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Adoptive immunotherapy with T cells genetically modified to express chimeric antigen
receptors (CARs) is a promising approach to improve outcomes for cancer patients. While
CAR T cell therapy is effective for hematological malignancies, there is a need to improve
the efficacy of this therapeutic approach for patients with solid tumors and brain tumors.
At present, several approaches are being pursued to improve the antitumor activity of
CAR T cells including i) targeting multiple antigens, ii) improving T cell expansion/
persistence, iii) enhancing homing to tumor sites, and iv) rendering CAR T cells
resistant to the immunosuppressive tumor microenvironment (TME). Augmenting signal
3 of T cell activation by transgenic expression of cytokines or engineered cytokine
receptors has emerged as a promising strategy since it not only improves CAR T cell
expansion/persistence but also their ability to function in the immunosuppressive TME. In
this review, we will provide an overview of cytokine biology and highlight genetic
approaches that are actively being pursued to augment cytokine signaling in CAR T cells.
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INTRODUCTION

Despite recent advances in cancer treatment, patients with relapsed or refractory disease continue to
have poor outcomes and novel approaches are needed. T cells that are genetically modified to
express a chimeric antigen receptor (CAR) can kill chemotherapy-resistant tumor cells and
therefore have the potential to improve outcomes and reduce treatment-related toxicity from
conventional therapies (1, 2). CARs consist of four components: i) an extracellular antigen
recognition domain, most commonly a single chain variable fragment (scFv), ii) structural
components, such as hinge and transmembrane domains, iii) a costimulatory domain that
provides signals to sustain CAR T cell effector functions, and iv) a CD3z activation domain
(1–3) (Figure 1).

CAR T cells targeting CD19 have shown significant overall response rates against CD19-positive
leukemia and lymphoma (4–6), leading to their FDA approval in 2017. In addition, CAR T cells
targeting BCMA, CD30, CD22, or CD20 expressed on hematological malignancies have also shown
significant activity in clinical studies (7–10). However, a subset of patients does not achieve
remission or relapses with antigen-positive disease due to suboptimal expansion or persistence of
CAR T cells (11). CAR T cells for the treatment of solid tumors are also actively being explored, but
they have shown less impressive clinical results (12–16), most likely due to a multitude of factors
that limit CAR T cell activity. Previous preclinical studies have demonstrated that improvements in
org June 2021 | Volume 12 | Article 6846421
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CAR design, such as optimizing scFvs, modification of structural
components, or modulation of CAR signaling can improve the
antitumor activity of CAR T cells (17–21). Likewise, additional
genetic modification may be required to endow CAR T cells with
potent and sustained effector function and to overcome the
immunosuppressive tumor microenvironment (TME) to
produce lasting benefits for cancer patients (22).

Physiological T cell activation requires three distinct signals
for acquisition of effector function and formation of
immunological memory. Signal 1 (activation) occurs via CD3z
signal transduction following T cell receptor (TCR)-mediated
antigen recognition. Signal 2 (costimulation) provides additional
signals from CD28 or other molecules to augment signal 1.
Finally, signal 3, mediated by cytokines, is required for optimal T
cell proliferation, differentiation of naïve T cells into effector
cells, and development of functional T cell memory (23–25)
(Figure 2).

First generation CARs provide only signal 1, via CD3z.
Second-generation CARs also provide signal 2, most often
through CD28 or 4-1BB co-stimulation to sustain CAR T cell
expansion following activation. Although activated CAR T cells
produce cytokines, such as interleukin-2 (IL-2), production
decreases after repeated exposure to tumor cells (26), and some
cytokines that are important for T cell effector function, such as
IL-12 and IL-15, are either produced at low levels are not at all by
T cells (27, 28). Due to these limitations, investigators have
engineered CAR T cells to augment signal 3. While incorporating
cytokine receptor chains or JAK/STAT binding domains into
CARs improves CAR T cell effector function (29, 30),
most approaches to provide or modulate cytokine signaling
Frontiers in Immunology | www.frontiersin.org 2
have relied on transgenic expression of cytokines or cytokine
receptors. In this review, we will provide a succinct overview
of cytokine biology and highlight strategies to improve
signal 3 in CAR T cells, including constitutive and inducible
expression of cytokines and expression of native and engineered
cytokine receptors.
COMMON GAMMA CHAIN CYTOKINES
AND THEIR RECEPTORS

Cytokine Biology
The common gamma chain family of cytokines – IL-2, IL-4, IL-7,
IL-9, IL-15, and IL-21 – play critical roles in T cell differentiation,
proliferation, and homeostasis. The receptors for these cytokines
include the common gamma chain (gc) and a private receptor
chain (IL-4Ra, IL-7Ra, IL-9Ra, IL-21R) except for IL-2 and
IL-15 that share gc and IL-2Rb. Additionally, the IL-2/15
receptor can associate with IL-2Ra (CD25) or IL-15Ra to
form high affinity IL-2 or IL-15 receptors. Binding of cognate
cytokines induces heterodimerization of gc with the private
receptor chain to position inactive Janus kinase (JAK)1 and
JAK3 in proximity where they trans-phosphorylate each other to
become active. Activated JAK1 and JAK3 subsequently
phosphorylate the receptor to provide phosphotyrosine binding
sites for SH2-domain containing proteins. Some of the primary
signaling molecules activated downstream of these cytokine
receptors are members of the Signal Transducer and Activator
of Transcription (STAT) family (Figure 3A). In the case of the
IL-2 receptor, phosphorylation of STAT5A and STAT5B by
JAK1/3 induces homo- or hetero-dimerization and immediate
nuclear translocation to induce expression of several cell cycle
and anti-apoptosis genes, including Bcl-2, Bcl-x, Pim-1, c-myc,
and cyclin D2 (31, 32). Additionally, mitogen-activated protein
kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K)
pathways activated downstream of the IL-2R play roles in
proliferation and metabolic regulation that may potentiate
STAT5 signaling (33), but each receptor varies in its ability to
activate these pathways.

An important aspect of gc receptor signaling is positive and
negative regulation of the pathway to enhance or repress
signaling circuits. For example, IL-2 upregulates expression of
the high-affinity IL-2Ra chain, which can increase the sensitivity
of T cells to IL-2, thus enhancing IL-2 signaling and T cell
proliferation (34). Similarly, IL-4 induces expression of IL-4Ra,
enforcing T helper (Th)2 polarization of CD4 T cells (35).
Conversely, STAT5 signaling upregulates cytokine inducible
SH2-containing protein (CISH) and suppressor of cytokine
signaling (SOCS), which directly inhibit JAK activity and
ubiquitinate the receptor complex, leading to proteasomal
degradation (36).

While some of the gc cytokines can mediate similar signaling
pathways and transcriptional programs (32, 37), physiological
differences in cytokine signaling are mediated by competition for
gc between the different receptors (38), variability in receptor
expression on T cell subsets, a bias for signaling through different
FIGURE 1 | Components of chimeric antigen receptors. CARs recognize a
cell surface antigen via a single chain variable fragment (scFv) from a
monoclonal antibody or a ligand and signal through costimulatory domains
derived from and CD28, 4-1BB, or other molecules and an activation domain
derived from CD3z. Structural components, such as hinge and
transmembrane domains derived from CD28, CD8a, or other molecules, are
also important for CAR function.
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STAT molecules, and differences in activation of the MAPK and
PI3K pathways (39, 40). The end result of gc cytokine receptor
signaling is a transcriptional program that is influenced by
activation of different STAT heterodimers, homodimers, and
tetramers interacting with the chromatin landscape that differs in
CD4 and CD8 T cells, as well as in naïve, memory, and exhausted
T cells (41–43). Thus, future work to understand these
transcriptional networks in CAR T cells could yield rational
combinations to improve adoptive cell therapy for cancer.

Interleukin 4 and 9
So far, IL-4 and IL-9 in the context of adoptive cell therapies have
been understudied. IL-4 can have anti-cancer properties (44, 45),
but it is largely immunosuppressive (46). IL-4 is involved in the
differentiation of naïve CD4 T cells into IL-4-producing Th2
cells, which have been associated with less antitumor activity
than IFNg-producing CD4 T cells (Th1) (47). Adoptive transfer
of tumor-specific IL-4-producing cytotoxic CD8 T cells (Tc2)
was also less effective in controlling tumor growth compared to
IFNg-producing CD8 T cells (Tc1) (48–50). Additionally, several
cancer types express IL-4 (51, 52) and the IL-4R (53–55), which
suggests a role in tumor progression.
Frontiers in Immunology | www.frontiersin.org 3
IL-9 was originally described as a T cell growth factor
involved in the Th2 response, but recent studies have shown
that IL-9 producing T cells (Th9/Tc9) can cause tissue
inflammation (56) and inhibit tumor growth by activating
mast cells (57) or by indirectly attracting immature dendritic
cells (DCs) and activated CD8 T cells to tumors (58). Activation
of the endogenous immune system by Th9 cells was better able to
control tumor growth than conventional Th1 cells (58).
Similarly, Tc9 cells were found to be superior to Tc1 cells for
adoptive cell transfer by differentiating into effector cells that can
persist longer in vivo, resist exhaustion, and resist apoptosis,
which allows them to better control tumor growth (59). While
there have been few publications evaluating the utility of IL-9 in
improving CAR T cell therapy, Th9/Tc9-polarized human CAR
T cells were recently shown to have superior antitumor activity
compared to conventional Th1/Tc1 CAR T cells (60). These IL-9
producing T cells have several characteristics of an ideal
population of T cells for adoptive cell transfer – they are
hyperproliferative, cytotoxic, and resistant to exhaustion –
which allows them to eradicate established tumors (61).
However, there is conflicting evidence about whether IL-9 is
dispensable (60–62) or indispensable (57–59, 62, 63) for
FIGURE 2 | Signals 1, 2, and 3 in T cell activation. Physiological T cell activation and sustained effector function require i) Signal 1: peptide-MHC recognition and
signaling through the T cell receptor (TCR), ii) Signal 2: costimulation through CD28, and iii) Signal 3: cytokine stimulation. First generation CARs provide only Signal
1, while second generation CARs provide Signals 1 and 2, and induce cytokine production (Signal 3). Signal 3 can be augmented by additional genetic modifications.
June 2021 | Volume 12 | Article 684642
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antitumor responses. Further work will be required to evaluate
this unique T cell population for adoptive cell therapies and to
delineate if provision of IL-9 signaling is a general approach to
improve CAR T cells.

Interleukin 2 and 15
Early attempts to improve the antitumor activity of CAR T cells
were based on the clinical use of IL-2 and IL-15 as anti-cancer
immunotherapeutics, which as a monotherapy or in combination
with adoptive transfer of tumor infiltrating lymphocytes (TILs)
(64–66) had significant antitumor activity but were also associated
with toxicity at higher doses (66–70). IL-2 and IL-15 promote
immune cell proliferation and the transcription of anti-apoptotic
proteins, but responsiveness to these two cytokines varies between
Natural Killer (NK) cells and T cell subsets. The high-affinity IL-2
receptor is expressed by regulatory T cells (Tregs) and activatedCD4
and CD8 T cells, thoughmemory CD8 T cells andNK cells are also
Frontiers in Immunology | www.frontiersin.org 4
responsive to IL-2 to a lesser degree. Conversely, memory CD8 T
cells andNKcells aremost responsive to IL-15,whileTregs andnaïve
CD4 and CD8 T cells are not. Constitutive expression of IL-2 by 1st

generation CD19-CAR T cells improved the tumor-free survival of
micewith disseminated lymphoma compared to CART cells alone,
although other gc cytokines were associated with greater
improvements in survival and longer persistence of CAR T cells
(71). However, the use of IL-2 has fallen out of favor due to the
potential expansion of Tregs that can impede antitumor responses
(72). Additionally, prolonged exposure to IL-2 promotes activation
induced cell death (AICD) (73) and terminal differentiation of T
cells into highly cytotoxic effector cells that can efficiently kill tumor
cells, but are not able to sustain long-term antitumor activity in vivo
that is associated with durable responses (74).

Constitutive expression of IL-15 improved the antitumor
activity of CAR T cells specific for CD19, GPC-3, CLL-1, GD2
and IL-13Ra2 (75–79), likely due to a combination of greater
A B

C

FIGURE 3 | Common gamma chain cytokine signaling and synthetic receptors. (A) Common gamma chain cytokine receptors IL-2/15R, IL-7R, and IL-9R signal
primarily through STAT5 while IL-21R signals primarily through STAT3. IL-4R signals through STAT6 to induce Th2 polarization. These receptors also activate PI3K
and all except IL-7R activate MAPK pathways. (B) Constitutive active variants of IL-7R can provide constant STAT5 activation. C7R is formed from homodimerization
of IL-7Ra chain mutants through a disulfide bridge in the transmembrane domain. A constitutively active IL-7R provides constant STAT5 and PI3K signaling by
expression of IL-7 tethered to IL-7Ra. Switching the IL-7Ra intracellular domain with IL-2Rb provides constant STAT5, PI3K, and MAPK signaling. (C) Switch
receptors bind an immunosuppressive cytokine, such as IL-4, and convert it into a stimulatory signal. These receptors are composed of the IL-4Ra extracellular
domain (IL-4Rex) fused to the IL-7Ra, IL-2Rb, or IL-21R intracellular domain (IL-7Rin, IL-2Rin, or IL-21Rin).
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expansion and persistence. Constitutive expression of IL-15 by
first generation CD19-CAR T cells improved their in vivo
antitumor activity and allowed cells to persist in mice for up to
110 days after tumor challenge (71). Notably, IL-15 expression
maintained the greatest persistence of CD19-CAR T cells
compared to other gc cytokines, and a subset of these persisting
cells were memory-like T cells, a phenotype that is associated with
sustained responses in patients treated with CAR T cells (80). The
expansion or maintenance of memory T cell subsets, such as stem
cell memory T cells (Tscm), by IL-15 (81) could contribute to
enhanced CAR T cell expansion and persistence. In addition to
transgenic expression of secretory IL-15, expressing a membrane-
bound form of IL-15 is an alternative way to provide pro-survival
signals to CAR T cells (82). This approach is currently under
evaluation in a phase 1 trial of CD19-CAR T cells (Table 1).

No studies have compared head-to-head the efficacy of
membrane-bound IL-15 to secreted IL-15 in engineered T cells,
but evidence from preclinical studies suggests that membrane-
bound IL-15 may be advantageous in certain situations. In
addition to tumor-infiltrating CAR T cells, other immune cells,
such as NK cells, NKT cells, endogenous T cells, and innate
lymphoid cells (83), are responsive to IL-15. Secreted IL-15 could
theoretically induce proliferation in these cell types but in CD8 T
cells, membrane-bound IL-15 presented in the context of IL-15Ra,
in contrast to secreted IL-15,provided sustained signal transduction
that likely contributes tomaintenance ofmemory CD8 T cells (84).
Similarly, membrane-bound IL-15 tethered to CD8a improved the
survival of engineeredNKcells to a greater extent thanexpressionof
secreted IL-15, although this effect was due to autocrine signaling
(85). Membrane-bound IL-15 tethered to IL-15Ra also improved
survival andmaintained a greater number of stem cellmemory-like
CAR T cells following withdrawal of antigen, compared to CAR T
cells treated with IL-15/IL-15Ra complex (82). Nonetheless, many
preclinical studies support transgenic expression of secreted IL-15
to improve CAR T cell antitumor activity. Ongoing clinical trials
with IL-15 engineered T cells and further preclinical work could
inform the optimal mode of IL-15 delivery to enhance adoptive cell
therapy for cancer.
Frontiers in Immunology | www.frontiersin.org 5
Concerns of uncontrolled proliferation or toxicity of CAR T
cells expressing gc cytokines (86) have spurred the development
of inducible safety switches in combination with T cell
stimulating cytokines. Inducible caspase 9 (iC9) is an
engineered protein that can be activated by a chemical inducer
of dimerization to initiate apoptotic cell death (87), and
activation of iC9 in vivo resulted in rapid depletion of
genetically modified cells in humans (88). Several preclinical
studies have shown that co-expression of iC9 and IL-15 improves
CAR T cell function and allows the selective depletion of
genetically modified CAR T cells. Based on these preclinical
studies, GD2-CAR T cells co-expressing iC9 and IL-15 are in
early phase clinical evaluation (Table 1). In addition to CAR T
cells, CAR natural killer T (NKT) cells have been genetically
modified to express IL-15 (89). CAR.IL15 NKT cells maintained
a population of central memory-like cells that were less prone to
exhaustion and apoptosis, which translated into improved
antitumor activity in vivo (90). Additionally, IL-15 protected
CAR NKT cells from inhibition in the hypoxic TME (91). Based
on these studies, the safety and efficacy of GD2-CAR NKT cells
co-expressing IL-15 is currently being evaluated in pediatric
patients with neuroblastoma (Table 1), and an interim analysis
of the first three patients found that infusion of CAR.IL15 NKT
cells is safe and associated with clinical benefit (92). In addition,
NK cells expressing CD19-CARs, iC9 and IL-15 have been
successfully evaluated in one early phase clinical study (93).

Interleukin 7
Subcutaneous administration of IL-7 induced dose-dependent
increases in the number of circulating CD4 and CD8 T cells
without causing serious adverse events, such as capillary leak
syndrome, that were observed in patients treated with IL-2 or
IL-15 (66, 69, 94). In addition to promoting homeostatic
expansion of T cells, IL-7 has also been shown to increase TCR
repertoire diversity by preferentially expanding naïve T cells and
recent thymic emigrants, which could improve the formation of
an anti-cancer immune response (95). Therefore, transgenic
expression of IL-7 has been explored as an alternative method
TABLE 1 | Selected CAR T cell clinical trials with additional modifications to enhance signal 3.

Antigen 2nd Genetic
Modification

Cell Type Indication Clinical Trial ID

CD19 IL-7 + CCL19 T cells B Cell Lymphoma NCT03929107
CD19 IL-7 + CCL19* T cells Diffuse Large B Cell Lymphoma NCT04381741
CD19 mbIL-15 T cells B Cell Leukemia and Lymphoma NCT03579888
EGFR NFAT.IL-12 T cells Colorectal Cancer NCT03542799
ErbB IL-4Ra/IL-2Rb (4ab) T cells Head and Neck Squamous Cell Carcinoma NCT01818323
GD2 C7R T cells High Grade Glioma NCT04099797
GD2 C7R T cells Solid Tumors NCT03635632
GD2 IL-15 T cells Neuroblastoma NCT03721068
GD2 IL-15 NKT cells Neuroblastoma NCT03294954
GPC3 IL-7 + CCL19** T cells Hepatocellular Carcinoma NCT03198546
Integrin b7, BCMA, CS1, CD38 or CD138 IL-7 + CCL19 T cells Multiple Myeloma NCT03778346
Nectin-4/FAP IL-7 + CCL19 or IL-12 T cells Solid Tumors NCT03932565
MUC16ecto IL-12 T cells Ovarian Cancer NCT02498912
June 2021 | Volume 12
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to improve CAR T cells without the limitations of IL-2. In fact,
genetically modifying GD2-CAR virus-specific T cells to express
IL-7 allowed them to kill target cells in the presence of inhibitory
Tregs, while these cells were suppressed in the presence of IL-2
(96). Constitutive expression of IL-7 improved the antitumor
activity of CD19-CAR T cells compared to CAR T cells
expressing IL-2 or IL-15, possibly as a result of sustained target
cell killing and T cell expansion, however these cells did not
exhibit the long-term persistence observed with IL-15-expressing
CD19-CAR T cells (71). IL-7 similarly improved CD20- and
mesothelin-CAR T cells, but this effect required co-expression of
C-C Motif Chemokine Ligand 19 (CCL19) (97). Expression
of both IL-7 and CCL19 increased intra-tumoral infiltration of
CAR T cells, endogenous T cells, and DCs, which achieved
complete regression of established solid tumors and led to the
formation of a T cell memory response via epitope spreading.
CAR T cells engineered to express IL-7 with CCL19 or CCL21
also had improved antitumor activity due to enhanced CAR T
cell proliferation and chemotaxis (98). These studies have been
translated into clinical trials to evaluate the safety and efficacy of
IL-7 and CCL19 expressing CAR T cells against lymphoma,
multiple myeloma, and solid tumors (Table 1).

The greatest limitation to this approach is the downregulation
of IL-7Ra as a result of sustained IL-7 signaling or TCR
stimulation (99). To restore responsiveness to IL-7, T cells can
be modified to constitutively express IL-7Ra (100), but
prolonged exposure to IL-7 in IL-7Ra transgenic T cells can
promote apoptosis through IFNg-induced upregulation of Fas
and FasL (101). Alternative approaches have been explored to
provide the benefits of IL-7 signaling including expressing
constitutive active cytokine receptors (102).

Interleukin 21
In contrast to other gc cytokines, IL-21 shows a preference for
activation of STAT3 over STAT5 while also signaling through
PI3K and MAPK pathways to mediate proliferation (39).
Constitutive expression of IL-21 by 1st generation CD19-CAR
T cells improved overall survival of mice with disseminated
lymphoma (71). The greatest improvement in overall survival
was seen in CAR T cells expressing IL-21, compared to CAR T
cells expressing IL-2, IL-7, or IL-15, even though these cells
expressed lower levels of Bcl-2, IFNg, and TNFa. The improved
antitumor activity could be due to maintenance of less
differentiated effector memory T cell (TEM) subsets and/or by
enhancing long-term persistence. In accordance with this
observation, IL-21 has been shown to decrease terminal
effector differentiation of CD8 T cells, as judged by expression
of granzyme B and EOMES, in comparison to IL-2 treated CD8
T cells, which resulted in improved in vivo antitumor activity
(103). IL-21 also improved the expansion and persistence of
adoptively transferred CD8 T cells resulting in superior
antitumor activity in syngeneic tumor models compared to
IL-2 and IL-15 (104). While the efficacy of IL-21-driven
STAT3 signaling in T cell immunotherapy is still being
explored, STAT3 signaling has been correlated with improved
CD19 CAR T cell treatment outcomes in chronic lymphocytic
leukemia (80).
Frontiers in Immunology | www.frontiersin.org 6
Constitutive Active Cytokine Receptors
An alternative strategy to enhance signal 3 of T cell activation is
by transgenic expression of synthetic cytokine receptors
(Figure 3B). For example, expression of a constitutively active
IL-7 receptor (C7R) can overcome the downregulation of IL-7Ra
due to negative feedback mechanisms and provide constant
STAT5 signaling without a requirement for IL-7. Enhanced
STAT5 signaling mediated by C7R was found to improve the
in vitro and in vivo antitumor activity of GD2- and EphA2-CAR
T cells (102) in an antigen-dependent fashion. C7R also
increased tumor infiltration, expansion, and cytokine
production of AXL-CAR T cells, but did not improve
antitumor activity compared to the CAR alone (105). Clinical
trials evaluating GD2-CAR T cells expressing C7R are in
progress (Table 1).

Expression of IL-7Ra tethered to IL-7 is another way to
provide cell-intrinsic IL-7 signaling (106). Since this is a modular
platform for providing signal 3, the IL-7Ra intracellular domain
can be replaced with other signaling domains. For example,
investigators have expressed a chimeric IL-7Ra/IL-2Rb receptor
and IL-7 in CAR T cells to provide signal 3 and demonstrated
that these engineered CAR T cells are resistant to TGFb
inhibition (107).
Chimeric Cytokine Receptors
Chimeric cytokine receptors or switch receptors, which convert
one cytokine signal into another, are actively being explored to
hijack immunosuppressive cytokines produced by tumor or
tumor-associated cells to provide proliferative signals to CAR
T cells (Figure 3C). An IL-4/IL-7 switch receptor, which binds
IL-4 but activates IL-7 signaling pathways, allowed PSCA-CAR T
cells to maintain their cytolytic and proliferative capabilities in
vitro and improved in vivo antitumor activity (108). In an
orthotopic breast cancer model, the IL-4/IL-7 switch receptor
also improved the antitumor activity of 2nd generation MUC1-
CAR T cells (109). Importantly, these cells were able to respond
to tumor rechallenge at a distal site by proliferating and
eliminating tumor cells in an IL-4-dependent manner. This
approach has also been used to improve antitumor activity in
the TME by converting immunosuppressive signals, such as
TGFb and IL-4, into separate stimulatory signals that improve
tumor selectivity and CAR T cell potency (110). Expressing an
IL-4/IL-2 switch receptor in MUC1- or PSMA-CAR T cells
improved their cytolytic activity and proliferative capacity
through increased STAT5 and ERK phosphorylation in the
presence of IL-4 (111). Similarly, the receptor enhanced the
antitumor activity and persistence of avb6 integrin-CAR T cells
in an IL-4-dependent manner (112). An ongoing phase 1 clinical
trial is investigating the utility of the IL-4/IL-2 switch receptor
(4ab) in CAR T cells for head and neck squamous cell carcinoma
(Table 1).

While IL-4/IL-2 switch receptors convert STAT6 into STAT5
signals, IL-4/IL-21 switch receptors have been designed to
convert STAT6 into STAT3 signals. This switch receptor
improved cytolytic activity of GPC3-CAR T cells in the
presence of IL-4, most likely by upregulating RORgt (113).
June 2021 | Volume 12 | Article 684642
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Few studies have directly compared different cytokine switch
receptors. However, comparison of IL-4/IL-7 and IL-4/IL-21
switch receptors in GPC3-CAR T cells demonstrated that in
one solid tumor model, the IL-4/IL-21 switch receptor was
superior (113). Lastly, TGFb/IL-7 switch receptors have been
expressed in PSMA-CAR T cells, improving their antitumor
activity by upregulating AKT phosphorylation and Bcl-xL
expression (114). In addition to tumor-derived cytokines that
directly inhibit T cells, the TME can also produce cytokines for
which T cells lack the corresponding receptor. For example, T
cells lack the receptor for colony stimulating factor-1 (CSF-1).
Engineering CAR T cells to express CSF-1R renders them
responsive to CSF-1, which can promote chemotaxis, increase
IFNg production, and synergize with sub-optimal growth stimuli
to enhance proliferation (115).

The orthologous IL-2 system is another way to modulate
cytokine signaling in adoptively transferred cells. In order to
limit the effects of the pleiotropic cytokine IL-2 to only select cell
types, Sockolosky, et al. mutated IL-2 and IL-2Rb (orthoIL-2 &
orthoIL-2Rb) such that the orthogonal cytokine/receptor pair
can bind each other, but not the wild type IL-2 or IL-2Rb (116).
In vivo, orthoIL-2 could expand tumor-specific T cells expressing
orthoIL-2Rb to control tumor growth without the dose-limiting
toxicity seen with high doses of IL-2. This approach could be
adapted to drive other cytokine signaling pathways in engineered
T cells without affecting endogenous immune cells.
INTERLEUKIN 12 FAMILY CYTOKINES
AND THEIR RECEPTORS

Cytokine Biology
The IL-12 family of cytokines, IL-12, IL-23, IL-27, and IL-35,
have diverse roles in innate and adaptive immune responses,
with IL-12 and IL-23 being pro-inflammatory, IL-27 having both
pro- and anti-inflammatory effects, and IL-35 being anti-
inflammatory (117) (Figure 4A). Due to the primarily anti-
inflammatory roles of IL-27 and IL-35, only IL-12 and IL-23
have been explored in the context of adoptive cell therapies.

Because of the role of IL-12 in linking adaptive and innate
immunity, it has been explored as a potential cytokine to initiate
or sustain antitumor immune responses. IL-12 is a heterodimeric
protein composed of IL-12p40 and IL-12p35 that is produced by
antigen presenting cells in response to microbial stimulation
(118). The IL-12 receptor (IL-12R) consists of two chains, IL-
12Rb1 and IL-12Rb2, which signals through JAK2 and tyrosine
kinase (TYK)2 to activate STAT4 and other STAT family
members to a lesser degree. It is primarily expressed by
activated T cells and NK cells (119) although functional IL-12
receptor expression has also been observed on DCs (120), B cells
(121), and myeloid-derived suppressor cells (MDSCs) (122). In
both T cells and NK cells, IL-12 enhances proliferation,
cytotoxicity, and the production of high levels of IFNg, TNFa,
and GM-CSF (123, 124). Additionally, IL-12 controls Th1
differentiation by directly inducing production of IFNg and
upregulating expression of IL-12Rb2 via IFNg-induced
Frontiers in Immunology | www.frontiersin.org 7
expression of T-bet, the Th1 defining transcription factor.
This leads to a positive feedback loop wherein IFNg enhances
IL-12 production by DCs and renders T cells more sensitive to
IL-12 to reinforce a Th1 phenotype. In addition to increasing
IFNg production, IL-12 also promotes expression of immuno
stimulatory cytokines and chemokines, such as GM-CSF, C-C
motif ligands, IP10 (CXCL10), and MIG (CXCL9) to recruit
T cells, NK cells, and antigen presenting cells to the site of
inflammation (28, 125, 126). This has implications for
cancer immunity by recruiting and activating effector cells,
reprogramming tumor-associated macrophages to a pro-
inflammatory phenotype (127), increasing antigen processing
and presentation, reprogramming immunosuppressive MDSCs
(128), and inhibiting angiogenesis (129).

IL-23 is a functionally related heterodimeric cytokine that is
composed of IL-23p19 and the shared IL-12p40 subunit. The
IL-23 receptor is composed of IL-12Rb2 and IL-23R, which
signals through JAK2 and TYK2 to primarily activate STAT3 and
STAT4. Similar to IL-12, IL-23 is produced by antigen presenting
cells and plays an important role in T cell differentiation. During
T cell activation in the presence of cytokines such as TGFb, IL-1,
or IL-6, IL-23 upregulates expression of the IL-23 receptor and
RORgt to reinforce a Th17 phenotype but is not required for
Th17 differentiation. In the context of tumor immunity, IL-23
may play a distinct role compared to IL-12. The antitumor effects
of IL-12 have been demonstrated (130), but IL-23 can have
pro or antitumor properties, depending on the concentration of
IL-23 and cancer type (131, 132).

Interleukin 12
IL-12 has been used as a single agent immunotherapy and in
combination with adoptive transfer of T cells to promote
activation of tumor-specific T cells and differentiation into
pro-inflammatory Th1/Tc1 cells. Systemic administration of
IL-12 resulted in robust antitumor activity in preclinical
models (133); however, clinical trials with recombinant human
IL-12 were limited by modest efficacy and toxicity (134–137).
Nonetheless, genetic modification of CAR T cells to secrete IL-12
is actively being explored. For example, modification of
MUC16ecto-CAR T cells to constitutively secrete IL-12
enhanced IFNg production and in vivo persistence, likely
through an autocrine mechanism, leading to increased survival
in an orthotopic xenograft model (138). Later work to define the
interaction of tumor-associated immune cells and IL-12
producing CAR T cells confirmed that autocrine IL-12
signaling was necessary for antitumor activity by enhancing
the effector function of CAR T cells, depleting tumor
associated macrophages, and preventing tumor-mediated PD-
L1 inhibition. Interestingly, IL-12 did not exert its effect in this
model by recruiting endogenous T cells to the tumor or rely on
host IFNg producing cells (139). There are conflicting results
about whether antitumor activity is primarily mediated by
the effects of IL-12 on adoptively transferred T cells or host
IL-12R expressing cells (128, 140). Nevertheless, a clinical
study with MUC16ecto-CAR T cells expressing IL-12 is in
progress (Table 1). Early results from this trial illustrate that
IL-12 secreting MUC16ecto CAR T cells can be safely
June 2021 | Volume 12 | Article 684642

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Bell and Gottschalk Cytokines to Improve CAR T Cells
administered, although a high incidence of hemophagocytic
lymphohistiocytosis/macrophage activation-like syndrome was
observed when cells were administered after lymphodepleting
chemotherapy (141).

The observation that constitutive expression of IL-12 by
engineered T cells could promote T cell dysfunction (142–145)
and toxicity in preclinical models (146) led to the design of
vectors in which IL-12 expression is under the control of the
Nuclear Factor of Activated T cell (NFAT) promoter (144). The
NFAT promoter links IL-12 expression to T cell activation (144,
146), reducing systemic toxicity without decreasing antitumor
activity (127, 146, 147). However, one clinical study with TILs
modified to express NFAT-inducible IL-12 suggests that the
NFAT promotor might not be sufficient to restrain IL-12
production to only activated TILs within the tumor (148). In
addition to NFAT-controlled IL-12 expression, doxycycline-
inducible IL-12 production is also actively being explored
(149). While the autocrine effects of IL-12 contribute to
improved antitumor activity of IL-12 CAR T cells, the
importance of IL-12 in mustering an innate immune response
cannot be overstated (Figure 4B). Endogenous T cells, NK cells,
DCs, and MDSCs can respond to both IL-12 and the high levels
Frontiers in Immunology | www.frontiersin.org 8
of IFNg produced by IL-12-responsive cells. One study found
that inducible IL-12 allowed CAR T cells to eradicate antigen-
positive tumor cells and prevent outgrowth of antigen negative
tumor cells by recruiting and activating macrophages to produce
TNFa and upregulate costimulatory molecules CD80/CD86 to
enhance T cell responses (127). In another study, IL-12 was also
shown to increase antigen processing and presentation (128),
which could contribute to an endogenous antitumor immune
response in solid tumors. Similarly, a study of IL-12 expressing
VEGFR2-CAR T cells found that host IL-12R expressing cells,
but not B or T cells, were required for the antitumor response
(146). This activation of the innate immune system has the
potential to produce lasting remissions for solid tumor patients,
which is being evaluated in an ongoing phase I/II clinical trial of
EGFR-specific CAR T cells with NFAT-inducible IL-12 to treat
metastatic colorectal cancer (Table 1).

Additional approaches to recruit and activate innate
immune cells to the TME are also under development. For
example, CAR T cells engineered to secrete the DC growth
factor Fms-like tyrosine kinase 3 ligand (Flt3L) were able to
expand intra-tumoral conventional type 1 DCs (150). By
engaging the endogenous immune system, Flt3L-CAR T cells,
A

B

FIGURE 4 | IL-12 family cytokine signaling. (A) The IL-12 family cytokine receptors signal through different STAT family members to exert proinflammatory or
inhibitory functions. (B) IL-12 expressing CAR T cells can stimulate IL-12 responsive CAR T cells and endogenous T and NK cells. Downstream mediators of IL-12,
such as IFNg, can act on macrophages and dendritic cells to stimulate innate and adaptive immunity.
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in conjunction with immune adjuvants, were able to mediate
regression of established solid tumors and promote the
formation of antitumor memory via epitope spreading.
Approaches such as these will be necessary to overcome
antigen heterogeneity and antigen-negative relapse in the
treatment of solid tumors.

Interleukin 23
While there have been few studies using IL-23 in combination with
cell-based therapies, recentwork has suggested that this is anoption
to improve CAR T cell function in solid tumors. CAR/TCR
signaling upregulates expression of IL-23R and IL-23p19, but not
the second subunit of IL-23 – IL-12p40. Transduction of T cells to
constitutively express IL-12p40 leads to activation-induced
expression of IL-23, but not IL-12, and improves T cell
proliferation. CAR T cells engineered to express IL-12p40 exhibit
greater expansion, persistence, and antitumor activity in xenograft
and syngeneic tumormodels (151), which could be attributed to an
IL-23-induced STAT3 and hypoxia inducible factor (HIF) gene
signature. STAT3 signaling in CAR T cell products has been
associated with improved responses in chronic lymphocytic
leukemia patients (80) and modulation of STAT3 signaling has
been used to improve CAR T cells in other preclinical models (29).
INTERLEUKIN 1 SUPERFAMILY
OF CYTOKINES

The IL-1 superfamily of cytokines – IL-1a, IL-1b, IL-33, IL-1
Receptor Antagonist, IL-18, IL-37, IL-36 Receptor Antagonist, IL-
36a, IL-36b, IL-36g, and IL-38–plays important roles in innate and
adaptive immunity, but only a subset of these cytokines has been
evaluated in preclinical and clinical trials for their ability to elicit an
antitumor immune response. For example, the role of IL-1b in
cancerhas been extensively studied,withdifferent studies showing a
role in either promoting or inhibiting tumorigenesis (152–155).
Although IL-1b has the potential to improve adoptive cell therapy
(156), IL-1b in conjunction with macrophage-derived nitric
oxide and IL-6 plays a central role in cytokine release syndrome
(CRS) (157, 158), a serious complication of CAR T cell therapy.
However, other cytokines are emerging as anticancer mediators
and their ability to improve CAR T cell therapy is currently
under investigation.
Interleukin 18
IL-18 is a proinflammatory cytokine produced by macrophages,
dendritic cells, epithelial cells, and other cell types that interacts
with a heterodimeric receptor composed of IL-18Ra and IL-18Rb
expressed on NK cells and antigen-experienced T cells. IL-18
signals through MyD88 and NF-kB, and has been shown to have
protumorigenic functions, such as promoting angiogenesis,
metastasis, and proliferation (159), but it is thought to largely
have antitumor activity due to its cooperation in the Th1 response
(160). In conjunction with IL-12 or antigen stimulation, IL-18
induces the production of IFNg and cytotoxic effector molecules
by Th1 and CD8 T cells (Figure 5A) (161), resulting in activation
Frontiers in Immunology | www.frontiersin.org 9
of NK cells, macrophages, and other cell types. However, IL-18
signaling without concomitant inflammatory cytokines enhances
Th2 responses, such as production of IL-4 and IL-13 (162, 163).
Nonetheless, IL-18 has been tested in clinical trials for antitumor
activity. While administration of IL-18 has been well tolerated
(164), it showed no benefit in metastatic melanoma patients when
given as a monotherapy (165).

Engineering human and murine CAR T cells to express IL-18
improved CAR/TCR-mediated proliferation, production of
cytokines, and antitumor activity (166–169). One study
highlighted the role of IL-18-secreting CD4 CAR T cells to
promote expansion of CD8 CAR T cells (166). Another study
highlighted that IL-18 induces a potent T cell effector subset
characterized by a T-Bethigh FoxO1low phenotype (167). Similar
to IL-12, NFAT-inducible IL-18 expression systems have also
been explored to limit systemic side effects associated with
constitutive IL-18 expression (167, 168). In syngeneic models,
IL-18 was able to remodel the TME with increased numbers of
CD8 T cells, NK cells, and activated antigen presenting cells
resulting in induction of tumor-specific T cell responses via
epitope spreading (169). This was mirrored by a reduced number
of immunosuppressive dendritic cells, M2macrophages, and Tregs
(167, 169). A possible limitation of transgenic IL-18 expression is
the recent discovery of an IL-18 binding protein (IL-18BP), an
immune checkpoint, that inhibits IL-18 signaling; however,
approaches to develop IL-18BP-resistant IL-18 are actively being
explored (170). Lastly, a recent study has highlighted that it is
feasible to design chimeric switch receptors that activate IL-18
signaling pathways in CAR T cells (171).

Interleukin 36
IL-36a, IL-36b, and IL-36g are newly discovered members of the
IL-1 superfamily that have shown potent antitumor activity in
preclinical models (172, 173). These cytokines share a
heterodimeric receptor, composed of IL-36R and IL-1RAcP,
that signals through MyD88 and NF-kB (Figure 5A). Similar
to IL-18, IL-36 cytokines can be inhibited by IL-36 receptor
antagonist (IL-36Ra). While these cytokines have so far been
understudied, they have the potential to improve adoptive
cell therapy. For example, IL-36g has been shown to transform
the tumor microenvironment and mediate tumor-specific CD8
T cell responses (172). IL-36g is produced by keratinocytes,
epithelial cells, and immune cells, and exerts its functions
on several cell types, including epithelial cells, macrophages,
dendritic cells, and T cells (174). Engineering CAR T cells
to express IL-36g improves expansion and persistence, which
results in improved antitumor activity compared to unmodified
CAR T cells (175). While this effect was dependent on autocrine
IL-36 signaling through MyD88 for initial tumor clearance, IL-
36R is also abundantly expressed on myeloid cells. IL-36g-
expressing CAR T cells were able to enhance MHC class II and
CD86 expression on splenic macrophages and DCs of tumor-
bearing mice, which suggests that IL-36 plays a role in
maturation of antigen presenting cells. Importantly, this
induced antigen spreading as evidenced by tumor recognition
by endogenous CD8 T cells. Therefore, IL-36g-expressing
CAR T cells could be a viable treatment option for solid tumor
June 2021 | Volume 12 | Article 684642
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patients who often suffer from relapse related to antigen
heterogeneity or antigen loss (Figure 5B).
DISCUSSION

Transgenic expression of individual cytokines and/or cytokine
receptors has improved the effector function of CAR T cells in
preclinical models. Studies have highlighted that transgenic
cytokines do not only enhance the antitumor activity of CAR T
cells but also modulate other cells within the TME and are able to
induce or enhance endogenous tumor-specific immune responses.
However, safety concerns have also been raised. CRS is a potentially
fatal complication of CAR T cell therapy and secondary genetic
modifications that enhance CAR T cell function could exacerbate
CRS. A major concern with gc cytokines (IL-2, IL-7, IL-15, and
IL-21) is enhanced proliferation of infused CAR T cells leading to
production of toxic levels of effector molecules IFNg and TNFa.
Since CAR T cell peak expansion correlates with CRS (176),
approaches to improve CAR T cell expansion must be weighed
against the risk of dose limiting toxicities.While IL-6 and IL-1 play
Frontiers in Immunology | www.frontiersin.org 10
central roles in CAR T cell-induced CRS, high levels of IFNg
are also observed (177), and any cytokine that enhances IFNg
production by CAR T cells or other immune cells could
potentially increase the incidence and/or severity of CRS. IL-12
can directly augment IFNg production by T cells and NK cells.
Similarly, IL-18 can synergize with IL-12 or IL-15 to enhance
IFNg production. IL-23 and IL-36 have not been implicated in
CRS, but they play central roles in inflammatory conditions in the
gut and skin and could therefore potentially contribute to CRS if
produced at high levels by adoptively transferred immune cells.

While early phase clinical testing of CAR T cells secreting
cytokines or constitutively active cytokine receptors are in
progress, there are opportunities to further enhance this
approach. A physiological immune response requires
coordination of different cytokines to i) initiate an inflammatory
reaction, ii) amplify responses of multiple cell types, and
iii) resolve inflammation. However, the majority of studies
have so far only explored constitutive expression of a single
cytokine. Thus, developing approaches that endow CAR T cells
with the ability to express an array of cytokines at different stages
of CAR T cell activation holds the promise to not only increase
A

B

FIGURE 5 | IL-1 superfamily cytokines. (A) The IL-1 superfamily cytokines, IL-18 and IL-36g, signal through MyD88 to activate NF-kB. Inhibitory proteins, such as
IL-18 binding protein (IL-18BP) or IL-36 receptor antagonist (IL-36Ra), can inhibit cytokine signaling. (B) IL-18-expressing CAR T cells can stimulate an IFNg
response from CAR T cells and endogenous T and NK cells. IL-36g-expressing CAR T cells can provide autocrine signaling to enhance effector function and activate
endogenous T cells, macrophages, and DCs.
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efficacy but also safety. As these approaches are being developed,
not only xenograft but also immune competent models are
needed to careful analyze how cytokine-secreting CAR T cells
engage with endogenous immune cells. Based on the breath of
preclinical data generated thus far, we are confident that ‘signal 3-
enhanced’ CAR T cells have the potential to improve the currently
limited antitumor activity of CAR T cells in early phase clinical
studies for patients with solid tumors and brain tumors.
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