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Deep learning models for
predicting the survival of
patients with chondrosarcoma
based on a surveillance,
epidemiology, and end
results analysis

Lizhao Yan1†, Nan Gao1†, Fangxing Ai1, Yingsong Zhao2,
Yu Kang1, Jianghai Chen1* and Yuxiong Weng1*

1Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of
Science and Technology, Wuhan, China, 2Department of Orthopaedics, Liyuan Hospital, Tongji
Medical College, Huazhong University of Science and Technology, Wuhan, China
Background: Accurate prediction of prognosis is critical for therapeutic

decisions in chondrosarcoma patients. Several prognostic models have been

created utilizing multivariate Cox regression or binary classification-based

machine learning approaches to predict the 3- and 5-year survival of patients

with chondrosarcoma, but few studies have investigated the results of

combining deep learning with time-to-event prediction. Compared with

simplifying the prediction as a binary classification problem, modeling the

probability of an event as a function of time by combining it with deep

learning can provide better accuracy and flexibility.

Materials and methods: Patients with the diagnosis of chondrosarcoma

between 2000 and 2018 were extracted from the Surveil lance,

Epidemiology, and End Results (SEER) registry. Three algorithms—two based

on neural networks (DeepSurv, neural multi-task logistic regression [NMTLR])

and one on ensemble learning (random survival forest [RSF])—were selected for

training. Meanwhile, a multivariate Cox proportional hazards (CoxPH) model

was also constructed for comparison. The dataset was randomly divided into

training and testing datasets at a ratio of 7:3. Hyperparameter tuning was

conducted through a 1000-repeated random search with 5-fold cross-

validation on the training dataset. The model performance was assessed

using the concordance index (C-index), Brier score, and Integrated Brier

Score (IBS). The accuracy of predicting 1-, 3-, 5- and 10-year survival was

evaluated using receiver operating characteristic curves (ROC), calibration

curves, and the area under the ROC curves (AUC).

Results: A total of 3145 patients were finally enrolled in our study. The mean

age at diagnosis was 52 ± 18 years, 1662 of the 3145 patients were male (53%),

and mean survival time was 83 ± 67 months. Two deep learning models
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outperformed the RSF and classical CoxPH models, with the C-index on test

datasets achieving values of 0.832 (DeepSurv) and 0.821 (NMTLR). The

DeepSurv model produced better accuracy and calibrated survival estimates

in predicting 1-, 3- 5- and 10-year survival (AUC:0.895-0.937). We deployed

the DeepSurv model as a web application for use in clinical practice; it can be

accessed through https://share.streamlit.io/whuh-ml/chondrosarcoma/

Predict/app.py.

Conclusions: Time-to-event prediction models based on deep learning

algorithms are successful in predicting chondrosarcoma prognosis, with

DeepSurv producing the best discriminative performance and calibration.
KEYWORDS

chondrosarcoma, survival analysis, machine learning, DeepSurv, deep learning
Introduction

Chondrosarcoma accounts for 20-30% of primary bone

tumors in adulthood and is the second most frequently

occurring bone sarcoma behind osteosarcoma (1). Compared to

Ewing sarcoma and osteosarcoma, chondrosarcoma is a less

malignant disease, with most patients living for 10 years

following standard therapy (2). The clinical presentation of

chondrosarcoma varies. 90% are conventional chondrosarcomas

and 90% of these are low to intermediate-grade tumors. These

tumors are slow growing, less likely to metastasize and relatively

insensitive to both chemotherapy and radiotherapy (3). The

remaining 10-8% of non-conventional tumors are further

classified into five subtypes: myxoid, mesenchymal,

dedifferentiated, juxtacortical, and clear cell. Those sarcomas

(including 5-10% of high-grade conventional chondrosarcomas)

can be highly malignant and aggressive, with a higher probability

of metastasis, leading to poorer outcomes for patients (4).

Several prognostic models have been created utilizing

multivariate Cox regression or machine-learning approaches to

predict the 3- and 5-year survival of patients with

chondrosarcoma (5–8). Among these models, the nomogram

is a frequently used method for integrating and measuring

different significant clinical variables of patients when

assessing the odds of occurrence of events using the Cox

proportional hazards (CoxPH) model. However, one of the

underlying assumptions regarding the CoxPH model is that

each predictor variable has the same effect at each follow-up time

point; however, this overlooks changes in the effect of predictor

factors on individual patients at different time points.

Additionally, these models use linearity assumptions rather

than conducting nonlinear analyses that represent clinical

aspects in the real world. As a result, improved solutions

focusing on nonlinear variables are required. The Skeletal
02
Oncology Research Group (SORG) algorithm was proposed

(5), which trained several binary classification-based machine

learning models using the National Cancer Institute’s

Surveillance, Epidemiology, and End Results (SEER) data to

predict 5-year survival, with the highest AUC being 0.868. The

algorithm was subsequently validated on data from two external

datasets (9, 10) and showed good performance. Although the

SORG algorithm achieves better prediction performance than

traditional methods by assessing the nonlinear relationships

between variables, its limitations are also obvious. Firstly, it

applied a machine learning method to survival data by

simplifying the prediction as a binary classification problem;

this approach lacks the interpretability and flexibility provided

by modeling the probabilities of events as a function of time (11).

Secondly, it was trained using data from the SEER database

between 2004 and 2010, but data from 2011 to 2018 are already

available in the SEER database. Since treatment strategies have

evolved in recent years, the patient’s clinical characteristics may

have changed. Thirdly, the surgical treatment of patients (one of

its input features) is not classified in detail. However, the type of

surgery may be associated with survival rates (5).

In order to address all of the above-mentioned issues

concerning survival predictions, new approaches for

combining machine learning methods with survival models

have been proposed. Katzman et al. (12) integrated the Cox

proportional hazards model with neural networks (DeepSurv)

and showed that this novel approach was able to outperform

classical Cox models (13, 14). The DeepSurv model used the

negative log partial likelihood function to assess patients’

survival hazards, utilizing a core hierarchical structure

composed of fully connected feed-forward neural networks

with a single output node. Yu et al. (15) proposed the Linear

Multi-Task Logistic Regression (MTLR) model—an extension of

binomial log-likelihood—for jointly modeling a series of binary
frontiersin.org
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labels representing event indicators. It is a collection of logistic

regression models constructed at several different time intervals

that can be used to assess the probability that the event of

interest occurred within each interval. The neural MTLR (N-

MTLR) (16) model is based on the MTLR technique but utilizes

a deep learning architecture that considers nonlinear

relationships in datasets; this method has been shown to

outperform the MTLR model in the majority of cases (16).

The random survival forest (RSF) model is an extension of the

random forest model that takes censoring into account and has

been used as a benchmark for method comparison in many

pieces of literature (11).

This study aimed to develop models for predicting the

overall survival (OS) of patients with chondrosarcoma using

the Cox proportional hazards model and three machine learning

algorithms and compared the predictive performance of these

methods. In addition, the best algorithm will be deployed as an

accessible web-based app for clinical use.
Methods

Patient population and data collection

Patients were identified from the SEER database for the

period 2000-2018 for this retrospective cohort study. The SEER

database collects information from 18 cancer registries and

covers approximately 28% of the total US population.

SEER*Stat software (Version 8.4.0; National Cancer Institute,

Bethesda, MD) was used to extract information from the SEER

database. We collected the baseline information of cases (year of

diagnosis, gender, age), tumor characteristics (size, number,

histologic type, grade, primary site, tumor extension, distant

metastasis site, and stage) and treatment details (surgical type,

radiotherapy and chemotherapy). The inclusion criteria were as

follows: (1) patients have a confirmed diagnosis of

chondrosarcoma according to the third edition of the

International Classification of Diseases for Oncology (ICD-O-

3), morphological code (9220, 9240); (2) bones and joints are the

primary site (site recode ICD-O-3/WHO 2008 = Bones and

Joints). The exclusion criteria were as follows: (1) survival time is

unknown or less than one month; (2) chondrosarcoma was not

identified as the primary tumor (first malignant primary

indicator = No). A flowchart of the detailed selection process

is presented in Figure 1.
Variable’s definitions

The following variables are extracted from the SEER

database: Year of diagnosis, Age, Gender, Histological type,

Primary site , Stage, Grade, Surgery, Radiotherapy,

Chemotherapy, Tumor size, Number of tumors, Tumor
Frontiers in Oncology 03
extension, Distant metastasis, Survival months, Status. The

original name of variables in the SEER database and the

specific details of each categorical variable was shown in

Supplementary Material E1, section S1. Until 2018, The

grading system in SEER has been consistent throughout all the

years of data collection and consists of a four‐tier system with

grade IV corresponding to undifferentiated tumors in addition

to the common grades I (well), II (moderate) and III (poorly).

The new grading strategy “Grade Clinical (2018+)” has been

implemented in the SEER database since 2018, which consists of

three grades and explicitly mentions that Grade 3 includes

undifferentiated tumors.
Deep learning model design

The source code of model development is available on

GitHub (https://github.com/WHUH-ML/Chondrosarcoma).
Feature selection

Collinearity occurs when two features have a strong

association with one another. Highly correlated features

should be avoided since they increase computational cost and

effort and they overfit the model. Thus, the cor function in the

stats R package was used to calculate correlations between

features, with a Pearson’s correlation value of 0.7 indicating

that features are highly collinear. In addition, univariate and

multivariate Cox regression were used to assess the

potential features.
Data preprocessing

Binary categorical features were coded as 0 and 1. Ordinal

features were encoded as ordinal numeric values, and

categorical features were one-hot encoded. We implemented

the nonparametric missForest imputation method for handling

missing data, which imputes missing values based on random

forest predictions. Continuous features were standardized

using the StandardScaler function from the sklearn

preprocessing library.
Model development

The primary predicted outcome was overall survival (OS).

Three algorithms—two based on neural networks (DeepSurv,

NMLTR) and one on ensemble learning (RSF)—were selected

for training. Meanwhile, a multivariate CoxPH model was also

constructed for comparison. The dataset was randomly divided

into training and testing datasets at a ratio of 7:3.
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Hyperparameter tuning

It was essential to find the best configuration for our

proposed network, including network architecture and

hyperparameter values. Hyperparameter tuning was conducted

through a 1000-repeated random search with 5-fold cross-

validation on the training dataset. The concordance index (C-

index) was used to evaluate the performance of models with

different combinations of hyperparameters.
Model evaluation

The accuracy of models was determined using C-index,

which is a correlation coefficient between predicted survival

risks and observed survival times. A C-index value of 0.5

indicates that the prediction is random, whereas a C-index

value of 1.0 indicates excellent prediction. The difference

between the two models’ C-index was tested using Kang’s

method (17). Brier scores were also obtained; they indicate the

mean square difference between observed patient status and
Frontiers in Oncology 04
predicted survival probability and are always between 0 and 1,

with 0 being the best possible result. A model with a Brier score

of less than 0.25 is considered useful in practice. The Integrated

Brier Score (IBS) was also calculated to determine the models’

overall performance across all available periods. The 1-, 3-, 5-

and 10-year OS were calibrated using a calibration curve,

comparing expected and observed survival. In order to assess

the time-dependent sensitivities and specificities of the models,

receiver operating characteristic (ROC) curves were generated,

and the area under the curve (AUC) values were calculated for

1-, 3-, 5- and 10-year survival.
Feature importance

To determine the association between individual features and

model performance, we estimated the importance of each feature

within the test set by replacing the feature data with random

numbers (18). The performance of the models, as measured by the

concordance index, was then computed using the data after

replacement to assess the importance of each feature.
FIGURE 1

Study profile and analysis pipeline.
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Model deployment

The algorithm with the best performance was deployed

using the Streamlit package in Python to create an interactive

web-based tool for practical use.
Statistical analysis

All continuous variables in clinical data are displayed as the

mean value ± standard deviation (SD). Frequencies and

percentages are used to characterize categorical variables. The

chi-square test and unpaired two-side t-test were utilized to

examine the differences in variables across groups. The R

programming language (version 4.1.2) was used to carry out

data preprocessing and plotting. The machine learning models

were constructed using the PySurvival package in the Python

programming language (version 3.6.8).
Results

Basic characteristics

A total of 3145 chondrosarcoma patients registered in the

SEER database from 2004 to 2015 were finally enrolled in this

study. The patient demographic characteristics are shown in

Table 1. 1483 cases were female (47%), and 1662 were male

(53%); the mean age was 52 ± 18 years. In terms of the primary

site of tumors, 1595 of them were in the extremities (51%), 702

in the axial skeleton (22%), and 848 in other joints and bones

(27%). 1033 cases were well-differentiated (39%), 1099 were

moderately differentiated (41%), 319 were poorly differentiated

(12%), and 208 were undifferentiated (7.8%). 393 cases did not

undergo surgery (13%), 1066 underwent a local treatment (35%),

1243 underwent a radical excision with limb salvage (41%), and

358 underwent amputation surgery (12%). The mean overall

survival (OS) was 83 ± 67 months, and 904 patients died (29%).
Feature selection and data preprocessing

In the univariate Cox regression, OS was significantly

associated with most features except for the year of diagnosis

and the number of tumors (Table 1). For the multivariate Cox

regression, age, gender, histological type, primary site, grade,

surgery, tumor size, tumor extension, and distant metastasis

were independent factors for OS (P<0.05). Results of the

collinearity analysis showed high collinearity between stage and

distant metastasis, and between stage and grade (Figure 2).
Frontiers in Oncology 05
Considered together, we ultimately included nine features (age,

gender, histological type, primary site, grade, surgery, tumor size,

tumor extension and distant metastasis) in the model

development. The dataset was divided into two subsets—training

set and testing set; 2203 cases were used for the training set, and

the remaining 942 cases were used for the test set (Table 2).
Hyperparameter tuning

After a 1000-repeated random search with 5-fold cross-

validation on the training dataset, we selected those

parameters showing the highest average C-index in cross-

validation as the optimal parameters. The graph of the loss

function for the two neural network models (DeepSurv, and

NMTLR) is shown in Figure 3. The search space and optimal

parameter combinations for models’ hyperparameters are

displayed in our open-source code on GitHub (https://github.

com/WHUH-ML/Chondrosarcoma).
Model comparisons

The predictive performance of the machine learning and

CoxPH models is shown in Table 3. In the test dataset, the three

machine learning models showed significant (P < 0.01) better

discrimination (C-index of DeepSurv: 0.832; NMLTR: 0.821;

RSF: 0.803) compared with the standard CoxPH model (C-

index: 0.773); of the three, DeepSurv had the highest C-index of

0.832. The IBS of the four models were 0.108 (DeepSurv), 0.115

(NMLTR), 0.128 (RSF) and 0.126 (CoxPH) (Figure 4). There is

little difference between the C-index obtained from the training

data set (DeepSurv: 0.854; NMLTR: 0.850; RSF: 0.829; CoxPH:

0.782) and that from the test set, indicating that the models do

not suffer from overfitting.

The calibration plots showed that the consistency between

the model’s prediction and the actual observation in terms of the

1-, 3-, 5- and 10-year overall survival rates were best for the

DeepSurv model, followed by the NMTLR, CoxPH, and RSF

models (Figure 5). The AUC was larger for the DeepSurv model

than for the three other models (1-year-AUC of DeepSurv:

0.937, NMLTR: 0.896, RSF: 0.900, CoxPH: 0.879; 3-year-AUC

of DeepSurv: 0.907, NMLTR: 0.896, RSF: 0.900, CoxPH: 0.879;

5-year-AUC of DeepSurv: 0.895, NMLTR: 0.889, RSF: 0.889,

CoxPH: 0.865; 10-year-AUC of DeepSurv: 0.896, NMLTR:

0.890, RSF: 0.885, CoxPH: 0.870) (Figure 5). The results

showed that the deep learning models—especially the

DeepSurv model—were more accurate in predicting the

survival prognosis of chondrosarcoma patients than the RSF

and classical CoxPH models.
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TABLE 1 Patient demographic, disease, treatment characteristics, and Cox regression analysis.

Overall Univariate Cox Multivariate Cox

Characteristic N = 3,1451 HR2 95% CI2 P-value HR2 95% CI2 P-value

Year of diagnosis 0.23 0.17

2004-2010 1,768 (56%) — — — —

2011-2015 1,377 (44%) 1.10 0.94, 1.27 0.85 0.68, 1.07

Age 52 (18) 1.05 1.05, 1.06 <0.001 1.04 1.03, 1.05 <0.001

Gender <0.001 <0.001

Female 1,483 (47%) — — — —

Male 1,662 (53%) 1.48 1.29, 1.69 1.58 1.27, 1.96

Histological type <0.001 <0.001

Conventional 2,879 (92%) — — — —

Dedifferentiated 266 (8.5%) 6.30 5.34, 7.42 1.96 1.42, 2.69

Primary site <0.001 0.018

Extremity 1,595 (51%) — — — —

Axial skeleton 702 (22%) 1.60 1.37, 1.86 1.09 0.84, 1.42

Other 848 (27%) 0.77 0.65, 0.91 0.72 0.54, 0.95

Stage <0.001 0.80

I 1,083 (73%) — — — —

II 249 (17%) 3.36 2.68, 4.22 1.21 0.69, 2.14

III 15 (1.0%) 1.33 0.49, 3.57 0.73 0.21, 2.49

IV 140 (9.4%) 12.8 10.2, 16.2 1.33 0.46, 3.83

Missing 1,658

Grade <0.001 0.007

Well differentiated 1,033 (39%) — — — —

Moderately differentiated 1,099 (41%) 1.75 1.45, 2.11 1.40 1.05, 1.88

Poorly differentiated 319 (12%) 4.18 3.36, 5.22 1.73 0.94, 3.20

Undifferentiated 208 (7.8%) 10.4 8.31, 13.0 2.63 1.38, 5.03

Missing 486

Surgery <0.001 0.002

No 393 (13%) — — — —

Local treatment 1,066 (35%) 0.24 0.20, 0.29 0.54 0.37, 0.80

Radical excision with limb salvage 1,243 (41%) 0.33 0.28, 0.39 0.48 0.33, 0.68

Amputation 358 (12%) 0.65 0.53, 0.80 0.62 0.42, 0.90

Missing 85

Radiotherapy <0.001 0.39

No 2,822 (90%) — — — —

Yes 323 (10%) 1.42 1.17, 1.72 1.15 0.84, 1.56

Chemotherapy <0.001 0.18

No 2,905 (92%) — — — —

Yes 240 (7.6%) 4.92 4.14, 5.83 1.26 0.90, 1.75

Tumor size, mm 81 (60) 1.00 1.00, 1.01 <0.001 1.00 1.00, 1.00 <0.001

Missing 1,552

Number of tumors 0.28 0.23

1 2,867 (91%) — — — —

> 1 278 (8.8%) 1.12 0.91, 1.37 0.82 0.59, 1.14

Tumor extension <0.001 0.002

No break in periosteum 553 (29%) — — — —

Extension beyond periosteum 1,251 (67%) 2.27 1.81, 2.85 1.50 1.12, 2.00

Further extension 75 (4.0%) 4.73 3.28, 6.82 2.30 1.41, 3.75

(Continued)
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Feature importance

The assessment of feature importance (Figure 6) identified

features important to model accuracy for prognosis, with a more

than 1% mean reduction in the concordance index with

replacement data of age, tumor size, distant metastasis,

histological type, grade, tumor extension and primary site.
Frontiers in Oncology 07
Algorithm deployment

A visual representation of the functionality and output of the

application is presented in Figure 7. The web application, which

is primarily for research or informational purposes, can be

publicly accessed at https://share.streamlit.io/whuh-ml/

chondrosarcoma/Predict/app.py.
Discussion

Accurate prediction for chondrosarcoma survival is crucial for

the counseling, follow-up, and treatment planning of patients.

Previous studies have revealed various prognostic factors

influencing the survival times of patients with chondrosarcoma,

including patient age, tumor size, histological type, tumor grade,

and metastasis (6, 19–21).. At the same time, increasing amounts of

imaging (22, 23) and genetic data (2, 24) are being mined for

survival analysis of chondrosarcoma patients. In the face of high-

dimensional data, the limitations of the linear relationship between

variables assumed by the classical CoxPH model are evident (11).

Deep learning is applied to survival analysis due to its ability to

comprehensively reveal potential nonlinear relationships in data. In

recent years, this method has been gradually improved and

successfully applied to clinical (25–27), imaging (28, 29), and

genetic data (27). As far as we know, this approach has not been

applied to bone tumors. Therefore, we constructed two deep

learning models to predict the OS of chondrosarcoma patients

and compared the models’ performance with two classical models.

By gathering potentially significant characteristics from the

SEER database, this study constructed different models for

predicting the survival rates of chondrosarcoma patients. We

firstly used Cox proportional hazards regression to identify

variables related to the prognosis of 3145 individuals with

chondrosarcoma. Age, gender, histological type, original
TABLE 1 Continued

Overall Univariate Cox Multivariate Cox

Characteristic N = 3,1451 HR2 95% CI2 P-value HR2 95% CI2 P-value

Missing 1,266

Distant metastasis <0.001 0.012

No 1,792 (93%) — — — —

Yes 128 (6.7%) 9.98 8.07, 12.4 3.15 1.11, 8.93

Missing 1,225

Survival months 83 (67)

Status

Alive 2,241 (71%)

Dead 904 (29%)
frontiersin.or
1n (%); Mean (SD).
2HR = Hazard Ratio, CI = Confidence Interval.
P values are bolded to indicate they are less than 0.05.
FIGURE 2

Correlation coefficients for each pair of variables in the data set.
The estimated correlation values are distributed within the range
of -1 to +1. They are represented by color depth, with a number
closer to either end value implying a stronger negative
correlation or positive correlation.
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TABLE 2 Characteristic distribution of data in training sets and test sets.

Level Overall Train Test P-value

Total 3145 2203 942

Age (mean (SD)) 51.58 (17.53) 51.70 (17.41) 51.29 (17.82) 0.547

Gender (%) Female 1483 (47.2) 1036 (47.0) 447 (47.5) 0.857

Male 1662 (52.8) 1167 (53.0) 495 (52.5)

Histological type (%) Conventional 2879 (91.5) 2025 (91.9) 854 (90.7) 0.274

Dedifferentiated 266 (8.5) 178 (8.1) 88 (9.3)

Primary site (%) Extremity 1595 (50.7) 1121 (50.9) 474 (50.3) 0.395

Axial skeleton 702 (22.3) 502 (22.8) 200 (21.2)

Other 848 (27.0) 580 (26.3) 268 (28.5)

Grade (%) Well differentiated 1033 (38.8) 725 (38.6) 308 (39.5) 0.933

Moderately differentiated 1099 (41.3) 782 (41.6) 317 (40.7)

Poorly differentiated 319 (12.0) 228 (12.1) 91 (11.7)

Undifferentiated 208 (7.8) 145 (7.7) 63 (8.1)

Surgery (%) None 393 (12.8) 266 (12.4) 127 (14.0) 0.571

Local treatment 1066 (34.8) 762 (35.4) 304 (33.5)

Radical excision with limb salvage 1243 (40.6) 874 (40.6) 369 (40.7)

Amputation 358 (11.7) 251 (11.7) 107 (11.8)

Tumor size, mm (mean (SD)) 80.65 (60.19) 80.96 (62.00) 79.88 (55.47) 0.746

Tumor extension (%) No break in periosteum 553 (29.4) 389 (28.9) 164 (30.8) 0.425

Extension beyond periosteum 1251 (66.6) 900 (66.8) 351 (66.0)

Further extension 75 (4.0) 58 (4.3) 17 (3.2)

Distant metastasis (%) Not 1792 (93.3) 1280 (93.5) 512 (92.9) 0.721

Yes 128 (6.7) 89 (6.5) 39 (7.1)

Survival months (mean (SD)) 83.16 (66.93) 84.50 (66.86) 80.04 (67.01) 0.087

Status (%) Alive 2241 (71.3) 1572 (71.4) 669 (71.0) 0.882

Dead 904 (28.7) 631 (28.6) 273 (29.0)
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FIGURE 3

Loss convergence graph for (A) DeepSurv, (B) neural network multitask logistic regression (N-MLTR) models.
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location, tumor grade, surgery, tumor size, tumor extension, and

distant metastasis were selected to incorporate in the modeling

(p<0.05) (Table 1). The two-layer neural network DeepSurv model

performed the best, followed by NMTLR, RSF and CoxPH. The C-

index values for the DeepSurv model were 0.854 for the training

dataset and 0.832 for the test dataset. Roc curves and calibration

curves further validated DeepSurv’s performance in terms of

discrimination and calibration for predicting 1 -, 3 -, 5 - and 10-

year survival. By combining deep learning methods to model the

probabilities of events as a function of time, the DeepSurv model

outperforms other models when dealing with large samples,

multiple variables, and nonlinearity. The best-performing

DeepSurv model was incorporated into a user-friendly web-based

application that can be accessed for free at https://share.streamlit.io/

whuh-ml/chondrosarcoma/Predict/app.py.

Compared to previous studies predicting chondrosarcoma

survival, our study showed advantages in terms of

discrimination and flexibility. Song (6) used a nomogram to fit

data from chondrosarcoma patients in the SEER database prior

to 2011 to predict OS, with a c-index of 0.753 for the validation

set. In our study, the discrimination of the CoxPH model was

slightly improved (0.773), which may be related to the fact that

we included more cases and a more detailed classification of
Frontiers in Oncology 09
surgical procedures. The SORG algorithm proposed by Thio

(10) made progress under the task of predicting 5-year survival

in chondrosarcoma, with an AUC of 0.87 in the internal

validation dataset. Although our DeepSurv model slightly

outperformed the SORG algorithm in predicting 5-year

survival (AUC of DeepSurv: 0.895), what makes our study

more significant is that the influence of time on events is

considered. Unlike SORG, which can only predict the binary

outcome of 5-year survival, the DeepSurv model is more flexible

and able to directly predict the patient’s survival function,

thereby obtaining the probability of survival at any point in

time. In addition, the neural network embedded in the DeepSurv

model has great potential to learn from high-dimensional data

and can be further enhanced by fitting images and genetic data,

or by using multimodal information fusion techniques.

There are several limitations to consider in our study. Firstly,

with the removal of one-third of the data used for internal

validation, only 2,203 pieces of data were used for model

training. Since chondrosarcoma tumors are mostly early-stage

tumors (distant metastasis occurred in 128 of the 2203 patients),

deep learning may not fully learn the characteristics of patients

with advanced tumors. The prediction error curve also shows

that the prediction performance of the DeepSurv model is
TABLE 3 Performance of four survival models.

C indexa

Models Trainb Testb IBSa 1-year AUCa 3-year AUC 5-year AUC 10-year AUC

CoxPHa 0.782 0.773 0.126 0.923 (0.897-0.948) 0.879 (0.852-0.906) 0.865 (0.836-0.893) 0.870 (0.841-0.899)

DeepSurva 0.854 0.832 0.108 0.937 (0.911-0.962) 0.907 (0.883-0.931) 0.895 (0.870-0.920) 0.896 (0.870-0.921)

NMTLRa 0.850 0.821 0.115 0.928 (0.900-0.956) 0.896 (0.870-0.922) 0.889 (0.862-0.915) 0.890 (0.863-0.917)

RSFa 0.829 0.803 0.128 0.931 (0.905-0.958) 0.900 (0.873-0.926) 0.889 (0.862-0.916) 0.885 (0.857-0.913)
aCoxPH, standard cox proportional hazards; NMLTR, neural multi-task logistic regression; RSF, random survival forest; IBS, Integrated Brier Score; AUC, area under receiver operating
characteristic curve. C index, concordance index.
bC index in train and test dataset are calculated separately, other metrics are calculated only in the test set.
Bolded metrics indicate that the metric is the best of the fourgroups.
FIGURE 4

Prediction error curve. As a benchmark, a useful model will have a Brier score below 0.25.
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significantly better than that of other models for patients with

longer survival (Figures 4, 5). Secondly, since the data are from

national databases, some known prognostic factors [such as

pathologic fracture (6) and biomarkers (2)] were not available.

Thirdly, the model in this study has not been externally validated.

Although we have adoptedmeasures such as data segmentation and

cross-validation in model development, the generalization and

reliability of the model need to be further validated using other

data sets. Fourthly, personalized treatment recommendations are
Frontiers in Oncology 10
another advantage of the DeepSurv algorithm (12, 18) but were not

validated in this study because of the lack of treatment data. Due to

the linear fitting of variables by the classical Cox model, the model

recommended a constant treatment plan for all patients according

to the calculated hazard ratio (HR) value. However, DeepSurv can

make personalized treatment recommendations for different

patients based on the complex non-linear relationship between

the variables fitted by the model (12), which is more in line with

real-world rules. For example, the use of chemotherapy in patients
A B

D

E F

G H

C

FIGURE 5

The receiver operating curves (ROC) and calibration curves for 1-, 3-, 5-, 10-year survival predictions. ROC curves for (A) 1-, (C) 3-, (E) 5-, (G)
10-year survival predictions. calibration curves for (B) 1-, (D) 3-, (F) 5-, (H) 10- year survival predictions.
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FIGURE 6

Heatmap of feature importance for DeepSurv, neural network multitask logistic regression (N-MLTR) and random survival forest (RSF) models.
The values are expressed as a percentage reduction in the C-index after the value of a feature has been replaced by random numbers. Higher
values suggest that a feature is more important in influencing the predictive accuracy of the corresponding deep learning model.
FIGURE 7

A screenshot of the online web-based application of DeepSurv model.
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with chondrosarcoma is still controversial (1). By fitting the

complex factors that affect the efficacy of chemotherapy, a

treatment recommendation system based on deep learning may

suggest the appropriate treatment for each individual.

To conclude, this study evaluated and compared the

performance of two deep learning-based algorithms and two

conventional methods for predicting overall survival in patients

with chondrosarcoma. Overall, deep learning algorithms showed

excellent discriminating capabilities, calibration, and stability in

survival prediction. DeepSurv performed best in terms of

discrimination and model calibration and was incorporated

into a web-based application for clinical use. Further extension

of the models developed in this work—considering specific

aspects such as prognostic biomarkers, and image data—is

necessary for future studies in order to encourage their

widespread use in orthopedic oncology clinics for customized

treatment planning and monitoring.
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