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Abstract

Basal ganglia are usually attributed a role in facilitating willed action, which is found to be impaired in Parkinson’s disease, a
pathology of basal ganglia. We hypothesize that basal ganglia possess the machinery to amplify will signals, presumably
weak, by stochastic resonance. Recently we proposed a computational model of Parkinsonian reaching, in which the
contributions from basal ganglia aid the motor cortex in learning to reach. The model was cast in reinforcement learning
framework. We now show that the above basal ganglia computational model has all the ingredients of stochastic resonance
process. In the proposed computational model, we consider the problem of moving an arm from a rest position to a target
position: the two positions correspond to two extrema of the value function. A single kick (a half-wave of sinusoid, of
sufficiently low amplitude) given to the system in resting position, succeeds in taking the system to the target position, with
high probability, only at a critical noise level. But for suboptimal noise levels, the model arm’s movements resemble
Parkinsonian movement symptoms like akinetic rigidity (low noise) and dyskinesias (high noise).
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Introduction

Willed actions are a form of voluntary actions, though no

rigorous definition of willed action is available [1]. Voluntary

actions are characterized by presence of a goal, a plan to achieve

that goal, conscious awareness of the action being performed, and

an intention behind the whole process. William James [2] offers a

further classification of voluntary actions into ideo-motor actions

and willed actions. In the former, a pre-existent idea of how the

action has to be performed is simply executed. On the contrary, in

willed action, there is no pre-existent idea but only the pure, direct

action of will driving and shaping movement. In James’ own

words, in case of willed actions, in contrast to ideo-motor actions,

there is ‘‘an additional conscious element in the shape of a fiat, a

mandate, or expressed consent’’ [2].

Willed actions are also defined in terms of internal vs. external

sources of movement control. Accordingly, willed actions are those

that are not triggered by external stimuli and are generated by

internal sources [3], though there could be an admixture of

external, sensory information once the ball is set in motion.

The work by Kornhuber and Deecke [4,5] may be described as

one of the earliest instances of a search for neural substrates of

willed action. Analysis of Electroencephalogram (EEG) data from

normal subjects engaged in self-initiated wrist movement showed a

special potential that builds up over the midline central electrode

(Cz) more than a second before the movement begins. This

activity, termed the Bereitschaftspotential (BP), or the Readiness

Potential (RP), is found to be maximal at the midline centro-

parietal area, and to be distributed bilaterally regardless of the site

of movement. The activity, however, becomes localized to the

contralateral side of the movement, as the movement onset time

draws near. Dipole analysis of the sources of BP throws up the

Supplementary Motor Area (SMA) as a key area responsible for

BP [6].

Subsequent work on cortical substrates of willed action revealed

other cortical sites also. Positron Emission Tomography-based

studies on substrates for random finger lifting revealed marked

activation of dorsolateral prefrontal cortex and anterior cingulate

cortex [7]. In another study in which the subjects made random

movements of a joy-stick in one of possible four directions

(forward, backward, left and right) the cortical areas that showed

preferential activation were, in addition to SMA, dorsolateral

prefrontal cortex, anterior cingulate cortex and also premotor

cortex [8].

Other subcortical structures, most importantly the frontostriatal

circuits, were also found to be involved in willed action [1]. The

frontostriatal circuits form loops that arise from frontal areas and

run through the basal ganglia (BG) nuclei [9]. These loops are also

thought to be organized into well-segregated multiple sub loops

named as – the skeletomotor, oculomotor, associative/prefrontal

and limbic loops [10]. It is tempting to assume that each of the sub

loops is dedicated to a certain aspect of voluntary action. The idea

that BG circuits are reasonably well-segregated into parallel sub

loops is an old one and emerges out of earliest studies by

Alexander et al [10], Albin et al [9] and some recent studies too

[11]. There were also studies that reveal a functional segregation

of BG circuits into subloops [12–15]. However, it must be

immediately pointed out that the existence of segregated

functional sub loops is not critical for the validity of the proposed

model, as long as it is granted that the BG circuit as a whole can

contribute to reaching through the instrumentality of its

reinforcement learning machinery.
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Damage to specific modules in the frontostriatal system is

known to cause specific impairments in motor and cognitive

functions. Prefrontal lesions are linked to perseveration, distract-

ibility, impaired planning of sequential movements, and a

tendency to shift from self-initiated behavior to stimulus-driven

behavior [16]. Damage to SMA is associated with diminished

spontaneous movements and partial mutism. Impairment in

performing complex simultaneous or sequential movements is

seen relative to performance of simple movements in a patient

with right SMA damage [17].

The neuromodulator, dopamine, is known to play a crucial role

in the function and coordination of frontostriatal circuits [18].

Dopamine cells in the Substantia Nigra pars compacta (SNc)

project extensively to the striatum and other BG nuclei. The idea

that activity of mesencephalic dopaminergic cells represents some

sort of reward to the organism provides important clues to our

understanding of BG [19]. Since the striatum also receives

extensive afferents from sensory-motor cortex, it places BG in a

unique position for selecting rewarding actions among a host of

competing actions. Thus BG may be viewed as the neural

machinery necessary for performing reinforcement learning (RL),

a type of learning in which stimulus-response associations that

maximize reward are reinforced. A vast body of modeling effort is

driven by application of RL concepts to BG function [20–22].

Reinforcement Learning-based models are able to explain a wide

array of phenomena related to BG function and fronto-striatal

interactions in normal function and disease [23–25].

In Parkinson’s disease (PD), a neurodegenerative disorder

associated with loss of dopamine cells in SNc, motor symptoms

like akinesia or bradykinesia and tremor are observed [26].

Parkinson’s disease patients also exhibit difficulty in movement

initiation. A more dramatic case of movement initiation exhibited

by PD patients is the phenomenon of freezing of gait, which refers

to difficulty in proceeding with gait [27]. This can happen in the

beginning of a walk (start hesitation) or when trying to make a

sharp turn (turning hesitation) [27]. Parkinson’s disease patients

also exhibit articulatory freezing, a kind of difficulty in speech

initiation [28]. The aforementioned symptoms are negative

symptoms of PD, marked by paucity of movement, often seen

under conditions of OFF medication. On the other hand, under

conditions of ON medication, PD patients exhibit uncontrolled,

exaggerated movements like dyskinesias and chorea-like move-

ments [26].

In the present study, we describe a model of willed action with

BG as a key substrate. The model presents the conditions for

normal willed action and its impairment under conditions of

damaged BG. We assume that the ‘‘will’’ signal is weak, compared

to the ‘‘bottom-up’’ signals derived from the sensory stream, and

therefore needs appropriate machinery for amplification. We

propose that by affording a combination of gradient descent and

noise, BG serves as an excellent substrate for SR phenomenon,

and amplifies the weak willed action signal arising from the

prefrontal cortex or SMA. Stochastic resonance is a counter-

intuitive effect by which the signal-to-noise ratio (SNR) of a

nonlinear system or a device is highest when a moderate level of

noise is added to the system; SNR is lower for both higher and

lower noise levels [29]. Similarly in the proposed model of willed

action, highest amplification is obtained at optimal noise level,

which corresponds to normal function. Deviations from this

optimal noise level are manifest as failure to initiate movement

(low noise case) or unregulated movement (high noise case),

reminiscent of motor symptoms of PD patients.

The paper is organized as follows: Section 2.1 summarizes a

reaching model involving BG and motor cortex. The relation

between the reaching model and SR dynamics is elucidated in

section on Methods. The conditions under which maximal

amplification of the will signal is achieved, is explored numerically

in the subsequent section. Effects of deviations from the optimal

noise level are also described in the same section. A discussion of

simulation results, a more detailed neurobiological interpretation

of the proposed model, and model limitations are presented in the

subsequent sections. Conclusions of the study are presented in the

final section.

Methods

2.1 Background
The starting point of the present work is a model of reaching

that highlights the role of BG [24]. This model is built on the

general understanding that BG are essential for motor learning

[30]. Cast in RL framework, the model depicts how BG enables

the motor cortex to learn to reach a target location on command.

The model consists of three components: motor cortex (MC), BG,

and the arm. The arm has to reach one of 4 target locations. Each

target is specified by a Target Selection Vector (TSV), j, which is

given as input to the MC. In response to TSV, the MC produces

muscle activation vector, gm. The BG component also outputs a

muscle activation vector, gbg, which is combined with that of MC,

to produce a final muscle activation vector, g, given as:

g ~ agmzbgbg, ð2:1:1Þ

where a and b are coefficients that control the relative

contributions of MC and BG to movement. In eqn. (2.1.1), g

denotes the neural activations given to the muscles of the arm. A

given g places the arm in a unique configuration.

Arm model. Since BG dynamics is the focus of the paper, we

chose an extremely simple model of arm dynamics. The arm

consists of two joints with 4 muscles. The muscles are activated by

g, a 4-dimensional vector: g1 and g2 activate the agonist and

antagonist of the shoulder respectively, while g3 and g4 activate the

agonist and antagonist of the forearm respectively. The shoulder

and forearm joint angles, h1 and h2, respectively, are given by:

h1~p g1{g2ð Þ ð2:1:2aÞ

h2~p g3{g4ð Þ ð2:1:2bÞ

where 0ƒgiƒ1, i~1,4.

Thus in our simple arm model, the relationship between muscle

activations and arm configuration is a static one.

We now outline how BG enables MC to learn to reach a target,

by producing muscle activations, gm, appropriate for a given TSV.

In the early stages of learning, since MC is in untrained condition,

gm is expected to be off the mark. But the BG output gbg, which

also represents muscle activations, is a highly labile quantity which

perturbs gm until the arm makes a successful reach. The value of

gbg which results in a successful reach is used by MC for training

itself. Neurobiological interpretation of gm and gbg needs a

comment. That the MC encodes muscle activations is a familiar

idea [31]. But there is also evidence that neurons in putamen code

for muscle activation patterns in addition to kinematic information

[32].

As mentioned above, a and b control the relative contributions

of MC and BG to the arm. In the early stages of learning, a is

small, and movement is determined predominantly by BG output,

Basal Ganglia and Willed Action
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whereas in late stages, MC dominates movement. (b is small; refer

to [24] for more details)

Motor Cortex (MC). The motor cortex is modeled as a

perceptron with j as input and gm as output.

gm~tanh(Wjzb) ð2:1:3Þ

Basal Ganglia Model. The BG circuit receives inputs from

the cortex and sends projections back to the cortex via the

thalamus. The striatum is the input port of the BG, while the key

output ports are Substantia Nigra pars reticulata (SNr) and the

Globus Pallidus interna (GPi). The striatum projects directly to the

output ports over the so-called Direct Pathway (DP) and indirectly

over the Indirect Pathway (IP) with two intermediate stages –

Globus Pallidus externa (GPe) and the Subthalamic nucleus

(STN). Dopaminergic cells of Substantia Nigra pars compacta

(SNc) project to striatum and other targets in BG. Therefore, the

BG part of the model has 4 key components – 1) the Critic

representing the Striatum [33], 2) the Direct Pathway (DP), 3) the

Indirect Pathway (IP) and 4) the Temporal Difference (TD) error,

d, representing the SNc DA signal. The Critic assesses the current

position of the arm’s end effector with respect to the target. The

DP and IP of BG take the change in the BG output, Dgbg(t), in the

current step, and update it to Dgbg (t+1). TD error, d, is used to

calculate Dgbg (t+1) using Dgbg(t).

These components are defined below.

Critic: The Critic computes the Value function, which is a

function of the distance, d, between the arm’s end effector and the

target.

V X ; X tar
i

� �
~A 1{

d2

R2

� �
, for dvR

~0, otherwise,

ð2:1:4Þ

where,

d~ DDX{X tar
i DD

X tar
i = target position, X = current position, V is Value function.

The norm (INI) used is Euclidean norm.

Dopamine signal: The dopamine signal represents TD error, d.

d tð Þ~r tð ÞzcV tð Þ{V t{1ð Þ ð2:1:5Þ

The reward, r(t) = A, when d , Rsmall , otherwise r(t) = 0, where

Rsmall is a small positive quantity. d is thought to be computed

within the loop: Striatum R SNc R Striatum (fig. 1). We let c = 1,

in the present model. Since r(t) is non-zero only when the target is

reached, all along the trajectory d(t) simply represents the temporal

difference DV = V(t) – V(t21).

Direct and Indirect Pathways (DP & IP): The next value of BG

output, Dgbg(t+1), is computed in the DP and IP of BG, as a

function of d(t) and Dgbg(t) as follows:

if(dwDhi)

Dgbg(tz1) ~ zDgbg(t) (a) {Go

else if(dwDlo and dƒDhi)

Dgbg(tz1) ~ Q (b) {Explore

else (dƒDlo)

Dgbg(tz1) ~ {Dgbg(t) (c) {NoGo

ð2:1:6Þ

where Q is a random four-dimensional vector such that norm

(Q) = g, where norm(N) refers to Euclidean norm and g is a constant.

Here gbg is updated such that gbg (t+1) = gbg(t) + Dgbg(t). Adding the

term kDgbg(t21), where 0,k,1, to the Right Hand Side (RHS) of

eqns.(2.1.6,abc) has a stabilizing effect on the arm’s movements.

Here Dlo and Dhi are thresholds that define the regimes.

Training MC: Learning occurs only in the MC. The dynamics

of eqn. (2.1.6) proceeds until the end-effector comes close to the

target location (r,Rtol). The value of g, which results in this

successful reach, is used as target output of MC, which is trained

by delta rule as follows:

DW~gm(g{gm)j

Db ~ gm(g{gm)
ð2:1:7Þ

where gm is the learning rate.

Let us revisit eqns. (2.1.6a,b,c) which are crucial in making the

connection between the above reaching model and the proposed

SR dynamics subserved by the BG. In eqns. (2.1.6a,b,c), a positive

d represents approach towards the target, while a negative d
represents withdrawal away from the target. If a given Dgbg

produces a sufficiently large positive d, and hence a significant

excursion towards the target, in one step, it is desirable to move in

the same direction in the next step; therefore Dgbg(t) =Dgbg(t21) in

eqn. (2.1.6a). If a given Dgbg produces a sufficiently large negative

d, and hence a significant excursion away from the target, in one

step, it is desirable to move in the opposite direction in the next

step; therefore Dgbg(t) = 2 Dgbg(t21) in eqn. (2.1.6c). If d is small in

magnitude, the previous movement is neutral, neither significantly

towards or away from the target; therefore new directions are

explored in the next step (Dgbg(t) is random in eqn. (2.1.6b)). Such

BG dynamics implies an expansion of classical Go-NoGo

depiction of BG function [34].

According to classical functional depictions of BG, striatal

dopamine switches the transmission between DP and IP: the DP is

selected at higher values of dopamine, while the IP for lower values

Figure 1. A model of reaching involving basal ganglia (redrawn
based on [24]).
doi:10.1371/journal.pone.0075657.g001
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[35]. Selection of DP is thought to facilitate movement (Go) and

selection of IP to withhold movement (NoGo). Between the high

and low ranges of dopamine, which correspond to the classical Go

and NoGo regimes, we posit an intermediate range, which

corresponds to Explore regime (fig. 2) [34]. These three regimes

operate in the current model as follows. In the Go case, the DP is

activated and gbg is updated such that the arm continues to move a

little in the previous direction. In the NoGo case, the IP is

activated and gbg is updated such that the arm shows a tendency to

move a little in the direction opposite to the previous direction. In

the explore case, again the IP is activated and gbg is updated in a

random fashion unrelated to the previous increment in g. Using a

network model of BG, we have recently shown how, in addition to

the Go and NoGo regimes, the new explore regime emerges

naturally out of complex dynamics of the Subthalamic Nucleus

(STN) – Globus Pallidus externa (GPe) loop in BG [34].

The dynamics of reaching described above has essentially two

components: hill-climbing over value function, V(t), and a

stochastic component that corresponds to exploration. Alterna-

tively, this can be seen as a combination of gradient-descent over a

new potential function defined as, Vp = 2V, and stochastic

dynamics. This combination of gradient descent and stochastic

dynamics is the typical recipe for SR [29]. We have shown in

Appendix that the BG eqns. (2.1.6a,b,c) closely resemble SR

dynamics. We pursue the consequences of this analogy now.

2.2 Stochastic Resonance and Basal Ganglia Dynamics
A simple, standard version of a SR system can be expressed as

[29]:

_xx~{+Vpzy tð Þzj(t) ð2:2:1Þ

The first term on RHS is the gradient of a potential function Vp

(x); the second term, y(t), represents noise; the third term j(t),

denotes a weak signal that must be amplified by SR dynamics.

As shown in Text S1, eqn. (2.1.6) that describes BG dynamics,

can be expressed as a differential equation that closely resembles

the SR dynamics of eqn. (2.2.1) as follows,

B _xx~C tanh(
1

e
+V )zAn exp({(

1

e
+V )2)Q(t) zAI j(t) ð2:2:2Þ

The first term on the RHS of eqn. (2.2.2) represents both Go

(eqn. 2.1.6a) and NoGo (eqn. 2.1.6c) dynamics of BG. The second

term represents the exploratory dynamics of eqn. (2.1.6b). The

third term j(t), denotes the will signal, arising from cortex. Neural

substrates of the will signal are discussed in the Discussion section.

Let us assume that Vp(x) is a bistable potential well (fig. 3), given

by:

Vp(x)~{ax2=2zbx4=4 ð2:2:3Þ

where the two minima of Vp(x) denote two stable states of the arm:

1) the resting position at x = 21, and 2) the target position at x = 1.

Note that V in eqn. (2.2.2) is related to Vp in eqn. (2.2.3) as,

Vp = 2V.

Reaching is achieved by switching the system from the resting

position (x = 21) to the target position (x = 1). This switching is

done by presenting appropriate j (t), which delivers a kick in the

form of a half-wave sinusoid:

j tð Þ~A0sin 2pt=Tð Þ, for 0vtvT=2

~0, for T=2ƒtƒT
ð2:2:4Þ

We also assume that noise is injected only during the time the

kick (eqn. 2.2.4) is delivered. Thus the noise model is:

y tð Þ~Dn tð Þ, for 0vtvT=2

~0, for T=2
ð2:2:5Þ

where d is a Gaussian random variable (mean = 0, SD = 1).

We now study the conditions under which the system makes a

successful reach, by transitioning from the resting position to target

position.

Results

The idea explored in this study is the possibility that BG amplify

will signal, presumably weak, by SR. That is, the will signal j(t), is

incapable of producing a reach by itself. But when aided by the

noise arising from BG, this originally subthreshold signal crosses a

threshold and results in movement. Assuming j(t) to be a constant,

j0, let us consider the minimum value of j0 necessary to make a

transition from the resting position to the target position, under

noise-free conditions. For the potential of eqn. (2.2.3), the

dynamics is expressed as:

_xx~tanh(ax{bx3)zj0 ð3:1Þ

For j0 = 0, eqn. (3.1) has three equilibrium points, two of them

stable (x = 6 (a/b)K) and an unstable one at x = 0. For the left

stable point to become unstable by merging with the unstable

point at the origin, both the first derivative (in eqn. (3.1)) and the

second derivative should be zero at the same point.

€xx~(1zsech2(ax{bx3))(a{3bx2) _xx~0 ð3:2Þ

or,

x~+

ffiffiffiffiffi
a

3b

r

Substituting the last result in eqn. (3.1) (with _xx~0), we have

j0~+tanh(a

ffiffiffiffiffi
a

3b

r
{b(

a

3b
)3=2)

for a = b = 1, j0 = 60.366.

Figure 2. The Go, Explore and NoGo regimes of BG.
doi:10.1371/journal.pone.0075657.g002
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Thus the minimum amplitude, A0, which will produce a

transition from resting to target position is 0.366. We chose

A0 = 0.25 for the simulations below, which is insufficient to

produce a transition from resting state to target state, i.e., to make

a successful reach.

We characterize the effectiveness of the stimulus in terms of the

probability of reach, P, which is expressed as the ratio of the

number of successful attempts at reaching, and the total number of

reaching attempts.

Now let us choose a suitable value of stimulus duration, T (eqn.

(2.2.4)). We seek to use a stimulus duration that is not too long and

yet achieves the probability of reach, P that is close to 1.

In standard SR systems, typically sinusoidal inputs are

presented. The response amplitude then depends on several

parameters like stimulus amplitude, A0, stimulus frequency, f, and

noise amplitude, D. Particularly, the response amplitude compo-

nent, �xx, which corresponds to the input frequency, f, is given as

[29]:

�xx~
A0x2

0

D

2rKffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4r2

KzV2
q ð3:3Þ

where

rK~
1ffiffiffi
2
p

p
exp({

DV

D
) ð3:4Þ

is the Kramer rate; DV is the barrier, the difference between the

potential at the minima and the maximum; ,x0
2. is the D-

dependent variance of the stationary unperturbed system (A0 = 0);

and V = 2pf. Response amplitude component, �xx, has been shown

to reach a maximum for intermediate values of D, while the

response tends towards a maximum as the stimulus frequency, f,

tends to 0 [29].

Though the above formula for response magnitude is derived

for sinusoidal stimuli, we expect the general trends to be seen in

the present case of half-sinusoidal, kick stimulus. We verify this

assumption through simulations. Fig. 4 shows the probability of

reach, P, as a function of noise amplitude, D, (stepsize = 0.2) for

various values of stimulus duration, T. (Probability is calculated by

averaging over 1000 trials for each value of D). Note that P peaks

at an intermediate value of D, but the peak migrates leftwards as

the duration, T, is increased. Also note that P attains a peak value

of 0.996, for D = 3.2, in the graph of P vs D for T = 1000 ms (blue

graph in fig. 4). Therefore we chose T = 1000 ms for subsequent

simulations. For T larger than 1000, the peak of the P vs. T curve

shifts left. In fig. 4, for T = 5000 and 10,000, probability of reach

equals 1 for smaller values of D.

The variability in the P vs. D plots (fig. 4), particularly for larger

noise levels, poses difficulties in finding a unique maximum.

Therefore, we smooth the curves before computing the maxima.

Smoothing is performed using the following steps:

1. Supersampling: In the original plots, the resolution on x-axis is

0.2. The resolution is doubled by decreasing the stepsize to 0.1

and linearly interpolating the data.

2. Smoothing: Smoothing is performed by simple local averaging

over a window size, WIN.

The value of WIN used for fig. 4 is 9. Table 1 shows the

maxima of the P vs. T graphs and the values of D at which the

maxima occur. Note that P values in Table 1 are slightly different

from the original data as a result of smoothing process. Though

the peak shifts leftwards with increasing T, the amount of shift

seems to decrease with increasing T. It is possible that the peak

tends towards a limit as T is increased indefinitely.

But the significance of larger values of T from biological point of

view must be reconsidered. From a purely mathematical, SR point

of view, the best value of T is one where highest P is obtained with

lowest noise. But large values of T imply long waiting times before

voluntary movements can be initiated, which is not desirable from

the perspective of motor efficiency. Therefore, we continue to use

T = 1000 ( = 1 sec), which is close to the duration of the Readiness

Potential, as the baseline result in our simulations. In more

realistic, future versions of the model, we will try to use

experimental data to choose the right value of T.

Figs. 5(a, b, c) show the reaching trajectories for three noise

levels: critical (D = 3.3), subcritical (D = 2) and supercritical (D = 7)

respectively. We propose that the optimal noise condition

(D = 3.3), is comparable to the state of BG of a normal individual.

We further suggest that under Parkinsonian conditions, noise level

changes due to altered dynamics of the IP [9]. Fig. 5b shows an

instance of unsuccessful reach due to inadequate noise. Such

reaching behavior may be comparable to akinetic rigidity of PD

patients. When noise level is higher than the optimum D = 6

(fig. 5c), probability of reaching is again reduced due to large

fluctuations in hand position. Such behavior is reminiscent of

uncontrolled movements of chorea and dyskinesia observed in PD.

The next study is concerned with the effect of colored noise on

reaching probability. In SR literature, white noise is replaced with

colored noise simply to study the effect of a realistic noise on SR

phenomenon [29]. Gammaitoni et al [29] use the following

equation to model colored noise:

_jj~({j(t)ze(t))=tc ð3:5Þ

where e (t) is zero-mean, Gaussian white noise with,,e(t)

e(0). = 2D d (t), and j(t) is colored noise with, ,j(t) j(0). = (D/

tc) exp(-|t|/tc). Increasing correlation time, tc, is known to shift

the SR peak to the right, implying that it takes stronger noise levels

to produce SR with colored noise [29].

The relevance of colored noise in the proposed BG model can

be traced to the electrophysiological finding that the activity of

Figure 3. Bistable potential defined by eqn. (2.2.3). The resting
position corresponds to (x = 21, Vp = 20.25) and the target position to
(x = 1, Vp = 20.25).
doi:10.1371/journal.pone.0075657.g003
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STN neurons exhibits increased correlation under dopamine-

deficient conditions [36,37]. The result suggests that under PD

conditions the noise arising out of IP may be modeled as colored

noise.

We simulated colored noise as, uc~ 1{lð Þuc tð Þzln tð Þ, where

l = 0.001 and n(t) is Gaussian random variable (mean = 0, SD = 1).

Fig. 6a shows the probability of reaching as a function of D, under

colored noise conditions. Note the rightward shift and also

reduction in peak probability compared to white noise case of

fig. 4. Fig. 6b shows an instance of reaching trajectory for D = 3.3

under colored noise condition.

Table 2 shows the maxima of the P vs. T graphs and the values

of D at which the maxima occur (WIN = 15). With colored noise

also, as it happened with white noise above, the peak shifts

leftwards with increasing T, the amount of shift seems to decrease

with increasing T. But note that for a given value of T, the colored

noise case (fig. 6) requires much larger noise levels to produce the

same reaching efficiency, compared to white noise case (fig. 4).

Thus it is evident that not just noise amplitude but noise quality

also matters in determining reaching efficiency.

Additional simulation results are described in Text S2. Fig. S1

in Text S2 shows the P vs D results for T = 100, 250, 500, 1000,

5000 and 10,000. Maxima of the P vs. T graphs in fig. S2 in Text

S2 and the values of D at which the maxima occur are given in

Table S1 in Text S2. Fig. S2 in Text S2 shows plots of P vs. D for

colored noise for T = 100, 250, 500, 750, 1000. Table S2 in Text

S2 shows the maxima of the P vs. T graphs of fig. S2 in Text S2

and the values of D at which the maxima occur in case of colored

noise. Fig. S3 in Text S2 shows a plot of fractional time (FT) vs.

noise amplitude (D). Fractional time refers to the fraction of the

time during which the target is reached. This measure is

introduced as an alternative to Probability of reach, P. Fig. S4

in Text S2 shows a plot of P vs. D for various values of e in eqn.

2.2.2.

Discussion

We present an abstract model of the possible role BG play in

amplifying willed action. The present model is derived by

simplifying an earlier model of the role of BG in reaching

movements [24]. The model of [24] is cast in the framework of RL

. The outputs of motor cortex and BG are combined to compute

the muscle activations necessary to drive the arm towards the

target. For a constant output of the motor cortex, the varying BG

output actually searches for the appropriate muscle activation

vector that can perform a successful reach. This dynamics of the

output of BG consists of two components: 1) the dynamics of hill-

climbing over a Value function, and 2) a stochastic component

corresponding to exploratory behavior in RL. With this combi-

nation of hill-climbing, which can be re-interpreted as gradient-

ascent over an appropriately defined potential function, and

stochastic dynamics, corresponding to the exploratory dynamics of

the IP of BG, the proposed BG model has the right ingredients to

support SR phenomenon. We propose that BG circuit amplifies

weak will signals through such SR effect.

The BG dynamics of eqns. 2.1.6(a, b, c) are rewritten in a form

(eqn. 2.2.2) that resembles standard SR dynamics (eqn. 2.2.1)

involving gradient descent over a bistable well. The simplified

form of eqn. (2.2.2) is used to simulate reaching dynamics in the

present study. The two stable states of the potential denote a target

position and a resting position respectively. Willed action signal is

simulated as a half-sinusoid with a subthreshold amplitude: the

signal in itself is insufficient to make a successful reach without

added noise. Reaching probability reaches 0.996 at a stimulus

duration of T = 1000 ms and for D = 3.3. For smaller noise levels,

reaching probability drops to zero for D = 1, and for higher noise

levels, reaching probability exhibits a long tail approaching the

value of 0.5. Colored noise is simulated as uc~ 1{lð Þuc tð Þzln tð Þ
where l = 0.001 and v(t) is Gaussian random variable (mean 0,

SD = 1). Reaching probability profile is shifted to the right in case

of colored noise, compared to the case of white noise. Highest

reaching probability of 0.96 is achieved for D = 7.3.

The present work assumes that the IP in BG is the source of

noise necessary for the hypothesized SR dynamics. This assump-

tion has its roots in a line of modeling work that applies RL

concepts to understand BG function [21]. There is a growing

consensus in contemporary BG research that BG forms a neural

substrate for RL [22]. This insight paved way to a large literature

of RL-based BG models, most of them addressing only specific

aspects of the many functions of BG. Efforts are underway to

explain the rich variety of BG functions solely within the RL

framework [21].

In RL-based learning, an agent learns to respond to stimuli with

actions that maximize future reward. There are three key

Figure 4. Probability of Reach, P, as a function of noise
amplitude, D, for various values of stimulus duration, T. P is zero
for very low values of D: since the stimulus amplitude, A0, is
subthreshold, a minimum level of noise is necessary for a successful
reach. Beyond D = 4, P decreases slowly with increasing D. Correspond-
ing to each value of T, there is a thin solid line and a thick dashed line.
The solid line represents the original simulation result, and the dashed
line is the smoother version of the same.
doi:10.1371/journal.pone.0075657.g004

Table 1.

Stimulus duration T Noise level at peak
Peak Probability of
Reaching

100 5.6000 0.8814

250 4.6000 0.9525

500 3.9000 0.9781

1000 3.4000 0.9924

5000 2.6000 0.9983

10000 2.4000 1.0000

doi:10.1371/journal.pone.0075657.t001
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components in RL framework viz., Actor, Critic and Explorer

[21]. The Actor is the module that performs actions, in accordance

with a policy that maps states to actions; Critic predicts the total

future reward, a quantity known as Value, based on past

rewarding experiences; Explorer injects perturbative noise that

allows the agent to explore randomly the space of actions. RL-

based action selection involves a combination two complementary

dynamics: exploitation which consists of climbing up the Value

gradient, while exploration refers to stochastic perturbation from

greedy gradient ascent over Value profile. It has been hypothe-

sized earlier that the IP is the subcortical substrate for exploration

[21,38].

The IP of BG has been given a variety of interpretations

including: withholding of action [9,23], focusing and sequencing

[39], action selection [40], and switching between voluntary and

automatic movements [41]. But by assuming that the IP subserves

exploration, we find an elegant complementarity between the two

pathways whereby the direct pathway (DP) subserves exploitation

while the IP supports exploration.

Presence of complex dynamics in the IP lends support to the

possibility that IP can have a role in exploration. Degradation of

such complex activity to more regular forms of activity like

synchronized bursts is hypothesized to contribute to impaired

movement. Experimental studies of activity of STN and GPe

revealed that under dopamine-depleted circumstances (analogous

to Parkinsonian conditions), activity of these nuclei exhibited,

though not much reduction in firing rate, a dramatic increase in

correlations among neurons [36,42,43]. Correlated activity of

neurons of STN-GPe loop has been functionally linked to

Parkinsonian tremor frequencies [43]. Complex activity of STN-

GPe loop in normal BG has been attributed a deep functional

significance, and interpreted as a source of stochastic exploratory

signal required by RL [38,21,44] and degradation of this complex

activity due to increased correlations in neural firing has been

linked to impaired movement. Experimental evidence that

supports the involvement of the IP in exploratory behavior exists.

Bilateral lesions of STN is known to induce perseverative behavior,

which may be regarded as a form of impaired exploration [45].

High frequency stimulation of STN, which functionally mimics

STN lesioning, is also known to induce perseverative behavior

[46].

Figure 5. Trajectories of reaching for (a) critical noise amplitude, D = 3.3, (b) subcritical noise amplitude, D = 2.0, and (c) supercritical
noise amplitude, D = 7.0. Solid line, which denotes hand position, depicts the transition from the resting position (x = 21) to the target position
(x = 1). Dashed line denotes the stimulus – the sinusoidal ‘‘kick’’ with amplitude A0 = 0.25.
doi:10.1371/journal.pone.0075657.g005
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In order to make more precise these intuitions about the

possible role of the IP in BG function, we recently developed a

neural network model of BG instantiated in an action selection

task [34]. In this model, striatal dopamine is assumed to switch

between DP and IP activation. The IP is modeled as a loop of the

Subthalamic Nucleus (STN) and the Globus Pallidus externa

(GPe), capable of producing chaotic activity. Simulations with this

model suggest that the classical Go/NoGo picture of BG pathways

may have to be expanded. In classical descriptions of BG function,

the DP is known as the Go pathway since it facilitates movement

and the IP is called the NoGo pathway since it inhibits movement.

But simulation results from the model of [34] suggest that while

the system displays Go and NoGo regimes for extreme values of

dopamine, at intermediate values of dopamine, it exhibits a new

Explore regime denoting a random exploration of the space of

action alternatives. The exploratory dynamics originates from the

chaotic activity of the STN-GPe loop. This chaotic activity of the

IP (consisting of STN-GPe loop), which plays the role of an

explorer in [24], is represented by the noise source in the present

study.

Therefore, the combination of exploitation (gradient ascent over

Value function) and exploration (stochasticity) in BG pathways,

seem to provide appropriate machinery for SR dynamics. The

present work proposes that BG uses this SR dynamics to amplify

weak willed action signals. Since the best probability of reaching

occurs at an intermediate level of noise (D), it can be thought to

correspond to normal healthy BG physiology. For lesser noise

levels, reaching probability drops, resulting in a situation

analogous to hypokinetic symptoms or akinetic rigidity of PD,

which is often seen under conditions of OFF medication. The idea

receives further support from the fact that overactivation of STN,

or GPe lesions cause hypokinetic symptoms [9]. For higher noise

levels, reaching probability again drops but for a different reason:

the arm exhibits uncontrolled movements and does not stabilize at

the target. This is analogous to the situation of overactivation of

GPe, or STN lesions, or a state of ON medication, any of which

cause hyperkinetic symptoms, or chorea [9]. The case of colored

noise may be thought to correspond to increased correlation in

STN neural firing patterns under dopamine deficient conditions

[36].

A few comments are in order regarding the neurobiological

substrates of various terms in SR eqn. (2.2.1). The Value function

is computed, as mentioned before, in the striatum. Gradient of

value function is computed in the model partly in DP (Go regime,

eqn (2.1.6a)) and partly in the IP (NoGo regime, eqn (2.1.6c)). The

noise term in eqn. (2.2.1), is thought to arise out of the chaotic

dynamics of STN-GPe loop (corresponding to eqn. (2.1.6b)).

Identifying the substrate for the willed action signal is more

involved. In the introductory section, we presented some early

data identifying SMA as perhaps the first brain region that

becomes activated before voluntary movement [47]. These early

observations have been reconfirmed more recently using a

magnetoencephalogram (MEG) with a higher temporal resolution

[48]. Studies using fMRI also note activity in both pre-SMA and

SMA before activity begins in motor cortex [49]. The link between

pre-SMA and willed action crops up in a very different context

also. Studies on eye-movement (saccade) generation in primates

suggest that the signal from pre-SMA to STN is essential for

switching between automatic (involuntary) to volitionally con-

trolled (willed action) saccades [41]. Thus, the signals that

correspond to the three terms on the R.H.S. of eqn. (2.2.2) –

gradient descent, noise and weak input – come together in the BG

circuit. But it still begs the question of the exact site inside BG

where the three signals come together and are integrated. A

Figure 6. Reaching with colored noise. (a) Plots of probability of reach (P) vs. noise amplitude (D) for colored noise for various values of T ( = 100,
250, 500, 750, 1000). Corresponding to each value of T, there is a thin solid line and a thick dashed line. The solid line represents the original
simulation result, and the dashed line is the smoother version of the same. A0 = 0.25. l = 0.001. (b) An instance of reaching under colored noise
conditions. l = 0.001, D = 3.3, A0 = 0.25, T = 1000.
doi:10.1371/journal.pone.0075657.g006

Table 2.

Stimulus duration T Noise level at peak
Peak Probability of
Reaching

100 8.9 0.4435

250 8.9 0.7530

500 8.8 0.9083

750 7.9 0.9485

1000 7.3 0.9618

doi:10.1371/journal.pone.0075657.t002
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candidate site for such integration is Globus Pallidus interna (GPi),

the output nucleus of BG. The aforementioned neural substrates

for the proposed BG-based model of willed action are summarized

in Table 3 and depicted in fig. 7.

The current model of willed action based on SR-like effect

subserved by cortico-striatal dynamics is only a preliminary model

and must be expanded to more detailed network level models in

the future. We must however point out that the present model is

derived from a set of RL-based network models of BG developed

by our group in the past [1,21,34,44]. The present work only

shows that an SR-like effect is buried in the BG dynamics, which

can be fruitfully linked to the well-known role of BG in willed

action. Though conceptually well placed with respect prior

modeling literature on BG, – particularly what belongs to the

actor-critic modeling tradition, – the proposed model awaits

confirmation by direct experiments on substrates of voluntary

movement.

The present model of willed action has some relevance to the

study of Ashby et al [30,50] that discuss the neural substrates for

generating automatic movements as opposed to non-automatic

movements. Discussing the role of BG in generating automatic

movements, Ashby et al [30,50] suggest that specific parts of the

striatum are involved in such movements. During the early stages

of motor learning, movements are voluntary and effortful; with

practice they become automated. Ashby et al [30,50] suggest that

the associative striatum is active during the early stages of learning,

while the activity shifts to sensory-motor striatum when the

movements become well-practiced and automatic. Since move-

ments driven by willed action are naturally non-automatic, it is

plausible that willed action movements are supported specifically

by associative striatum.

There are several instances of amplification of weak sensory

stimuli due to SR in animal sensory systems: in mechanosensation

of crayfish, cricket and rat [51–53]. Similar results were observed

in human sensory perception also. Humans were able to detect

weak cutaneous stimuli presented to finger, in presence of optimal

noise levels [54]. In a study related to auditory perception, humans

were asked to discriminate weak, pure tones from white noise

signals. Best performance was obtained when optimal noise was

added to pure tones [55]. There were several instances of the

presence of SR effect in motor function. Cordo et al [56] showed

that the sensitivity of muscle spindle receptors can be improved by

adding noise to the tendon of the parent muscle. Priplata et al [57]

showed that presenting stochastic vibration to insoles improved

balance in elderly subjects. Mulavara et al [58] demonstrated that

stochastic vestibular stimulation improved ocular stabilization

reflex in response to whole-body tilt. Pinamonti et al [59] show

stochastic multiresonance in a neural network model and link it to

a similar phenomenon observed in human perception [60].

Although there is no direct reference to SR, the work by Todorov

[61] on stochastic optimal control highlights the importance of

noise in modeling sensory-motor function. The present study

appears to be the first modeling attempt to propose a role for SR

effect in willed action.

Several neural network models have been constructed to

produce SR-like effects without an explicit multistable potential

or a simple additive noise term [62–65]. For example, Mejias and

Longtin [62] presented a heterogeneous spiking neuron network in

which the average firing rate of the network is modulated by a

weak, periodic input signal. Input/output correlation is found to

be the highest at certain optimal heterogeneity parameter

revealing an SR-like underlying effect. Neural network models of

this kind might give pointers to expansion of the proposed willed

action model to its more detailed network versions.

The proposed model shares some features with a recently

published model of neural mechanisms underlying self-initiated

movement [66]. The model of [66], described as a leaky stochastic

accumulator, consists of a gradually accumulating signal with noise

added. Movement is released when this accumulating signal

crosses a threshold. Due to the presence of noise, the exact time at

which the threshold is crossed shows variability. The model is able

to accurately explain behavioral and electrophysiological data

(waiting times and EEG amplitudes) from human subjects

performing self-initiated movements. The accumulation process

in the model of [66] is analogous to gradient dynamics, and

approach to an attractor, in our model. (An electrophysiology-

based study also describes motor preparation in terms of attractor

dynamics. Based on recordings from premotor cortex of behaving

monkeys, Churchland et al (2006) suggest that neural dynamics

underlying motor preparation may be described as approach to an

attractor [67]. The noise is analogous to the noise generated by IP

in our model. Future efforts will be directed at taking these

convergences further and develop a comprehensive neuromotor

model of mechanisms underlying willed actions.

4.1 Limitations of the Study, Open Questions and Future
Work

In this section, we discuss the underlying assumptions, which

become limitations, of the proposed work. This preliminary model

of the role of BG in willed action shows that a certain form of

reinforcement-based learning dynamics of BG, described in our

earlier work, has the necessary ingredients for a SR effect.

Attributing a meaningful role to this SR effect, we propose that

BG’s involvement in willed action consists in amplifying a weak

will signal by the SR mechanism present in BG machinery.

The proposed model is a lumped model mainly pitched at

behavioral level. Therefore the model may appear to be deficient

in detailed representation for neurobiological substrates. Since the

proposed model is a preliminary model that embodies the seed of

an idea, it is kept deliberately simple. But the model can be

expanded to more detailed network versions since it has evolved by

reduction from detailed network models of BG from our earlier

work.

Classical understanding of the functional anatomy of BG

describes the DP and IP as the Go and NoGo pathways

respectively. Our group has been developing a line of BG models

in which DP is still the Go pathway but the IP subserves

exploration in addition to the earlier NoGo function. In [21] we

outlined how this expanded functional depiction of BG can be

used to explain a wide range of BG functions. In [34] we presented

a model of BG that exhibits three regimes – Go, NoGo and

Explore – with the explore regime emerging out of the chaotic

dynamics of the STN-GPe loop. In [44] we present a model of BG

involved in saccade generation. BG nuclei involved in saccade

generation – Caudate, SNr, STN, GPe are explicitly represented.

The model is trained by RL. Value is computed in striatum,

dopamine signal corresponds to temporal difference error, and the

indirect pathway is the substrate for exploration. A lumped version

of the network model described in [44] was used in [1] to model

reaching performance in normal and Parkinsonian conditions.

Based on the line of work just described it is possible to expand the

proposed model of willed action to its network version with

appropriate neurobiological elements.

Reaching movement is formulated in the proposed model as a

transition from one minimum (resting position) to another (target

position) in a bistable potential. Such a scenario of reaching is an

oversimplification, since it must be possible to reach a three-

dimensional continuum of target positions from a similar
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continuum of resting positions. To this end, the potential function

must be dynamically carved so that the two minima can be placed

anywhere within the volume over which the hand is restricted.

This can be achieved in a straightforward manner by allowing the

resting and target positions parameterize the potential function.

These modeling features are ideally incorporated in the expanded

network version of the proposed model.

Application of the term SR to the proposed model has to be,

strictly speaking, reconsidered since resonance implies an under-

lying frequency. There has been some debate in the literature

about use of the term SR to certain biological phenomena in

which noise plays a constructive role [68,69]. The term resonance

is suggestive of frequency resonance which is the case with classical

stochastic resonance. But McDonnell and Ward [69] use a more

general term known as ‘stochastic facilitation’ which refers to a

larger class of phenomena in which noise plays a beneficial role.

Phenomena of SR then become a subclass of those of stochastic

facilitation. Although the proposed model is presented as a case of

SR, it must be noted that the model may not be strictly dubbed as

one of classical stochastic resonance. The reason is that in the

proposed model the input is not a periodic signal and therefore

there is no frequency involved. However, considering the strong

resemblance between eqn. (2.2.1) and eqn. (2.2.2) we choose to call

the proposed model one of SR. More general future developments

of the current model may perhaps be better described as models of

stochastic facilitation.

Conclusions

The proposed model shows that a line of RL-based models of

BG has an implicit SR effect. Exploiting the ability of SR effect to

amplify a weak signal, we link the SR effect buried in BG

dynamics with the functional associations between willed action

impairment and BG lesions. Since the proposed model is a lumped

model, more detailed network-level models, first with rate-coded

neurons, and then with conductance-based neuron models, need

to be developed. It will be possible to validate precise predictions

that will emerge out of such detailed models using functional

imaging techniques.

Supporting Information

Figure S1 Plots of ‘probability of reach’ (P) vs. noise
amplitude (D) for white noise for various values of T.
Corresponding to each value of T, there is a thin solid line and a

thick dashed line. The solid line represents the original simulation

result, and the dashed line is the smoother version of the same.

(TIF)

Figure S2 Plots of ‘probability of reach’ (P) vs. noise
amplitude (D) for colored noise for various values of T.
Corresponding to each value of T, there is a thin solid line and a

thick dashed line. The solid line represents the original simulation

result, and the dashed line is the smoother version of the same.

(TIF)

Figure S3 A plot of ‘‘fractional time’’ (FT) vs. noise
amplitude (D).
(TIF)

Figure S4 Plot of ‘probability of reach’ (P) vs. noise
amplitude (D) for various values of e in eqn. 2.2.2. For

increasing values of e, the peak of the P vs. D graph shifts leftwards.

(TIF)

Text S1 Appendix.
(DOCX)

Figure 7. A block -diagram depicting the proposed neurobiological substrates of SR dynamics of eqn. (2.2.2).
doi:10.1371/journal.pone.0075657.g007

Table 3.

SR component Neurobiological component

Potential function Value function computed in striatum

Noise Chaotic activity of STN-GPe

Forcing signal Will command from pre-SMA/SMA

doi:10.1371/journal.pone.0075657.t003
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Text S2 Supporting figures and tables. Figure S1, Plots of

‘probability of reach’ (P) vs. noise amplitude (D) for white noise for

various values of T. Corresponding to each value of T, there is a

thin solid line and a thick dashed line. The solid line represents the

original simulation result, and the dashed line is the smoother

version of the same. Table S1, Maxima of the P vs. T graphs in fig.

S1 and the values of D at which the maxima occur. Figure S2,

Plots of ‘probability of reach’ (P) vs. noise amplitude (D) for colored

noise for various values of T. Corresponding to each value of T,

there is a thin solid line and a thick dashed line. The solid line

represents the original simulation result, and the dashed line is the

smoother version of the same. Table S2, Shows the maxima of the

P vs. T graphs and the values of D at which the maxima occur

(WIN = 15) for colored noise. Figure S3, A plot of ‘‘fractional

time’’ (FT) vs. noise amplitude (D). Figure S4, Plot of ‘probability

of reach’ (P) vs. noise amplitude (D) for various values of e in eqn.

2.2.2. For increasing values of e, the peak of the P vs. D graph shifts

leftwards.

(DOCX)
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al. (2005) Distinct basal ganglia territories are engaged in early and advanced
motor sequence learning. Proceedings of the National Academy of Sciences of

the United States of America 102: 12566–12571.

15. Tanaka SC, Doya K, Okada G, Ueda K, Okamoto Y, et al. (2004) Prediction of
immediate and future rewards differentially recruits cortico-basal ganglia loops.

Nature neuroscience 7: 887–893.

16. Norman D, Shallice T (1986) Attention to action, RJ Davidson, GE Schwartz,

D. Shapiro, Editors. Consciousness and Self-Regulation: 1–18. Plenum Press.

17. Damasio A, Van Hoesen G (1980) Structure and function of the supplementary
motor area. Neurology 30: 1983.

18. Tekin S, Cummings JL (2002) Frontal-subcortical neuronal circuits and clinical

neuropsychiatry: an update. Journal of psychosomatic research 53(2): 647–654.

19. Schultz W, Dayan P, Montague PR (1997) A neural substrate of prediction and

reward. Science 275: 1593–1599.

20. Bar-Gad I, Morris G, Bergman H (2003) Information processing, dimensionality
reduction and reinforcement learning in the basal ganglia. Prog Neurobiol 71:

439–473.

21. Chakravarthy VS, Joseph D, Bapi RS (2010) What do the basal ganglia do? A
modeling perspective. Biol Cybern 103: 237–253.

22. Joel D, Niv Y, Ruppin E (2002) Actor–critic models of the basal ganglia: New

anatomical and computational perspectives. Neural Networks 15: 535–547.

23. Frank MJ (2005) Dynamic dopamine modulation in the basal ganglia: a

neurocomputational account of cognitive deficits in medicated and nonmedi-
cated Parkinsonism. Journal of cognitive neuroscience 17: 51–72.

24. Magdoom K, Subramanian D, Chakravarthy V, Ravindran B, Amari S-i, et al.

(2011) Modeling basal ganglia for understanding Parkinsonian reaching
movements. Neural Comput 23: 477–516.

25. O’Reilly RC, Frank MJ (2006) Making working memory work: a computational
model of learning in the prefrontal cortex and basal ganglia. Neural Comput 18:

283–328.

26. Jankovic J (2008) Parkinson’s disease: clinical features and diagnosis. Journal of

Neurology, Neurosurgery & Psychiatry 79: 368–376.

27. Giladi N, McMahon D, Przedborski S, Flaster E, Guillory S, et al. (1992) Motor

blocks in Parkinson’s disease. Neurology 42: 333–333.

28. Critchley EM (1981) Speech disorders of Parkinsonism: a review. J Neurol

Neurosurg Psychiatry 44: 751–758.

29. Gammaitoni L, Hänggi P, Jung P, Marchesoni F (1998) Stochastic resonance.
Reviews of Modern Physics 70: 223.

30. Ashby FG, Turner BO, Horvitz JC (2010) Cortical and basal ganglia
contributions to habit learning and automaticity. Trends in cognitive sciences

14: 208–215.

31. Townsend BR, Paninski L, Lemon RN (2006) Linear encoding of muscle activity

in primary motor cortex and cerebellum. Journal of neurophysiology 96: 2578–
2592.

32. Crutcher MD, Alexander GE (1990) Movement-related neuronal activity
selectively coding either direction or muscle pattern in three motor areas of

the monkey. Journal of Neurophysiology 64: 151–163.

33. O’Doherty JP, Buchanan TW, Seymour B, Dolan RJ (2006) Predictive neural

coding of reward preference involves dissociable responses in human ventral
midbrain and ventral striatum. Neuron 49: 157.

34. Kalva SK, Rengaswamy M, Chakravarthy V, Gupte N (2012) On the neural
substrates for exploratory dynamics in basal ganglia: A model. Neural Networks

32: 65–73.

35. Clark DL, Boutros NN, Mendez MF (2005) The brain and behavior : an

introduction to behavioral neuroanatomy. Cambridge: Cambridge University
Press. xi, 265 p. p.

36. Bergman H, Feingold A, Nini A, Raz A, Slovin H, et al. (1998) Physiological

aspects of information processing in the basal ganglia of normal and

parkinsonian primates. Trends Neurosci 21: 32–38.

37. Nini A, Feingold A, Slovin H, Bergman H (1995) Neurons in the globus pallidus
do not show correlated activity in the normal monkey, but phase-locked

oscillations appear in the MPTP model of parkinsonism. J Neurophysiol 74:

1800–1805.

38. Sridharan D, Prashanth P, Chakravarthy V (2006) The role of the basal ganglia
in exploration in a neural model based on reinforcement learning. Int J Neural

Syst 16: 111–124.

39. Hikosaka O, Takikawa Y, Kawagoe R (2000) Role of the basal ganglia in the

control of purposive saccadic eye movements. Physiological reviews 80: 953–

978.

40. Redgrave P, Prescott TJ, Gurney K (1999) The basal ganglia: a vertebrate
solution to the selection problem? Neuroscience 89: 1009–1023.

41. Isoda M, Hikosaka O (2008) Role for subthalamic nucleus neurons in switching
from automatic to controlled eye movement. The Journal of Neuroscience 28:

7209–7218.

42. Brown P, Oliviero A, Mazzone P, Insola A, Tonali P, et al. (2001) Dopamine

dependency of oscillations between subthalamic nucleus and pallidum in
Parkinson’s disease. The Journal of Neuroscience 21: 1033–1038.

43. Terman D, Rubin J, Yew A, Wilson C (2002) Activity patterns in a model for the
subthalamopallidal network of the basal ganglia. The Journal of Neuroscience

22: 2963–2976.

44. Krishnan R, Ratnadurai S, Subramanian D, Chakravarthy V, Rengaswamy M

(2011) Modeling the role of basal ganglia in saccade generation: Is the indirect
pathway the explorer? Neural networks 24: 801–813.

45. Baunez C, Robbins TW (1997) Bilateral lesions of the subthalamic nucleus

induce multiple deficits in an attentional task in rats. European Journal of

Neuroscience 9: 2086–2099.

46. Baunez C, Christakou A, Chudasama Y, Forni C, Robbins TW (2007) Bilateral
high-frequency stimulation of the subthalamic nucleus on attentional perfor-

Basal Ganglia and Willed Action

PLOS ONE | www.plosone.org 11 November 2013 | Volume 8 | Issue 11 | e75657



mance: transient deleterious effects and enhanced motivation in both intact and

parkinsonian rats. European Journal of Neuroscience 25: 1187–1194.

47. Kornhuber HH, Deecke L (1965) Hirnpotentialänderungen bei Willkürbewe-

gungen und passiven Bewegungen des Menschen: Bereitschaftspotential und
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