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The effects of corticotropin-releasing hormone, also known as corticotropin-releasing factor (CRF), on the cardiovascular system
have been intensively researched since its discovery. Moreover, the actions of urocortin (Ucn) I on the cardiovascular system
have also been intensively scrutinized following the cloning and identification of its receptor, CRF receptor type 2 (CRFR2), in
peripheral tissues including the heart. Given the cardioprotective actions of CRFR2 ligands, the clinical potential of not only Ucn
I but also Ucn II and III, which were later identified as more specific ligands for CRFR2, has received considerable attention from
researchers. In addition, recent work has indicated that CRF type 1 receptor may be also involved in cardioprotection against
ischemic/reperfusion injury. Here we provide a historical overview of research on Ucn I and related agents, their effects on the
cardiovascular system, and the clinical potential of the use of such agents to treat cardiovascular diseases.

1. Introduction: Overview of
Corticotropin-Releasing Hormone and
Related Peptides and Their Effects on
the Cardiovascular System

Since the discovery of a 41-residue ovine hypothalamic
peptide that stimulates secretion of corticotropin, several
studies have revealed that corticotropin-releasing factor
(CRF) affects the cardiovascular system, although the CRF
receptors involved in this process had not been identified
[1–9]. In 1995, a major breakthrough in research on the
effects of CRF-related peptides on the cardiovascular system
took place with the cloning and identification of the CRF
type 2 receptor (CRFR2) in peripheral tissues including
the cardiovascular system [10–14]. This finding indicated
that CRF and related peptides may affect the heart and
vascular tissues. In addition, urocortin (Ucn) I, which was
later recognized as a key CRF peptide in the heart, was
also identified in rat mid brain tissue [15], while Ucn
I mRNA, but not CRF, was identified in cardiomyocytes
[16]. Several studies revealed that stimulation of CRFR2

by CRF and Ucn I induced the release of atrial and brain
natriuretic peptides (ANP and BNP, resp.) [17, 18], which
are used as the indicators of cardiac hypertrophy [19] and,
in another hand, have an antihypertrophic action [20], had a
positive inotropic action on the heart [21], increased protein
and DNA synthesis in cardiac fibroblasts [18, 22, 23], and
exerted a cardioprotective action against hypoxia [16, 24,
25]. Ucn I immunoreactivity has also been identified in
normal and diseased human heart, especially in the hearts
of patients with dilated and hypertrophic cardiomyopathies
(DCM and HCM, resp.) [22, 26, 27]. The other reported
beneficial actions of Ucn I on the heart is to reduce infarct
size in vivo, improve intracellular calcium handling [28],
increase the ventricular fibrillation threshold [29], reduce the
occurrence of arrhythmias [28], and inhibit efferent cardiac
sympathetic nerve activity [30]. These facts indicated that
Ucn I and its analogs may have beneficial actions in the
treatment of cardiac diseases as well as play certain roles in
cardiac diseases. Furthermore, CRFR2, which is a potential
receptor of Ucns in the heart, may play an important role
in adaptation to cardiac stress [31], and dominant negative
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effects of a recently identified variant isoform of CRFR2
may play a critical role in the pathophysiology of stress-
induced heart disease [32]. These findings indicate that
CRFR2 signaling is important in the adaptation to cardiac
stress and heart-related diseases. In addition to Ucn I, the
Ucn I analogs Ucn II and Ucn III, which are more specific
ligands of CRFR2, were successively identified in searches of
publicly available human genome databases [33, 34]. Ucn II
and Ucn III were also identified in human and rodent heart
[35–37]. Thereafter, more studies on the effects of Ucn I and
related peptides were undertaken.

CRFR2 was also identified in the aorta-derived A7R5 cell
line [38], and Ucn I was identified in human umbilical vein
endothelial cells (HUVECs) [39]. Ucn I and its analogs exert
vasodilatory effects in arteries and veins via their action on
CRFR2 [40–42]. Furthermore, Ucn I exerts an antioxidative
action in response to the angiotensin II-induced generation
of reactive oxygen species (ROS) by HUVECs [39]. In other
studies, however, Ucn I was shown to exert proinflammatory
effects by augmenting via CRFR2 the lipopolysaccharide-
induced expression of cyclooxygenase (COX)-2 and inter-
cellular adhesion molecule-1 in rat aortic endothelial cells
and to induce vasculitis via CRF type 1 receptor (CRFR1)
[43, 44].

2. CRFR1 and CRFR2 Signaling in
the Cardiovascular System and
Cardioprotective Action of Ucns

Several studies have described the signal transduction path-
way for CRFR2. Recently, the CRFR1 was identified in HL-
1 cardiomyocytes in addition to CRFR2, and the possible
involvement of CRFR1-mediated extracellularly regulated
kinase1/2 (ERK1/2) signaling pathways in Ucns’ cardiopro-
tective action against ischemia/reperfusion injury was indi-
cated [45]. It has been suggested that the CRFR1 and CRFR2
signal transduction pathways in cardiovascular cells involve
protein kinase A (PKA) [18, 35, 40], Src [45], p38 mitogen-
activated kinases (MAPKs) [40, 46], ERK1/2 [45, 47–49], the
protein kinase C (PKC) pathway [50, 51], the protein kinase
B/Akt pathway [36, 48, 49], phosphoinositide-3 kinase (PI3-
K) [49], the COX-2 pathway [52], and the endothelial nitric
oxide synthase pathway [48]. For example, the hypertrophy-
inducing action of Ucns, which is manifested by an increase
of ANP and BNP secretion from cardiomyocytes and an
increase in protein synthesis, may be induced via the PKA
and Akt pathways [18, 35, 36], while the cardioprotective
action of Ucns against hypoxia and reperfusion injury may
involve the Src, ERK1/2, PKC, and PI3-K pathways [45, 49,
51].

3. Clinical Use of Ucns to Treat
Cardiovascular Disease

Some clinical applications of Ucns in cardiovascular diseases,
such as ischemic heart disease, cardiac failure, and hyperten-
sion, among others, have been proposed.

3.1. Ischemic Heart Disease. The relationship between the
action of CRFR2 and ischemia-induced cardiomyocyte dam-
age has been extensively investigated [16, 24, 25, 36, 53]. Ucn
I clearly exerts an anti-ischemic action on cardiomyocytes.
The protective action of Ucns against ischemia could be
mediated via CRFR2 and, in turn, via the ERK1/2, MAPK,
and PI3-K pathways [24, 53]. In addition, pretreatment
with Ucn I to protect against ischemia resulted in the
significant recovery of high-energy phosphate pools [25].
The recent study suggested the expression of CRFR1 and
possible involvement of the CRFR1 signaling pathway in
cardioprotection against ischemic/reperfusion injury [45].
These findings indicate that Ucns and related agents (i.e.,
CRFR1 and CRFR2 agonists) could serve as candidate
therapeutic agents to combat ischemic heart diseases.

3.2. Heart Failure. Elevated immunoreactivity to Ucn I in
diseased heart was identified in DCM [22]. Our group also
detected increased Ucn I immunoreactivity in the heart of
DCM and HCM patients [27]. Furthermore, several studies
reported that plasma Ucn I immunoreactivity was elevated
in patients with cardiac failure and ischemic heart disease
and in sheep with experimental cardiac failure [54–58].
Elevated plasma Ucn I concentrations combined with N-
terminal proBNP may enhance prognostic performance in
acute myocardial infarction [56]. On the other hand, several
trials in which Ucns are being used to treat experimental [59–
64] and human cardiac failure [65] are ongoing and have
provided some potentially beneficial results, because Ucn I
may exert inotropic actions that may play a key role in the
treatment of cardiac failure. And Ucn II may also improve the
renal function [66], and sympathetic activity in heart failure
[30], synthetic Ucns, or nonpeptide CRF receptor agonists
may prove useful for the treatment of cardiac failure.

3.3. Hypertension. One of the actions of Ucns on the vascula-
ture is to cause vasodilation. In addition to these vasodilatory
actions, Yang et al. suggested that Ucn I may decrease
the activity of angiotensin-converting enzyme and, in turn,
reduce blood pressure [67, 68]. To this extent, infusion of
Ucn II in healthy humans and in patients with cardiac failure
resulted in a decrease of blood pressure [65, 69]. However,
clinical data on the treatment of hypertension with Ucns are
not yet available.

In conclusion, Ucn-related agents (synthetic CRF recep-
tor agonists) may have clinical potential for the treatment
of patients with clinically manifested cardiovascular diseases.
Accumulating evidence of the beneficial actions of Ucns will
serve as the experimental basis for the clinical use of Ucn-
related compounds.
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