Strepto-

coccus OTU 509773 and Staphylococcus (Figure 4A). Coryne-

bacterium and Alloiococcus were strongly correlated with one

another in both periods (SparCC correlation = 0.68, p = 0.001).

Surprisingly, the relationship between these OTUs and those in

the illness-associated group (Figure 4A) was complex and

changed over time, becoming significantly more positively corre-

lated with age (Figure 4B). Corynebacterium and Alloiococcus

were positively correlated withMoraxella throughout, with corre-

lation strength increasing significantly over time (Figure 4A;

Fisher’s r to Z transformation comparing Moraxella-Corynebac-

terium and Moraxella-Alloiococcus correlations before and after

2 years: p = 93 10�14 and p = 73 10�16, respectively). Coryne-
bacterium and Alloiococcus were negatively correlated with the

illness-associated Haemophilus and Streptococcus OTUs in

early years, but became positively correlated (Streptococcus)

or uncorrelated (Haemophilus) in later samples (Figures 4A

and 4B). We hypothesized that the increasing co-occurrence

withMoraxellamight explain the increasing association of Alloio-

coccus with ARI symptoms in later years. Indeed, adjusting for

the abundance of Moraxella OTU 4398454 resulted in attenua-

tion of the positive association of Alloiococcus with ARI after

2 years, but not the negative association with ARI prior to 2 years;

whereas adjusting for the abundance of Alloiococcus has no

effect on the association of Moraxella with ARI (Figure 3B). We

interpret this to suggest that the apparent negative association

between simple Alloiococcus-dominated communities before

age 2 is likely due to the absence of pathogen-dominated com-

munities rather than any actual protective effect of Alloiococcus.

The negative association disappears in later years when bacte-

rial diversity is greater and the presence of Alloiococcus is less

likely to signal the absence of Moraxella, which itself is consis-

tently positively associated with ARI. Staphylococcus was posi-

tively correlated with the health-associated Streptococcus

509773 (SparCC correlation = 0.22, p = 0.001) but negatively

correlated with the illness-associated group as well as Coryne-

bacterium and Alloiococcus.

We tested for commonhuman respiratory viruses in all samples

fromthefirst three yearsof life; viruseswere frequentlydetected in

ARI samples (83% and 81% among URI and LRI, respectively).

Interestingly, the same viruses were also detected among 34%

of healthy samples, which had been collected after at least

1monthwithout ARI symptoms. The presence of virus was signif-

icantly associated with illness-associated MPGs (compared with

health-associatedMPGs) irrespectiveof symptomstatus (OR2.4,

p = 1.13 10�6 in healthy samples; OR 1.9, p = 1.03 10�3 in ARI

samples using Fisher’s exact test; Figure S5), suggesting either
Cell Host & Microbe 24, 341–352, September 12, 2018 345
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Figure 4. Microbial Interaction Networks and Stability
(A) Pairwise correlations among eight characteristic OTUs, calculated separately for samples collected up to and including 2 years of age (triangle of the heatmap

below the diagonal), and samples collected after 2 years of age (triangle of the heatmap above the diagonal). Cell colors indicate correlation coefficients; non-

significant correlations (p > 0.001) are white. *Bonferroni-corrected p < 0.05/28, testing for change in correlation before and after 2 years of age using Fisher’s

z test.

(B) Correlations between Alloiococcus or Corynebacterium and Moraxella or Streptococcus or Haemophilus OTUs (bold gray box in A) over half-yearly time

periods (filled circles, significant correlations, p = 0.001; empty circles, non-significant correlations, p > 0.001).

(C) Transitions betweenmicrobiome profile groups (MPGs) for consecutive pairs of healthy samples collected from the same individuals 6–12 months apart. OTU

key:Haemophilus: A = 240051, B = 4469627, C = 956702; Moraxellaceae: A = 1057260, B = 854899;Corynebacterium: A = 4474764, B = 1049188, C = 4376867.

(D) Proportion of healthy samples collected at each time point, for which the same MPG was detected in the next healthy sample from each individual. Colors

indicate the specific MPGs involved, colored as in (C).

See also Figure S6 and Table S4.
mutualism, or synergistic effects on symptomatology, between

these specific bacterial communities and common respiratory

viruses. However, Streptococcus, Moraxella, and Haemophilus

MPGs were also independently associated with ARI symptoms

among samples in which no respiratory viruses were detected,

or when adjusting for the presence of respiratory viruses or of

the specific viruses, RSVorRV (Figures 5Aand5B). This suggests

that either these bacteria contribute directly to illness, in the

absence of known respiratory viral triggers, which is not unex-

pectedgivenwepredict they are dominatedby known respiratory

pathogens S. pneumoniae, Moraxella catarrhalis, and H. influen-

zae; or there is another unknown trigger (e.g., a novel virus) that

promotes the overgrowth of these bacteria.

Stability of the Upper Airway Microbiota within
Individuals
The NPM is a complex ecosystem that is inherently dynamic as

it is continually being shaped by multiple factors, including

responses to environmental perturbation and disease status of
346 Cell Host & Microbe 24, 341–352, September 12, 2018
the host. We therefore examined the effects of external factors,

including ARI and antibiotic exposure, on intra-individual NPM

dynamics.

We first considered consecutive healthy samples from each

individual, excluding sample pairs collected more than 1 year

apart. Overall, the probability of the next consecutive healthy

sample sharing the same (non-mixed)MPGas thecurrent sample

(i.e., a stable transition) was greater than expected by chance

(31% versus 18% for samples collected <6 months apart, bino-

mial test p = 2.33 10�7; 23% versus 18% for samples collected

6–12months apart, p = 0.011), indicating somedegree of stability

of the microbial communities within individuals over time. This

stable transition probability was highest for the Moraxella (45%)

and Alloiococcus-Corynebacterium (32%) MPGs, which were

the most common states for healthy NPM samples (Figure 4C).

Where a sample was assigned to the mixed1MPG, the probabil-

ity of the next sample also being designated mixed1 was high

(30%). However, the composition of such samples can vary

widely, and Bray-Curtis distances between consecutive mixed1
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Figure 5. NPM Associations with Symptoms of Acute Respiratory Illness and Wheeze
(A) Frequency of symptoms (URI, upper respiratory illness; LRI, lower respiratory illness) among samples stratified by the presence or absence (+/�) of known

respiratory viruses and presence or absence (+/�) of bacterial communities assigned to Moraxella, Streptococcus, or Haemophilus microbiome profile

groups (MPGs).

(B) Association of acute respiratory illness (ARI) symptoms with specific MPGs, stratified by the presence or absence (+/�) of common respiratory viruses (RV,

rhinovirus; RSV, respiratory syncytial virus; Vir, any virus). Odds ratios (OR) and 95% confidence intervals were estimated using generalized estimating equations

with unstructured correlation and robust standard errors, adjusting for age, gender, and season.

(C) Proportion of healthy samples assigned toMoraxella, Streptococcus, orHaemophilusMPGs, stratified by time relative to a recorded LRI episode. SE bars are

given for the Moraxella MPG. We regressed assignment to Moraxella MPG against time to LRI (separate models for each time category versus all other healthy

samples) (*p < 0.05).

(legend continued on next page)
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MPG samples were close to the distances between distinct

MPGs (Figure S6), indicating that the majority of consecutive

pairs assigned to mixed1 MPG represent significant shifts in

NPM composition rather than stable transitions. The probability

of a stable transition to the next time point was significantly lower

at 2 months of age than at 6-, 12-, 18-, or 24-month time points

(Figure 4D; 20% versus 31%; Fisher’s exact test, p = 0.03),

consistent with the observation of a distinct NPM profile at

2 months (Figure 1B). Transition stability declined after 2 years,

and an increasing proportion of transitions involved consecutive

samples assigned to the mixed1 MPG (Figure 4D), consistent

with the observed increase in diversity after age 2 (Figure 2A).

The frequency of persistence of the StaphylococcusMPG drop-

ped after 6months and increased again in the fourth year, consis-

tent with prior observations that maternally transferred Staphylo-

coccus aureus can be detected in infants, but stable colonization

is not established until the pre-school years (Brown et al., 2014;

Jimenez-Truque et al., 2012; Schaumburg et al., 2014). Taken

together, these results show that the NPM is highly variable in

early childhood. Stability of health-associated MPGs was signif-

icantly disrupted by the occurrence of LRI during the sampling in-

terval (p = 0.00042); however, antibiotic use did not significantly

alter the probability of stable transitions (p = 0.72; Table S4).

Association of Upper Airway Microbiota with Lower
Respiratory Illness and Subsequent Wheeze
LRI was significantly positively associated withMoraxella, Strep-

tococcus, and Haemophilus MPGs, and negatively associated

with Corynebacterium, Alloiococcus-Corynebacterium, and

Staphylococcus MPGs, especially among samples collected

up to 2 years of age (Table S5). This is consistent with our previ-

ously reported findings from the first year of life (Teo et al., 2015);

but here we had sufficient numbers of pre- and post-LRI asymp-

tomatic samples to also investigate whether LRIs were associ-

ated with prior colonization by the illness-associated Moraxella,

Streptococcus, and Haemophilus MPGs, and how long these

MPGs persisted after an incident LRI. Healthy samples collected

1–2 weeks prior to an LRI were not enriched for viruses (�30%

frequency of virus detection, versus 34% across all healthy sam-

ples and �80% during LRI), but were significantly enriched for

the Moraxella MPG (GEE logistic regression of assignment to

Moraxella MPG on time to LRI, 1–2 weeks compared with all

other healthy samples and adjusted for time post LRI, gender,

age, season, recent antibiotics: OR 6.2 [95% confidence interval

1.4–28], p = 0.017; further adjusted for viruses: OR 5.9 [1.3–26],

p = 0.019) (Figure 5C), as well as Moraxella abundance (GEE

linear regression of log Moraxella OTU abundance, p = 0.025;

further adjusted for viruses: p = 0.04) (STAR Methods). There

were no significant differences in proportions of Streptococcus

or Haemophilus MPGs nor Streptococcus or Haemophilus

abundance; however, these MPGs were rare (�7%) in healthy

samples. We were unable to assess short-term changes in the

NPM following LRI, as our criteria for healthy sample collection

required the absence of ARI symptoms for at least 4weeks; how-
(D) Frequency of pre-school wheeze phenotypes (y axis), stratified by frequency

collected from 6months to 2 years of age (x axis, in tertiles). Data are shown separ

were not.

See also Figures S5 and S7.
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ever, the Moraxella MPG exhibited declining frequency with

increasing time post LRI, and remained enriched until 6 months

post LRI (Figure 5C). Interestingly, there was no evidence of a dif-

ference in MPG distribution before or after URI (Figure S7).

We have previously shown in this cohort that the risk of chronic

wheeze at 5 years of age is significantly associatedwith the num-

ber of LRIs in the first year of life. This was especially the case for

the number of febrile LRIs among children with allergic sensitiza-

tion by age 2 (Kusel et al., 2007, 2012; Teo et al., 2015). Here, we

investigated whether presence of the illness-associated Morax-

ella, Streptococcus, andHaemophilusMPGs during the first four

years of life was predictive of LRI intensity during the same

period, and/or wheeze at age 5. For each child, we calculated

the combined frequency of these MPGs among healthy NPM

samples over different time periods (STAR Methods). Among

children with early allergic sensitization, frequent ARI-associated

MPGs (R50% of healthy NPM samples) during the first two

years of life was significantly positively associated with the num-

ber of LRIs experienced in the same period (Table 1). Impor-

tantly, among these early-sensitized children, the frequency of

illness-associated MPGs in the first two years of life was inde-

pendently associated with chronic wheeze at 5 years of age (Fig-

ure 5D), even after adjusting for LRI frequency and type (Table 2).

Notably, among non-sensitized children, the frequency of

illness-associated MPGs was not associated with chronic

wheeze at 5 years but was significantly positively associated

with the transient wheeze phenotype (defined as any wheeze

in the first three years of life but no wheeze in the fifth year) (Fig-

ure 5D and Table 2). We also note that LRI frequency in years 3–4

was associated with wheeze at age 5 regardless of sensitization

status, which we attribute to recent respiratory inflammation be-

ing more directly linked to current wheeze (Table 2). There were

no significant associations between sensitization status and LRI

severity, i.e., the raw frequency or relative proportion of severe

(febrile or wheezy) LRIs (Kruskal test, p > 0.05 for all time points).

DISCUSSION

This study presents a comprehensive, longitudinal characteriza-

tion of the upper airway microbiome in a cohort followed from

birth to 5 years of age, and its association with episodes of

ARI, allergic sensitization, and subsequent wheezing pheno-

types. We found the NPM from birth to 5 years of age remains

dominated by six common genera (Figure 1) and has yet to

converge to an adult-like NPM, which is characterized by

much greater alpha diversity, lack of Moraxella and Corynebac-

terium, and much lower biomass (Stearns et al., 2015). This is in

contrast to the oropharynx (Stearns et al., 2015) or the gut micro-

biome, which matures to an adult-like state by 3 years of age

(Yatsunenko et al., 2012). The NPM is composed of robust inter-

nally homogeneous MPGs, consistent with existing literature

pointing to discrete microbial compositions in the nasopharynx

during early childhood (Biesbroek et al., 2014; Bisgaard et al.,

2007; Bogaert et al., 2011; Bosch et al., 2017; Teo et al., 2015;
of Moraxella, Streptococcus, or Haemophilus MPGs among healthy samples

ately for 73 children who were allergic sensitized by 2 years of age, and 64 who



Table 1. Associations between Proportion of Illness-Associated MPGs in Healthy Samples and LRI Frequency

Outcome

Early Allergic Sensitization All Other Children

MPGs 6m–2y (n = 74) MPGs 2.5y–4y (n = 83) MPGs 6m–2y (n = 65) MPGs 2.5y–4y (n = 65)

# LRI at ages 0 to 1 1.6 (1–2.6), p = 0.043 1.1 (0.83–1.5), p = 0.49 1.5 (0.95–2.3), p = 0.081 1.1 (0.79–1.5), p = 0.57

# LRI at ages 1 to 2 1.5 (1–2.2), p = 0.036 1.1 (0.81–1.5), p = 0.6 1.4 (0.91–2.1), p = 0.12 1.2 (0.81–1.7), p = 0.38

# LRI at ages 2 to 4 1.4 (1–1.9), p = 0.032 1.1 (0.79–1.4), p = 0.72 0.99 (0.79–1.2), p = 0.93 1.1 (0.87–1.3), p = 0.47

# Febrile LRI at ages 0 to 1 2.5 (1–6.3), p = 0.049 1.2 (0.63–2.4), p = 0.53 2.2 (0.77–6.1), p = 0.14 0.84 (0.36–2), p = 0.69

# Febrile LRI at ages 1 to 2 1.8 (0.85–3.6), p = 0.13 0.59 (0.3–1.2), p = 0.13 2.4 (0.65–8.9), p = 0.19 1.8 (0.71–4.6), p = 0.21

# Febrile LRI at ages 2 to 4 1.8 (0.88–3.9), p = 0.11 0.99 (0.5–2), p = 0.98 1.6 (0.74–3.5), p = 0.23 1.4 (0.76–2.5), p = 0.3

m,months; y, years. Wemodeled the proportion of illness-associatedMoraxella,Haemophilus, andStreptococcusMPGs present among healthy sam-

ples (R50% versus <50%) on LRI or febrile LRI frequency using logistic regression. Separate models were fit for different time periods, and for children

with and without early allergic sensitization. Values indicate odds ratios (95% confidence intervals) and p values for the association between LRI count

and illness-associated MPG frequency R50% (collected during the period specified in the column header, i.e., 6m–2y or 2.5y–4y).
Tsai et al., 2015). Consistent with previous observations (Bies-

broek et al., 2014), we found a constant level of NPM diversity

over the first two years of life, followed by a period of increasing

diversity, in terms of both number and equitability of OTUs, for at

least 3 years (Figures 2A and S3). This increasing diversity coin-

cided with a change in the relationship between the NPM and

respiratory disease, whereby negative associations between

MPGs and ARI became attenuated (as in the case ofCorynebac-

terium) or changed direction to become positively associated

with ARI (Alloiococcus) (Figure 3A). In the latter case, this ap-

pears to be driven by an increasing alliance with Moraxella (Fig-

ures 3B and 4), which itself was ARI associated.Moraxella estab-

lishes biofilms that enhance the co-survival of pathogens such

as S. pneumoniae and H. influenzae (Pearson et al., 2006; Perez

et al., 2014). It is not yet clear whether the negative associations

of certain taxa with ARI denote active protective effects, or sim-

ply the lack of pathogenic drivers of symptoms; however, there is

some evidence from murine models that pre-exposure to Cory-

nebacterium can provide some resistance against RSV infection

(Kanmani et al., 2017).

Our longitudinal data show the NPM can be highly dynamic

within individuals. However, there was some stability even be-

tween samples collected 6 or 12 months apart (Figures 4C

and 4D), especially for the MPGs dominated by Moraxella or

Alloiococcus and Corynebacterium, which appear to be stable

colonizers of the nasopharynx of children. Notably, stability

of the Alloiococcus-Corynebacterium MPG was significantly

reduced by LRI episodes, which are typically associated with

an influx and/or overgrowth ofMoraxella,Streptococcus, orHae-

mophilus that can presumably destabilize the bacterial commu-

nity. This is consistent with a recent study that reported reduced

stability of the NPM during infancy among children who experi-

enced more than two ARIs in the first year of life (Bosch et al.,

2017). Ultimately, more comprehensive description of natural

NPM dynamics, including detailed assessment of resilience

to exogenous agents, will require higher-resolution sampling

(weekly or daily) and would also benefit from larger cohorts.

Throughout the first five years of life, NPM samples collected

during ARIs showed a greater abundance of, and were more

commonly dominated by, specific Streptococcus, Moraxella,

and Haemophilus OTUs (Figures 1 and 3; Table S2), consistent

with expectations regarding common respiratory pathogens

S. pneumoniae, M. catarrhalis, and H. influenzae to which these
OTU sequences were most closely related (Table S1). The rela-

tive abundances of these OTUs were significantly correlated

with one another (Figure 4A); we hypothesize that this is related

to the protection provided by the Moraxella biofilm (Tan et al.,

2007), which can release outer membrane surface proteins

that protect other bacteria from complement-dependent killing.

Other groups have previously reported reduced upper airwaymi-

crobial diversity during or prior to ARIs (Frank et al., 2010; Santee

et al., 2016; Yi et al., 2014); our data support this, in terms of both

enrichment of a small number of community profiles (MPGs) dur-

ing ARI, and a higher abundance of ARI-associated OTUs and

lower alpha diversity within these MPGs compared with that

observed in the absence of ARI symptoms (Figures 2B and S3;

Tables S2 and S3). We therefore propose that overgrowth of

these particular taxa may tip the balance toward respiratory

symptomatology, either by direct action as invasive pathogens

or via indirect dysregulation of the local immunological milieu.

Such dysregulation may increase the likelihood of a primary viral

infection of the nasopharyngeal mucosa, or subsequent spread

of infection to the lower airways, as suggested in our earlier study

on this cohort during infancy (Teo et al., 2015). This is further sup-

ported by the increased prevalence of Moraxella in asymptom-

atic samples collected 1–2 weeks before an LRI (Figure 5C).

Most LRIs (>80%) had a known respiratory virus present, and

this is likely the trigger for acute symptoms. However, the lack

of enrichment for viruses, but enrichment for Moraxella, in the

1–2 weeks preceding LRI suggests that having the bacteria pre-

sent when the virus is encountered increases the likelihood of se-

vere respiratory illness. While our study had insufficient power to

detect similar effects for Streptococcus and Haemophilus, due

to low colonization frequency in our cohort, there is a large

body of evidence accumulating around specific mechanisms

of interaction between human respiratory viruses (mainly RV,

RSV, and influenza) and S. pneumoniae, H. influenzae, and

M. catarrhalis; including both viral promotion of bacterial coloni-

zation and outgrowth (for which we see evidence in the form of

increased abundance of pathogenic genera in ARIs), and bacte-

rial promotion of viral receptor expression on host cells (Bosch

et al., 2017; Brealey et al., 2015). While the present study cannot

address specific mechanisms it provides evidence for interac-

tions in both directions, and demonstrates that bacterial coloni-

zation influences subsequent ARI throughout infancy and early

childhood.
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Table 2. Prediction of Subsequent Wheeze Phenotypes Based on Proportion of Illness-Associated MPGs among Healthy Samples

during the First Two Years of Life

Data Subset

Model (Y � MPG + X) Predictor = MPG Predictor = X

Y X OR (95% CI) p OR (95% CI) p

Early-sensitized children (n = 73) wheeze at 5y (n = 26) none 2.5 (1.3–4.6) 0.0054 NA

# LRI (year 1) 2.2 (1.1–4.2) 0.018 1.5 (0.94–2.5) 0.085

# LRI (year 2) 2.3 (1.2–4.3) 0.013 1.3 (0.89–1.8) 0.18

# LRI (years 3–4) 2 (0.94–4.2) 0.073 2.4 (1.5–3.9) 0.00059

# febrile LRI (year 1) 2.1 (1.1–4.1) 0.026 2.9 (1.1–7.5) 0.032

transient wheeze (n = 19) none 0.5 (0.23–1.1) 0.074 NA

# LRI (year 1) 0.44 (0.19–0.99) 0.047 1.4 (0.8–2.3) 0.26

# LRI (year 2) 0.41 (0.17–0.96) 0.039 1.3 (0.93–1.9) 0.12

# LRI (year 3–4) 0.54 (0.25–1.2), 0.12 0.86 (0.6–1.2) 0.39

# febrile LRI (year 1) 0.48 (0.22–1.1) 0.068 1.3 (0.45–3.5) 0.67

All other children (n = 64) wheeze at 5y (n = 15) none 0.94 (0.5–1.8) 0.86 NA

# LRI (year 1) 0.93 (0.49–1.8) 0.83 1.1 (0.73–1.5) 0.74

# LRI (year 2) 0.91 (0.46–1.8) 0.78 1.5 (0.99–2.2) 0.059

# LRI (years 3–4) 1.2 (0.49–3) 0.66 3.8 (1.8–8.3) 0.00062

# febrile LRI (year 1) 0.94 (0.49–1.8) 0.84 1.2 (0.42–3.2) 0.76

transient wheeze (n = 22) none 2.2 (1.2–4.1) 0.014 NA

# LRI (year 1) 2.2 (1.1–4.2) 0.022 1.5 (1–2.2) 0.027

# LRI (year 2) 2.2 (1.2–4.1) 0.014 1.1 (0.75–1.6) 0.62

# LRI (years 3–4) 2.3 (1.2–4.6) 0.014 0.53 (0.3–0.92) 0.024

# febrile LRI (year 1) 2.2 (1.1–4.3) 0.018 3.4 (1.2–9.5) 0.018

NA, not applicable; CI, confidence interval. Logistic regression of wheeze phenotype (Y) against tertiles of the proportion of illness-associated

Moraxella, Haemophilus, and Streptococcus MPGs (X), adjusting for illness frequency. Separate models were fit for children with and without early

allergic sensitization by 2 years of age.
Finally,we foundasignificant relationship betweenasymptom-

atic colonization of the upper airways by certain MPGs in the first

two years of life and later wheezing phenotypes, conditional on

early allergic sensitization (Figure 5D and Table 2). This builds

on the results described in our previous study looking only at

the first year of life, where we found that early-life colonization

with Streptococcus was a risk factor for later childhood wheeze

that is exacerbated by early allergic sensitization (Teo et al.,

2015). In the present study, we identified that in early-sensitized

children, asymptomatic colonization of the upper airways by all

illness-associated MPGs (Streptococcus, Haemophilus, and

Moraxella) increased the risk of chronic wheeze at 5 years of

age, while in children who had not developed early allergic sensi-

tization, it was associated onlywith transient early wheeze,which

resolvedby the fourth year of life. Furthermore, in early-sensitized

children the frequency of asymptomatic colonization with illness-

associated MPGs was also associated with recurrence of LRIs,

particularly those accompanied by fever, throughout the first

four years of life (Table 1). Notably, however, while frequency of

LRI is associated with 5-year chronic wheeze (Kusel et al.,

2007; Teo et al., 2015), the effect of bacterial colonization

on 5-year wheeze remained after adjusting for LRI (Table 2).

It has been suggested that the pathogenic bacterial species

S. pneumoniae,H. influenzae, andM. catarrhalis induce local im-

munoinflammatory responses in the upper airways of neonates,

which in the case ofM. catarrhalis andH. influenzae include upre-

gulation of a mix of Th1/Th2/Th17 cytokines (Folsgaard et al.,
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2013). However, how these immune responses differ between

sensitized and non-sensitized children is incompletely under-

stood. We have suggested, based on previous studies in this

and other asthma-risk cohorts (Holt and Sly, 2012), that the

increased severity of these episodes in children with allergic

sensitization is due in part to interactions between infection-

associated type 1 interferon-mediated and allergy-associated

Th2-mediated inflammatory pathways, which compromise their

capacity to efficiently clear respiratory pathogens, thus wors-

ening ensuing airway inflammation and resultant immunopa-

thology. Conversely, host immune defense mechanisms in those

who are non-sensitized are not compromised by these interac-

tions, and they accordingly experience only transient illnesses.

This effect may not be confined to bacterial microbiota; others

have described causal relationships and synergistic interaction

between allergic sensitization and viral infection, particularly

rhinovirus (Jackson et al., 2012; Rubner et al., 2017).

In conclusion, this study suggests that the microbiota of the

upper airways is an important determinant of the susceptibility,

frequency, and severity of ARI in early childhood. In conjunc-

tion with early allergic sensitization, the dominating presence

of illness-associated MPGs (Streptococcus, Haemophilus, and

Moraxella) in the upper airways is a significant risk factor for

persistent wheeze in school-age children, which is the hallmark

of the asthma phenotype. This observation is of potential impor-

tance in relation to early detection and prevention of asthma.

In particular, sensitized children in this cohort already showed



elevated levels of allergen-specific immunoglobulin E production

from 6 months of age (Holt et al., 2010), suggesting that a high-

risk group could be identified in infancy. Airway microbiome

monitoring and potential modification might be beneficial for

this high-risk group in reducing the risk of LRI, the repeated

occurrence of which is closely linked to asthma development.

STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d CONTACT FOR REAGENT AND RESOURCE SHARING

d EXPERIMENTAL MODEL AND SUBJECT DETAILS
B Sample and Data Collection

d METHOD DETAILS

B Bacterial 16S Profiling

B Virus Detection

d QUANTIFICATION AND STATISTICAL ANALYSIS

B Clustering into Microbiome Profile Groups

B Association of Bacterial OTUswith Symptoms of Acute

Respiratory Illness

B Correlations between Bacterial OTUs

B Within-Individual Dynamics

B Statistical Methods

B Definition of Variables Used in Statistical Analyses

B OTU and Microbiome Profile Group (MPG) Distribu-

tions and Associated Predicted Species

d DATA AND SOFTWARE AVAILABILITY

SUPPLEMENTAL INFORMATION

Supplemental Information includes seven figures and five tables and can be

found with this article online at https://doi.org/10.1016/j.chom.2018.08.005.

ACKNOWLEDGMENTS

Supported in part by the Victorian Government’s Operational Infrastructure

Support Program. This work was supported by the NHMRC of Australia (proj-

ect grant no. 1049539 to M.I. and K.E.H., Fellowships 1061409 to K.E.H., and

1061435 toM.I.). K.E.H. is supported by a SeniorMedical Research Fellowship

from the Viertel Foundation of Australia.

AUTHOR CONTRIBUTIONS

M.I. and K.E.H. conceived and directed the project, interpreted the results, and

wrote the manuscript. P.G.H. and P.D.S. established the CAS cohort, directed

the project, interpreted the results, and wrote the manuscript. S.M.T. and

H.H.F.T. performed the bioinformatics and statistical analyses, interpreted the

results, and wrote the manuscript. D.M., L.M.J., and K.P. did the DNA extrac-

tions, amplification, and amplicon sequencing for the bacterial 16S profiling.

S.C.W. performed bioinformatics analysis. B.J.H., M.K., M.S., and N.T. did the

sample collection and coordination of databases. Y.A.B., K.G., R.F.L., S.L.J.,

and J.E.G. did the viral profiling. All authors read and approved the manuscript.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: January 12, 2018

Revised: June 8, 2018

Accepted: July 13, 2018

Published: September 12, 2018
REFERENCES

Australian Commission on Safety and Quality in Health Care. (2017). AURA

2017: Second Australian Report on Antimicrobial Use and Resistance in

Human Health (ACSQHC).

Benjmini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: a

practical and powerful approach to multiple testing. J. R. Stat. Soc. 57,

289–300.

Biesbroek, G., Tsivtsivadze, E., Sanders, E.A., Montijn, R., Veenhoven, R.H.,

Keijser, B.J., and Bogaert, D. (2014). Early respiratory microbiota composition

determines bacterial succession patterns and respiratory health in children.

Am. J. Respir. Crit. Care Med. 190, 1283–1292.

Bisgaard, H., Hermansen, M.N., Buchvald, F., Loland, L., Halkjaer, L.B.,

Bonnelykke, K., Brasholt, M., Heltberg, A., Vissing, N.H., Thorsen, S.V., et al.

(2007). Childhood asthma after bacterial colonization of the airway in neo-

nates. N. Engl. J. Med. 357, 1487–1495.

Bochkov, Y.A., Grindle, K., Vang, F., Evans, M.D., and Gern, J.E. (2014).

Improved molecular typing assay for rhinovirus species A, B, and C. J. Clin.

Microbiol. 52, 2461–2471.

Bogaert, D., Keijser, B., Huse, S., Rossen, J., Veenhoven, R., van Gils, E.,

Bruin, J., Montijn, R., Bonten, M., and Sanders, E. (2011). Variability and diver-

sity of nasopharyngeal microbiota in children: a metagenomic analysis. PLoS

One 6, e17035.

Bosch, A.A., de Steenhuijsen Piters, W.A., van Houten, M.A., Chu, M.,

Biesbroek, G., Kool, J., Pernet, P., de Groot, P.C.M., Eijkemans, M.J.C.,

Keijser, B.J.F., et al. (2017). Maturation of the infant respiratory microbiota,

environmental drivers and health consequences: a prospective cohort study.

Am. J. Respir. Crit. Care Med. 196, 1582–1590.

Brealey, J.C., Sly, P.D., Young, P.R., and Chappell, K.J. (2015). Viral bacterial

co-infection of the respiratory tract during early childhood. FEMS Microbiol.

Lett. 362, https://doi.org/10.1093/femsle/fnv062.

Brown, A.F., Leech, J.M., Rogers, T.R., and McLoughlin, R.M. (2014).

Staphylococcus aureus colonization: modulation of host immune response

and impact on human vaccine design. Front. Immunol. 4, 507.

Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer,

K., and Madden, T.L. (2009). BLAST+: architecture and applications. BMC

Bioinformatics 10, 421.

Caporaso, J.G., Lauber, C.L., Walters, W.A., Berg-Lyons, D., Huntley, J.,

Fierer, N., Owens, S.M., Betley, J., Fraser, L., Bauer, M., et al. (2012). Ultra-

high-throughput microbial community analysis on the Illumina HiSeq and

MiSeq platforms. ISME J. 6, 1621–1624.

Durack, J., Boushey, H.A., and Lynch, S.V. (2016). Airway microbiota and the

implications of dysbiosis in asthma. Curr. Allergy Asthma Rep. 16, 52.

Edgar, R.C. (2004). MUSCLE: multiple sequence alignment with high accuracy

and high throughput. Nucleic Acids Res. 32, 1792–1797.

Ferkol, T., and Schraufnagel, D. (2014). The global burden of respiratory dis-

ease. Ann. Am. Thorac. Soc. 11, 404–406.

Folsgaard, N.V., Schjorring, S., Chawes, B.L., Rasmussen, M.A., Krogfelt,

K.A., Brix, S., and Bisgaard, H. (2013). Pathogenic bacteria colonizing the

airways in asymptomatic neonates stimulates topical inflammatory mediator

release. Am. J. Respir. Crit. Care Med. 187, 589–595.

Frank, D.N., Feazel, L.M., Bessesen, M.T., Price, C.S., Janoff, E.N., and Pace,

N.R. (2010). The human nasal microbiota andStaphylococcus aureus carriage.

PLoS One 5, e10598.

Friedman, J., and Alm, E.J. (2012). Inferring correlation networks from genomic

survey data. PLoS Comput. Biol. 8, e1002687.

Galtier, N., Gouy, M., and Gautier, C. (1996). SEAVIEW and PHYLO_WIN: two

graphic tools for sequence alignment and molecular phylogeny. Comput.

Appl. Biosci. 12, 543–548.

Guindon, S., Dufayard, J.F., Lefort, V., Anisimova, M., Hordijk, W., and

Gascuel, O. (2010). New algorithms and methods to estimate maximum-likeli-

hood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59,

307–321.
Cell Host & Microbe 24, 341–352, September 12, 2018 351

https://doi.org/10.1016/j.chom.2018.08.005
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref1
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref1
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref1
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref2
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref2
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref2
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref3
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref3
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref3
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref3
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref4
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref4
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref4
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref4
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref5
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref5
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref5
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref6
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref6
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref6
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref6
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref7
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref7
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref7
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref7
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref7
https://doi.org/10.1093/femsle/fnv062
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref9
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref9
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref9
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref10
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref10
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref10
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref11
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref11
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref11
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref11
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref12
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref12
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref13
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref13
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref14
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref14
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref15
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref15
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref15
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref15
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref16
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref16
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref16
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref17
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref17
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref18
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref18
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref18
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref19
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref19
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref19
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref19


Harimaya, A., Takada, R., Hendolin, P.H., Fujii, N., Ylikoski, J., and Himi, T.

(2006). High incidence of Alloiococcus otitidis in children with otitis media,

despite treatment with antibiotics. J. Clin. Microbiol. 44, 946–949.

Holt, P.G., and Sly, P.D. (2012). Viral infections and atopy in asthma patho-

genesis: new rationales for asthma prevention and treatment. Nat. Med. 18,

726–735.

Holt, P.G., Rowe, J., Kusel, M., Parsons, F., Hollams, E.M., Bosco, A.,

McKenna, K., Subrata, L., de Klerk, N., Serralha, M., et al. (2010). Toward

improved prediction of risk for atopy and asthma among preschoolers: a pro-

spective cohort study. J. Allergy Clin. Immunol. 125, 653–659, 659.e1-659.e7.

Jackson, D.J., Evans, M.D., Gangnon, R.E., Tisler, C.J., Pappas, T.E., Lee,

W.M., Gern, J.E., and Lemanske, R.F., Jr. (2012). Evidence for a causal rela-

tionship between allergic sensitization and rhinovirus wheezing in early life.

Am. J. Respir. Crit. Care Med. 185, 281–285.

Jimenez-Truque, N., Tedeschi, S., Saye, E.J., McKenna, B.D., Langdon, W.,

Wright, J.P., Alsentzer, A., Arnold, S., Saville, B.R., Wang, W., et al. (2012).

Relationship between maternal and neonatal Staphylococcus aureus coloni-

zation. Pediatrics 129, e1252–e1259.

Kanmani, P., Clua, P., Vizoso-Pinto, M.G., Rodriguez, C., Alvarez, S.,

Melnikov, V., Takahashi, H., Kitazawa, H., and Villena, J. (2017). Respiratory

commensal bacteria Corynebacterium pseudodiphtheriticum improves resis-

tance of infant mice to respiratory syncytial virus and Streptococcus pneumo-

niae superinfection. Front. Microbiol. 8, 1613.

Kusel, M.M., de Klerk, N.H., Holt, P.G., Kebadze, T., Johnston, S.L., and Sly,

P.D. (2006). Role of respiratory viruses in acute upper and lower respiratory

tract illness in the first year of life: a birth cohort study. Pediatr. Infect. Dis. J.

25, 680–686.

Kusel, M.M., de Klerk, N.H., Kebadze, T., Vohma, V., Holt, P.G., Johnston,

S.L., and Sly, P.D. (2007). Early-life respiratory viral infections, atopic sensiti-

zation, and risk of subsequent development of persistent asthma. J. Allergy

Clin. Immunol. 119, 1105–1110.

Kusel, M.M., de Klerk, N., Holt, P.G., and Sly, P.D. (2008). Antibiotic use in the

first year of life and risk of atopic disease in early childhood. Clin. Exp. Allergy

38, 1921–1928.

Kusel, M.M., Kebadze, T., Johnston, S.L., Holt, P.G., and Sly, P.D. (2012).

Febrile respiratory illnesses in infancy and atopy are risk factors for persistent

asthma and wheeze. Eur. Respir. J. 39, 876–882.

Langille, M.G., Zaneveld, J., Caporaso, J.G., McDonald, D., Knights, D.,

Reyes, J.A., Clemente, J.C., Burkepile, D.E., Vega Thurber, R.L., Knight, R.,

et al. (2013). Predictive functional profiling of microbial communities using

16S rRNA marker gene sequences. Nat. Biotechnol. 31, 814–821.

Magoc, T., and Salzberg, S.L. (2011). FLASH: fast length adjustment of short

reads to improve genome assemblies. Bioinformatics 27, 2957–2963.

Man, W.H., de Steenhuijsen Piters, W.A., and Bogaert, D. (2017). The

microbiota of the respiratory tract: gatekeeper to respiratory health. Nat.

Rev. Microbiol. 15, 259–270.

Ngo, C.C., Massa, H.M., Thornton, R.B., andCripps, A.W. (2016). Predominant

bacteria detected from the middle ear fluid of children experiencing otitis

media: a systematic review. PLoS One 11, e0150949.

Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D.,

Minchin, P.R., O’Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H.,

Szoecs, E., and Wagner, H. (2018). vegan: Community Ecology Package. R

package version 2.5-2. https://CRAN.R-project.org/package=vegan.

Paulson, J.N., Stine, O.C., Bravo, H.C., and Pop, M. (2013). Differential

abundance analysis for microbial marker-gene surveys. Nat. Methods 10,

1200–1202.

Paulson, J.N., Talukder, H., and Bravo, H.C. (2017). Longitudinal differential

abundance analysis of microbial maker-gene surveys using smoothing

splines. bioRxiv. https://doi.org/10.1101/099457.

Pearson, M.M., Laurence, C.A., Guinn, S.E., and Hansen, E.J. (2006). Biofilm

formation by Moraxella catarrhalis in vitro: roles of the UspA1 adhesin and

the Hag hemagglutinin. Infect. Immun. 74, 1588–1596.
352 Cell Host & Microbe 24, 341–352, September 12, 2018
Perez, A.C., Pang, B., King, L.B., Tan, L., Murrah, K.A., Reimche, J.L., Wren,

J.T., Richardson, S.H., Ghandi, U., and Swords, W.E. (2014). Residence of

Streptococcus pneumoniae andMoraxella catarrhaliswithin polymicrobial bio-

film promotes antibiotic resistance and bacterial persistence in vivo. Pathog.

Dis. 70, 280–288.

Phipson, B., and Smyth, G.K. (2010). Permutation P-values should never be

zero: calculating exact P-values when permutations are randomly drawn.

Stat. Appl. Genet. Mol. Biol. 9, Article39.

R Core Team. (2018). R: A Language andEnvironment for Statistical Computing

(R Foundation for Statistical Computing). https://www.R-project.org/.

Rubner, F.J., Jackson, D.J., Evans, M.D., Gangnon, R.E., Tisler, C.J., Pappas,

T.E., Gern, J.E., and Lemanske, R.F., Jr. (2017). Early life rhinovirus wheezing,

allergic sensitization, and asthma risk at adolescence. J. Allergy Clin. Immunol.

139, 501–507.

Santee, C.A., Nagalingam, N.A., Faruqi, A.A., DeMuri, G.P., Gern, J.E., Wald,

E.R., and Lynch, S.V. (2016). Nasopharyngeal microbiota composition of chil-

dren is related to the frequency of upper respiratory infection and acute sinus-

itis. Microbiome 4, 34.

Schaumburg, F., Alabi, A.S., Mombo-Ngoma, G., Kaba, H., Zoleko, R.M.,

Diop, D.A., Mackanga, J.R., Basra, A., Gonzalez, R., Menendez, C., et al.

(2014). Transmission of Staphylococcus aureus between mothers and infants

in an African setting. Clin. Microbiol. Infect. 20, O390–O396.

Stearns, J.C., Davidson, C.J., McKeon, S., Whelan, F.J., Fontes, M.E.,

Schryvers, A.B., Bowdish, D.M., Kellner, J.D., and Surette, M.G. (2015).

Culture and molecular-based profiles show shifts in bacterial communities of

the upper respiratory tract that occur with age. ISME J. 9, 1246–1259.

de Steenhuijsen Piters, W.A., Sanders, E.A., and Bogaert, D. (2015). The role of

the local microbial ecosystem in respiratory health and disease. Philos. Trans.

R. Soc. Lond. B Biol. Sci. 370, https://doi.org/10.1098/rstb.2014.0294.

Tan, T.T., Morgelin, M., Forsgren, A., and Riesbeck, K. (2007). Haemophilus

influenzae survival during complement-mediated attacks is promoted by

Moraxella catarrhalis outer membrane vesicles. J. Infect. Dis. 195, 1661–1670.

Tano, K., von Essen, R., Eriksson, P.O., and Sjostedt, A. (2008). Alloiococcus

otitidis—otitis media pathogen or normal bacterial flora? APMIS 116, 785–790.

Teo, S.M., Mok, D., Pham, K., Kusel, M., Serralha, M., Troy, N., Holt, B.J.,

Hales, B.J., Walker, M.L., Hollams, E., et al. (2015). The infant nasopharyngeal

microbiome impacts severity of lower respiratory infection and risk of asthma

development. Cell Host Microbe 17, 704–715.

Tsai, M.H., Huang, S.H., Chen, C.L., Chiu, C.Y., Hua, M.C., Liao, S.L., Yao,

T.C., Lai, S.H., Yeh, K.W., Wang,M.P., et al. (2015). Pathogenic bacterial naso-

pharyngeal colonization and its impact on respiratory diseases in the first year

of life: the PATCH Birth Cohort Study. Pediatr. Infect. Dis. J. 34, 652–658.

Vandamme, P., Gillis, M., Vancanneyt, M., Hoste, B., Kersters, K., and Falsen,

E. (1993).Moraxella lincolnii sp. nov., isolated from the human respiratory tract,

and reevaluation of the taxonomic position ofMoraxella osloensis. Int. J. Syst.

Bacteriol. 43, 474–481.

Vissers, M., de Groot, R., and Ferwerda, G. (2014). Severe viral respiratory in-

fections: are bugs bugging? Mucosal Immunol. 7, 227–238.

Watts, S.C., Ritchie, S.C., Inouye, M., and Holt, K.E. (2018). FastSpar: rapid

and scalable correlation estimation for compositional data. bioRxiv. https://

doi.org/10.1101/222190.

Yatsunenko, T., Rey, F.E., Manary, M.J., Trehan, I., Dominguez-Bello, M.G.,

Contreras, M., Magris, M., Hidalgo, G., Baldassano, R.N., Anokhin, A.P.,

et al. (2012). Human gut microbiome viewed across age and geography.

Nature 486, 222–227.

Yi, H., Yong, D., Lee, K., Cho, Y.J., and Chun, J. (2014). Profiling bacterial com-

munity in upper respiratory tracts. BMC Infect. Dis. 14, 583.

Zar, H.J., and Ferkol, T.W. (2014). The global burden of respiratory disease-

impact on child health. Pediatr. Pulmonol. 49, 430–434.

http://refhub.elsevier.com/S1931-3128(18)30433-5/sref20
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref20
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref20
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref21
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref21
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref21
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref22
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref22
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref22
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref22
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref23
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref23
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref23
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref23
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref24
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref24
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref24
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref24
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref25
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref25
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref25
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref25
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref25
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref26
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref26
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref26
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref26
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref27
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref27
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref27
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref27
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref28
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref28
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref28
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref29
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref29
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref29
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref30
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref30
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref30
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref30
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref31
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref31
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref32
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref32
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref32
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref33
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref33
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref33
https://CRAN.R-project.org/package=vegan
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref35
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref35
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref35
https://doi.org/10.1101/099457
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref37
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref37
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref37
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref38
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref38
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref38
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref38
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref38
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref39
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref39
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref39
https://www.R-project.org/
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref41
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref41
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref41
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref41
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref42
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref42
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref42
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref42
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref43
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref43
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref43
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref43
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref44
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref44
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref44
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref44
https://doi.org/10.1098/rstb.2014.0294
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref46
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref46
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref46
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref47
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref47
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref48
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref48
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref48
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref48
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref49
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref49
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref49
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref49
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref50
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref50
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref50
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref50
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref51
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref51
https://doi.org/10.1101/222190
https://doi.org/10.1101/222190
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref53
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref53
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref53
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref53
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref54
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref54
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref55
http://refhub.elsevier.com/S1931-3128(18)30433-5/sref55


STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological Samples

Paediatric nasopharyngeal samples Private clinics in Perth,

Western Australia

N/A

Critical Commercial Assays

Illumina MiSeq System Illumina RRID: SCR_016379

Deposited Data

Raw sequence data from 16S profiling This study SRP056779

Oligonucleotides

50-AATGATACGGCGACCACCGAGATCTACACTA

TGGTAATTGTGTGCCAGC MGCCGCGGTAA-30
515F 16S V4 forward primer (Caporaso et al., 2012)
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact Michael

Inouye (minouye@baker.edu.au).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Sample and Data Collection
This study is part of the Childhood Asthma Study (CAS) – a prospective community-based cohort of 244 children (57%male) at high

risk of allergic sensitization (at least one parent with a doctor diagnosed history of asthma, hay fever or eczema) who were followed

prenatally until five years of age with the goal of identifying risk factors for allergic diseases, as previously described (Kusel et al.,

2006, 2007, 2012; Teo et al., 2015). Children were recruited between 1996 and 1998, before the introduction of the pneumococcal

vaccine in Western Australia in 2005. Healthy nasopharyngeal (NP) samples were collected at planned half-yearly visits (first sample

from about 2 months of age, subsequently at 6 months, 1 year, and so on), in the absence of any symptoms of acute respiratory

illness (ARI) for at least 4 weeks. In addition, parents were to contact a study clinician at the onset of any ARI symptoms, at which

point a study nurse visited the family within 48 hours to collect a NP sample from the child and interview the parents on the symp-

toms and medications used in relation to the illness. ARIs were classified as a lower respiratory illness (LRI) if accompanied by

wheeze or rattly chest; or an upper respiratory illness (URI) otherwise. A total of 1943 healthy samples, 2579 URI samples, and

1056 LRI NP samples were collected and divided into aliquots that were cryofrozen for later analysis. Healthy samples that did

not fulfil the criterion of >4 weeks after an illness episode were excluded. Parents kept a daily record of any medication used,

from which antibiotic exposure information was extracted, and completed yearly questionnaires during face-to-face interviews.

Blood samples were collected from each child at 6 months, 1, 2, 3, 4 and 5 years of age, and positive sensitization status at

each timepoint was defined as serum IgE levels > 0.35 kU/L to house dust mite, cat epithelium and dander, peanut, foodmix, couch

grass, rye grass, mould mix, or infant phadiatop (details of which were described in (Holt et al., 2010)). All models included gender as

a covariate.

The R project for statistical computing (R Core Team, 2018) https://www.r-project.org
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The study design is a large prospective birth cohort, the gold standard for observational research. There were no interventions thus

randomization and blinding were not relevant. Individuals were representative of the local population (Perth, Australia). Replication of

this study is not currently feasible as this would require a separate prospective birth cohort with similar environment, sampling,

sequencing, clinical follow-up, etc. Future studies are anticipated to address this.

Approval for the studywas obtained from the ethics committee of King EdwardMemorial and PrincessMargaret Hospitals inWest-

ern Australia. Fully informed written consent was obtained from the parents for the use of stored samples for research projects.

METHOD DETAILS

Bacterial 16S Profiling
One aliquot from each of 1331 healthy, 996 URI and 1055 LRI samples were prepared for bacterial 16S rRNA amplicon sequencing.

Total DNA was extracted using a method combining homogenization and chemical lysis of cells. Extractions were performed in

biosafety cabinets that were UV-sterilised, including all plastic-ware, for 30 min prior to the procedure. The samples were thawed

from -80�C storage, transferred into 1.5 mL sterile screw-capped tubes and briefly micro-centrifuged. The saline storage buffer

was removed and pellets were resuspended in 400 mL of lysis solution supplied with theWizard SV Genomic DNA System (Promega,

Victoria, Australia). Samples were mixed vigorously by pipetting and then transferred into a labelled Lysing Matrix B tube (MP Bio-

medicals, New South Wales, Australia). Suspensions were homogenized using a FastPrep-24 homogenizer for 40 s at 6.5 m/s.

Following micro-centrifugation, homogenates were transferred into a 1.5 mL screw-capped tube. A further 200 mL of lysis solution

was added into each lysing matrix tube and vortexed to wash off any residual homogenate, then transferred to the respective

homogenate tube to retain the original lysis volume. Homogenates were then treated with nuclei lysis buffer/RNase A and DNA

extraction was carried out using the Wizard SV Genomic DNA System as per manufacturer’s instructions. Purified DNA was eluted

in 100 mL of pre-warmed sterile low 1 X TE (Fisher Biotec, WA, Australia), aliquoted and stored at -80�C.
Amplicons were prepared for MiSeq sequencing using primers (prepared by Integrated DNA Technologies, Iowa, USA) spanning

the V4 region of the 16S rRNA gene and containing barcoded reverse primers as published by Caporaso et al. (Caporaso et al., 2012).

The forward universal primer included the 50 Illumina adapter sequence, forward primer pad, linker and the 515F 16S rRNA sequence:

50-AATGATACGGCGACCACCGAGATCTACACTATGGTAATTGTGTGCCAGC MGCCGCGGTAA-30. The reverse primer included

the 30 Illumina adapter sequence, a 12-mer Golay barcode (denoted as N), reverse primer pad, linker and the 806R 16S rRNA

sequence: 50-CAAGCAGAAGACGGCATACGAGATNNNNNNNNNNNNAGTCAGTCAGCCGGACTACHVGGGTWTCTAAT-30. All lab-
oratory equipment used was wiped with DNA Away (MBP, Mexico) before conducting each PCR procedure. Master mixes were

prepared in a UV-treated PCR chamber before they were dispensed into 96-well plates using a Multiprobe II liquid handling system

(Perkin Elmer, Victoria, Australia), followed by addition of samples and controls using the robot. Amplification of each sample was

performed in quadruplicate to obtain enough amplicon for sequencing. To each plate, a positive control (gDNA from S. enterica strain

LT2, a bacterium not normally associated with the respiratory system (ATCC#700720D-5, USA)) and water and TE negative controls

(obtained from each extraction procedure) were included and assessed for amplification by agarose gel electrophoresis. All controls

were as expected: S. enterica controls were positive and the water and TE negative controls were negative. Positive control samples

were not analysed further, while the negative controls were prepared for sequencing in the same way as samples.

Due to the high throughput nature of this study, we did not quantify and normalize sample DNA that was added into each PCR

reaction, rather a fixed volume (4 mL) of DNA template was used per well. Amplification was conducted on a GeneAmp 9700 PCR

System (Perkin Elmer) using the following conditions: an initial 94�C denaturation step for 2 min, followed by 30 cycles of 94�C dena-

turation for 30 s, 58�C annealing for 30 s and 72�C extension for 1 min.

Quadruplicate sample amplicons were combined into a single well on the PCR reaction plate, then transferred to a fresh round-

bottom polystyrene plate where they were purified using Agencourt AMPure XP beads as directed by the manufacturer, with slight

modifications (Beckman Coulter, USA). Purified amplicons were eluted in 25 mL sterile low 1 X TE buffer (Fisher Biotec). Quantitation

of amplicon was performed using the Quant-iT PicoGreen dsDNA quantitation kit (Life Technologies, Victoria, Australia) and fluores-

cence was determined on a Wallac Victor3 Multilabel counter (Perkin Elmer). PCR samples were equalized to 2 nM concentration

(a neat aliquot was used where a sample fell below this concentration) and pools of 48, 60 or 96 barcoded samples were generated

and sent for sequencing.

Primer adaptors were removed from library pools using a 0.8x ratio of Agencourt AMPure XP beads (Beckman Coulter, USA).

Library quantitation was determined by the high sensitivity Qubit kit (Life Technologies, USA) whilst library quality and average

size distribution was assessed by the Bioanalyser (Agilent Technologies, USA) high sensitivity kit. Library pools were diluted to

2nM followed by NaOH denaturation as per manufacter’s instructions (Illumina Inc., USA). Sequencing primers read 1: 5’- TATGG

TAATTGTGTGCCAGCMGCCGCGGTAA -3’, read 2: 5’-AGTCAGTCAGCCGGACTACHVGGGTWTCTAAT-3’ and index: 5’-ATTAGA

WACCCBDGTAGTCCGGCTGACTGACT-3’ (Sigma, Australia) were spiked into the MiSeq Cartridge at a final concentration of

0.5mM. Denatured libraries were loaded at 6.5pM with a 5% PhiX spike for diversity and sequencing control, onto a v2 300 cycle

cartridge for sequencing on the Illumina MiSeq.

Paired end reads were merged using Flash version 1.2.7 (Magoc and Salzberg, 2011) with read length 151 base pairs (bp) and ex-

pected fragment length 253 bp. Themerged readswere quality filtered as follows:%3 low-quality bp (Phred quality score < 3) allowed

before truncating a read,R189 consecutive high-quality bp, sequenceswith anyN characters were discarded. Readswere clustered

into operational taxonomic units (OTUs) using the closed reference OTU picking method in QIIME v1.7 using the Greengenes 99%
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reference database version 13_05. Mean of 1% of reads per sample had no match to the Greengenes database and were excluded

from further analysis (except for alpha diversity calculations, as described below). Negative control samples had a median of >1500

(taxonomy-assigned) reads (interquartile rage 900 – 2300), while NP samples had a median of >147K reads (IQR 45K – 230K). We

therefore removed 142 NP samples with <3000 taxonomy-assigned reads. A total of 3014 samples were left for further analysis,

including 1018 healthy samples (median 5 samples per child, IQR 3-6), 964 samples from upper respiratory illnesses (URIs; median

4 samples per child, IQR 2-6), and 1,032 samples from lower respiratory illnesses (LRIs; median 4 samples per child, IQR 2-7).

Because entries in the Greengenes database may be identical in the V4 subregion that we sequenced, it is possible for identical

read sequences to be assigned to different Greengenes OTUs. We therefore merged counts for OTUs that were identical in the

sequenced V4 region (identified by extracting the sequence between the forward and reverse primer sequences), as shown in Fig-

ure S2. Read counts were corrected for OTU-specific copy number using Picrust v1.0 (Langille et al., 2013) using the pre-computed

copy number estimates for Greengenes OTUs version 13_05; and relative abundances were calculated by normalising to the total

taxonomy-assigned reads for each sample. Phylogenetic analyses were conducted by BLAST (Camacho et al., 2009) searching

the NCBI 16S rRNA database using representative V4 region sequences from the common taxa (Figure S1B) to identify similar

sequences. For each genus, the sequences were aligned using Muscle (Edgar 2004) and a maximum-likelihood tree constructed

using PhyML (Guindon et al., 2010) and visualized in Seaview (Galtier et al., 1996) (Figure S2); these were used to identify the closest

known species for each common OTU (Table S2).

Virus Detection
A second aliquot from 736 healthy, 583URI and 789 LRI samples from the first three years (72%, 76%and 60%of all healthy, URI and

LRI samples, respectively for which we had 16S profiles), were prepared for viral detection via reverse transcriptase polymerase

chain reactions (PCR). Target organisms were: human rhinoviruses (RV); other picornaviruses (coxsackie, echo and enteroviruses);

coronaviruses 229E and OC43; respiratory syncytial virus (RSV); influenza A and B; parainfluenzaviruses 1-3; adenoviruses and

human metapneumovirus (HMPV). Primers, probes and PCR assay conditions have been previously described (Bochkov et al.,

2014; Kusel et al., 2006, 2007).

QUANTIFICATION AND STATISTICAL ANALYSIS

Clustering into Microbiome Profile Groups
Samples were assigned to microbiome profile groups (MPGs) based on hierarchical clustering of OTU relative abundances, using

Bray-Curtis dissimilarity as the distancemetric and complete linkage (implemented in the R function hclust). These analyses included

all common OTUs (defined as mean relative abundance >0.1%, present in >20% of samples, and dominating (>50%) at least one

sample); aggregated counts of other OTUs from each of the major genera (Moraxella, Streptococcus, Haemophilus, Alloiococcus,

Corynebacterium, Staphylococcus) and family Moraxellaceae; and a final group consisting of aggregated counts of all other

OTUs (labelled ‘rare OTUs’; see rows in Figure 1). The number of clusters (i.e. unique MPGs) was chosen to maximise the median

silhouette value. MPGs were named based on the dominant genus or OTU, as indicated in Table S1. Alpha (within-sample) diversity

was assessed using Shannon’s diversity index measure, which takes into account both number and relative abundance of the OTUs.

Association of Bacterial OTUs with Symptoms of Acute Respiratory Illness
We normalized the copy-number-corrected OTU read counts using cumulative sum scaling (CSS) (Paulson et al., 2013). Briefly, for

each sample, the OTU counts were divided by the cumulative sum of counts up to the smallest percentile for which sample-specific

count distributions were largely invariant (98.9th percentile for our data). We then tested for differential abundance in ARI vs healthy

samples, for each of 1,090 OTUs that were present in >10% of samples. A zero inflated Gaussian mixture model was fitted to the log

transformed CSS-normalized OTU counts, separately for samples before and after 2 years of age (before 2 years: inclusive of sam-

ples at 2-year timepoint; after 2 years: from 2.5-year timepoint), using the R package metagenomeSeq (Paulson et al., 2013). We

summarized the results for OTUs with an absolute fold change of >1.5 and FDR adjusted p-value <0.025 in either age strata. We

picked eight representative OTUs to more precisely investigate how the associations changed over time, and modelled the longitu-

dinal structure of the data using smoothing splines ANOVA with 100 permutations to assess significance (Paulson et al., 2017). All

models for the ARI vs. healthy association were adjusted for age, season, gender, and any antibiotics within the last 4 weeks.

Correlations between Bacterial OTUs
We inferred correlation networks among the 1,090 commonOTUs present in >10%of samples using FastSpar (Watts et al., 2018), an

efficient C++ implementation of the SparCC algorithm, which was designed to deal specifically with compositional data and pro-

duces more reliable and robust correlation estimates compared to Pearson or Spearman correlation especially in the case of low

diversity samples (Friedman and Alm, 2012). SparCC uses a log ratio transformation and calculates correlations between OTUs in

an iterative manner, under the assumption of a sparse network. Statistical significance of the correlation was assessed using

1000 bootstrap samples with exact p-value calculations based on the permp function in R package statmod (Phipson and Smyth,

2010). Correlation networks were generated across all samples, as well as separately for samples before and after 2 years of age,

samples within each half yearly time periods, and samples with low abundance (<1%) of Moraxella OTU. We assessed differences

in correlation before and after two years using the Fisher’s r-to-Z transformation (cocor R package).
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Within-Individual Dynamics
We first exploredmicrobiome changeswithin each child in terms of transitions from a healthy sample to the next healthy sample half a

year or a year later. Transitions which resulted in a MPG change indicated an abrupt shift in the major OTU (termed ‘‘unstable

transitions’’); stable otherwise. We also assessed the transitions using the Bray-Curtis dissimilarity calculated on the CSS-trans-

formed OTU count matrix using the vegan R package (Oksanen et al., 2018), which represented subtle changes. Transition stability

and distance were assessed for the effects of intervening ARI, LRI and antibiotics using GEE regression (logistic or linear where

appropriate), adjusting for the age of first sample and difference in ages between samples.

We then investigated whether we could detect changes in the NPM prior to ARI symptoms, and how long these changes persisted

after the illness. We grouped the healthy samples according to how soon after illness occurred (pre-illness: 1-2 weeks, 2-3 week,

3-4 weeks or >4 weeks) and how long after the last illness episode (post-illness: 1-2 months, 2-4 months, 4-6 months, 6-12 months,

or >12 months). We used GEE logistic or linear regression to model (i) assignment to specific illness-associated MPGs or (ii) log

abundance of specific illness-associated OTUs, against time to ARI/URI/LRI (separately for each pre-illness time category compared

to all other healthy samples), and adjusted for time post-illness, gender, age, season, recent antibiotics, and any virus.

Lastly, we examined per child, if the proportion of illness-associated Moraxella, Haemophilus and Streptococcus MPGs in their

healthy asymptomatic samples over different time periods (6 months to 2 years, and 2.5 years to 4 years) was associated with

LRI frequency and subsequent wheeze phenotypes (wheeze at age 5 years or transient wheeze). Logistic regression was used to

model (i) the proportion of illness-associated MPGs (as a binary: R50% versus <50%, excluding children with <2 healthy samples

in each corresponding time period) against LRI and febrile LRI frequency in years 1, 2, 3 and 4, (ii) wheeze phenotypes against pro-

portion of illness-associated MPGs (as tertiles), adjusting for LRI frequency. Separate models were fit for children with and without

early allergic sensitization by 2 years of age.

Statistical Methods
All statistical analyses were performed using R (R Core Team, 2018) unless otherwise stated. Association analyses that involvedmul-

tiple samples from the same subject were modelled using generalized estimating equations (GEE) with unstructured correlation and

robust standard errors, where possible. In the case of non-convergence due to insufficient sample size, the ordinary logistic regres-

sion was used. Potential confounders were included in the model. We used the Benjamini-Hochberg false discovery rate method

(FDR) (Benjmini and Hochberg, 1995) or Bonferroni correction where multiple testing p-value adjustments were needed, as stated.

All boxplots shown use the Tukey format, in which the bottom and top of the box represents the lower and upper quartiles respec-

tively and the ends of whiskers represents the lowest/highest datum still within 1.5 interquartile range of the lower/upper quartile.

Definition of Variables Used in Statistical Analyses
d Wheeze at age 5: Presence of wheeze in the last 12 months recorded in the 5 year questionnaire.

d Transient wheeze: Any wheeze in the first three years, but no wheeze in the 5th year.

d Early allergic sensitization: Any allergen-specific IgE levels > 0.35 kU/L by two years of age (at any of 6 month, 1 year or 2 years

timepoints).

d Season: According to month of collection: spring (September–November), summer (December–February), autumn (March–

May) or winter (June–August).

d Recent antibiotics: Any record of antibiotics intake within the last 4 weeks prior to sample collection.
OTU and Microbiome Profile Group (MPG) Distributions and Associated Predicted Species
The Moraxella genus was overwhelmingly represented by OTU 4398454 (M. catarrhalis) throughout all five years (Figure S1B). The

associated Moraxella MPG, which was dominated by this OTU, was of relatively low frequency in the 2-month healthy samples

(13%), but increased sharply thereafter, stabilizing at an average of 39% from one year of age. In ARI samples, the Moraxella

MPG followed a similar trend, increasing from 29% at two months of age to �43% in the later time periods (Figure 1B). In addition,

5% of all samples fell into one of two MPGs dominated by OTUs classified to the Moraxellaceae family (either OTU 1057260 or

854899); NCBI blastn searches of these sequences matched closely to Moraxella lincolnii (Figure S2). This species had been

previously isolated from the human respiratory tract (ages 6 months – adult) (Vandamme et al., 1993), and was also observed in a

16S analysis of NP samples of children aged 6 months to 2 years in a Dutch population (Biesbroek et al., 2014). In our data, these

MPGs were negatively associated with ARI (OR 0.7, p = 0.016; Table S2).

TheStreptococcus genuswasmostly represented byOTU 1059655 (67%of allStreptococcus reads; orange in Figures 1A andS1),

whose representative sequence was closest to the Streptococcus pneumoniae–pseudopneumoniae complex (Figure S2 and

Table S1). The presence of this OTU in ARI samples in the first year was correlated with detectable IgG1 antibodies to S. pneumoniae

pneumococcal surface protein A1, A2, or C at one year of age as previously reported (Teo et al., 2015). Samples dominated by

this OTU clustered into a single MPG we labelled ‘‘Streptococcus’’ (orange in Figure 1B), which was rarely observed in two-month

samples but common thereafter (from 6 months: mean of 5% and 14% in healthy and ARI samples, respectively). The next most

frequently observed Streptococcus OTU was 1004451 (15%; green in Figure S1); its V4 sequence is distinguished from 1059655

by a common base substitution (tree in Figure S2), and is close to many commensal Streptococcus species (Table S1). Samples

assigned to the ‘‘other Streptococcus’’ MPG were often dominated by this OTU (Figure 1A).
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The Haemophilus genus was represented by two distinct MPGs dominated by OTU 240051 or 956702 (Figure 1A), both of which

show best matches withH. influenzae andH. haemolyticus sequences (which are not distinguishable at the V4 region; see Figure S2).

As previously reported, the presence of these OTUs in ARI samples in the first year was correlated with detectable IgG1/IgG4

antibodies to H. influenzae P4/P6 surface proteins at one year of age (Teo et al., 2015). These MPGs were infrequent in the healthy

samples (2%), but comprised 11% of ARI samples (Figure 1B). The rare Haemophilus OTUs were also close to H. influenzae and

H. haemolyticus sequences, with the exception of 4404220, 4053636 and 3605478 which were distant from these but clustered

with H. parainfluenzae and H. parahaemolyticus (Figure S2) and were occasionally detected in healthy samples (Figure S1).

The Corynebacterium genus was primarily represented by OTU 4474764, which best matched the commensal orophangeal

bacterium C. propinquum (Figure S2). A distantly related OTU 4376867 (matching the nasal coloniser C. accolens) was detected

in infancy (16% of Corynebacterium reads in the first 6 months) but very rarely thereafter (Figure S1B; all 17 samples assigned to

the associatedMPGwere collected during the first year of life, 15 (88%) of which in the first 6months, Figure 1B). Samples dominated

(>29%) by OTU 4474764 (closest to C. propinquum and C. pseudodiphtheriticum) clustered into a single MPG we labelled

‘‘Corynebacterium’’, whichwas frequent in healthy samples in the first 6months (10-12%), but declined to <7% thereafter (Figure 1B).

Corynebacterium OTU 4474764 frequently co-occurred with Alloiococcus (overwhelmingly represented by the A. otidis /

Dolosigranulum pigrum OTU 886735), in samples belonging to the Alloiococcus-Corynebacterium MPG (median 43% Alloiococcus

OTU 886735 and 32% Corynebacterium OTU 4474764).

The Staphylococcus genus was mostly represented by OTU 929976, although there were also numerous low-abundance

StaphylococcusOTUs that co-occurred with this one (Figure 1A). TheStaphylococcusMPG (median 43%OTU 929976 and 9%other

Staphylococcus OTUs) was most common at 2 months (36% and 28% in healthy and ARI samples, respectively) but declined to

low levels subsequently in ARI samples (0-11%, Figure 1B). Staphylococcus species are not well resolved at the 16S V4 region;

OTU 929976 is identical to known sequences from S. aureus but also other species (Figure S2).

DATA AND SOFTWARE AVAILABILITY

Sequencing data for this study, cleaned for human reads, has been deposited in the NCBI GenBank (accession SRP056779).
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