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Abstract

Endocrine and exocrine functions of the pancreas control nutritional absorption, utilisation and 

systemic metabolic homeostasis. Under basal conditions, the lysosome is pivotal in regulating 

intracellular organelles and metabolite turnover. In response to acute or chronic stress, the 

lysosome senses metabolic flux and inflammatory challenges, thereby initiating the adaptive 

programme to re-establish cellular homeostasis. A growing body of evidence has demonstrated 

the pathophysiological relevance of the lysosomal stress response in metabolic diseases in diverse 

sets of tissues/organs, such as the liver and the heart. In this review, we discuss the pathological 

relevance of pancreatic lysosome stress in diabetes mellitus. We begin by summarising lysosomal 

biology, followed by exploring the immune and metabolic functions of lysosomes and finally 

discussing the interplay between lysosomal stress and the pathogenesis of pancreatic diseases. 

Ultimately, our review aims to enhance our understanding of lysosomal stress in disease 

pathogenesis, which could potentially lead to the discovery of innovative treatment methods for 

these conditions.
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CELL BIOLOGY OF THE LYSOSOME

The identity of lysosomes

Discovered by Christian de Duve in the 1950s,1 lysosomes are dynamic and heterogeneous 

organelles enclosed by a single lipid bilayer membrane. Lysosomes are found in all 

eukaryotic cells. However, their size, number, distribution, morphology and enzyme context 

vary greatly depending on different species, cell types and cell status. Ranging from 100 

nm to 500 nm in diameter, on nutrient starvation, the size of the lysosome increases to 500–

1500 nm as a result of membrane fusion.2–5 In each mammalian cell, there are generally 

several hundred lysosomes, dramatically reduced to <50 per cell on acute nutrient starvation. 

However, when exposed to prolonged starvation, the lysosome number recovers.3 6 Overall, 

lysosomes comprise about 0.5%–5% of the cell’s mass. In phagocytes like the mammalian 

macrophage, lysosomes collectively take up 2%–10% of cell volume.7

There are four types of lysosomes depending on their morphology and function: primary, 

secondary, residual and auto-lysosomes.8 Primary lysosomes are homologous, small, newly 

formed vesicles that originate from the Golgi apparatus which contain >60 acid hydrolytic 

enzymes but no substrate to act on. The secondary lysosomes contain large amounts of 

cargoes and substrates, which are subjected to digestion by lysosomal enzymes.8 Residual 

lysosomes, also known as telolysosomes, contain indigestible substances that eventually 

move outwards and fuse with the plasma membrane in order to transport debris into the 

extracellular environment by exocytosis. Lastly, auto-lysosomes are created by the fusion of 

several primary lysosomes to remove intracellular cargoes, also known as autophagy.8

Lysosomal biogenesis

Lysosomal biogenesis is one of the most important mechanisms by which cells adapt to 

extracellular and intracellular demands. During starvation-induced autophagy, lysosome 

numbers increase. Furthermore, lysosomal reformation involves cargo-mediated degradation 

of lysosomes, resulting in regeneration and maintenance of the cellular lysosome pool. The 

process of lysosomal biogenesis requires mechanisms that rely on both lysosomal protein 

biosynthesis and endosome-lysosome trafficking. Lysosomal enzymes are synthesised and 

tagged with mannose-6-phosphate residues in the rough endoplasmic reticulum (RER), 

modified in the Golgi apparatus and delivered to the lysosomes.9 10 Formation of lysosomal 

vesicles results from the fusion between vesicles originating from post-Golgi transport and 

those filled with cargo along the endocytic pathway.11 For example, endocytic vesicles 

(EVs) from the plasma membrane mature into late endosomes that eventually become 

lysosomes. Lysosomes could also be formed through vesicular transport, ‘kiss and run’ 

events and fusion-fission processes.12–15 Lastly, the intermediate forms of hybrid lysosomes 

are also observed in diverse sets of cells—for example, endocytic lysosome, autophagic 

lysosome and phagocytic lysosome reformation, which have been reviewed by Yang and 

Wang.15

Lysosome localisation and motility

Intracellularly, lysosomes can be found in a relatively immobile perinuclear cluster and a 

set of peripheral pools.16 Lysosomes move bi-directionally in a stop-and-go manner due to 
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the alternating activities of kinesin and dynein motor proteins.16 Depending on the cellular 

metabolic status or specific stimuli, lysosomes move to either the cell periphery or to the 

perinuclear region. The positioning of lysosomes is intimately associated with the activity of 

the mechanistic target of rapamycin complex 1 (mTORC1) and nutrient levels. For example, 

mTORC1 activation under nutrient-rich conditions causes scattering of lysosomes to the 

periphery.16 During starvation, peripheral lysosomes move towards the perinuclear region 

where autophagosome-lysosome fusion occurs. Functionally, peripheral lysosomes are less 

acidic and have reduced vacuolar-type ATPase activity compared with perinuclear localised 

lysosomes.17 18

FUNCTIONS OF THE LYSOSOME

Catabolic role of the lysosome

Lysosomes are known for their terminal degradation function in eukaryotic cells. Their 

primary function is maintaining cellular health by processing and removing toxic 

components, damaged organelles and excess metabolites. Moreover, the lysosome plays 

a crucial role in breaking down and recycling a variety of biological macromolecules, 

such as proteins, lipids, carbohydrates and nucleic acids. To accomplish its functions, 

lysosomes use various enzymatic reactions that are activated in an acidic environment.19 

There are over 60 resident acid hydrolases, which are classified by substrate preference, 

including proteases, lipases, nucleases, sulfatases, phosphatases and glycosidases.11 The 

end-products of lysosome-mediated digestion are then transported to the cytoplasm via 

specific lysosomal integral membrane proteins. These products play a vital role in various 

biosynthetic reactions essential for the cell’s growth and development.12

The autophagy-lysosomal pathway

Autophagy, a fundamental cellular degradation process, serves a vital housekeeping function 

in maintaining cellular homeostasis. During the autophagic process, the autophagic cargoes 

are delivered to lysosomes for degradation and finally recycled to provide nutrients and 

building blocks for cells. Basal levels of autophagy occur naturally in most tissues to 

control protein and organelle quality.20 21 Whereas, in response to various stimuli such 

as nutritional/cellular stress or infection, autophagy is induced above baseline levels to 

serve as an adaptive response to re-establish organ/tissue homeostasis and immunity.22 

23 Dysregulation of adaptive autophagy has been linked to the pathogenesis of many 

human diseases, including cancer, degenerative and immune disorders, metabolic disease 

and ageing.24

Role of the lysosome in ionic balancing

Lysosomes contain ions and harbour ion channels, which exert indispensable roles in 

regulating lysosomal pH and function.25 Specifically, the lysosomal lumen comprises 

various ions including Fe2+, Na+, K+, Zn2+, H+ and Ca2+ (which is ~0.5 mM and 5000 times 

higher than cytosolic Ca2+ stores). Furthermore, the lysosome membrane contains more than 

six types of ion channels to balance the lysosomal ionic gradient.26 These lysosomal ion 

channels and transporters mediate ion flux to regulate lysosomal ion homeostasis, membrane 

potential, catabolite export, membrane trafficking and nutrient sensing. Dysregulation of 
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lysosomal channels has been involved in the pathogenesis of many diseases, such as 

lysosomal storage diseases, metabolic diseases and neurodegenerative diseases,3 27 all of 

which have been reviewed in detail elsewhere.3 12

The role of lysosome in immunity

The lysosome’s function is not limited to cellular waste disposal and contributes 

significantly to the immune system.28 The lysosome serves as a central hub for both 

innate and adaptive immunity, aiding the host’s defence against harmful intruders such 

as bacteria and viruses.28 In response to a diverse range of stimuli, dendritic cells 

(DCs) enhance the ability to form peptide-major histocompatibility complex (MHC) 

II class complexes in lysosomes to initiate antigen-specific immune responses.29 30 

Regarding T cells, virus-induced autophagy plays a critical role in MHC class antigen 

presentation and CD8+ T cell responses.31 Due to their phagocytic nature, macrophages are 

abundant in lysosomes for degrading dead cells and foreign substances.32 On infection, 

macrophages undergo significant alterations in the quantity and composition of the 

lysosomal proteome, respectively.33 In addition to local lysosomal events, the immune 

cells’ autophagy-lysosome pathway aids pathogen detection, thus enhancing the immune 

system’s effectiveness.31 34 Lastly, autophagy regulators mediate innate immunity by 

directly modulating inflammasomes in macrophages.35

The metabolic function of lysosome

The lysosome modulates extracellular nutritional sensing by degrading or recycling 

plasma membrane receptors, such as transferrin (Tf)-Tf receptor complex and low-density 

lipoprotein (LDL) receptor.36–40 Motile and primary cilia are microtubule-based structures 

located at the cell surface which modulate cellular functions ranging from motility to 

sensing nutritional signalling from the environment.41 Notably, recent studies highlight the 

interplay between autophagy and ciliogenesis during nutritional stress.42 43 Intracellularly, 

in mammalian and yeast cells, activation of the mTORC1 protein kinase and AMP-activated 

protein kinase (AMPK), two essential anabolic and catabolic regulators, respectively, occur 

at the lysosome.44–47

In addition to sensing nutritional status, lysosomes play a crucial role in maintaining 

intracellular metabolic balancing by degrading both internal and external substances 

for cellular energy fuel resources.3 11 48 49 Furthermore, lysosome-mediated signalling 

pathways and transcriptional programmes are responsible for controlling the switch between 

anabolism and catabolism. This is achieved by regulating the transcription factor EB 

(TFEB)-mediated lysosomal biogenesis and the autophagy programme.50 51 Lysosomes also 

control intracellular metabolic status by modulating other organelles’ functions through 

interorganelle communication. This organellar direct communication is crucial for lysosomal 

function, positioning and repair of damaged lysosomal membranes,52 and for fine-tuning 

intracellular calcium transfer, lipid transport, signal transduction, glucose metabolism and 

mitochondrial respiration.12 53–60 Together, the lysosome plays a vital role in detecting 

nutrients, transmitting metabolic signals and regulating both cellular anabolic and catabolic 

processes. The functions of the lysosome are summarised in figure 1.
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LYSOSOMAL STRESS AND ITS RELEVANCE TO DISEASES

Under acute and chronic stress, such as pathogens, toxins, nutrient alteration or disruption 

of the endolysosome system, lysosomal homeostasis is disrupted, leading to stressed 

lysosomes.61–65 Different criteria have been suggested to assess lysosomal stress, including 

changes in the intralysosomal pH (eg, lysosome de-acidification), lysosome enlargement, 

membrane permeabilisation, cationic efflux, intracellular repositioning, misfolded protein 

aggregation, LDL cholesterol accumulation, redox catastrophe and bioenergetic crisis.65 

Cells respond to the stressed-out lysosome by initiating the lysosome stress response (LSR) 

to restore lysosomal homeostasis. Proper initiation of the LSR to re-establish lysosomal 

homeostasis is critical for maintaining cellular function, and maladaptive LSR can contribute 

to the development of a variety of diseases.

Transcriptional control of lysosomal genes and selective autophagy is an essential regulatory 

mechanism of LSR.65 66 Specifically, in response to lysosome stress, the release of lysosome 

localised mTORC1 results in dephosphorylation and activation of TFEB and the resultant 

induction of lysosome-related genes and the LSR.66 67 Zinc finger protein with Kruppel-

associated box (KRAB) and SCAN domains 3 (ZKSCAN3) is a zinc-finger transcription 

factor that harbours a KRAB and a SCAN domain occupying the promoter regions of 

various lysosomal genes. However, in contrast to TFEB, ZKSCAN3 is a strong inhibitor 

of these lysosomal genes.68 69 Moreover, lysosomal Ca2+ signaling is an essential process 

that enables adaptive lysosomal response to ensure the body responds appropriately to 

environmental changes.70 While the endoplasmic reticulum (ER) and mitochondrial stress 

responses have been extensively studied in relation to disease pathologies, LSRs have been 

largely overlooked. Recently, studies have implicated the relevance of the LSR to various 

tumourigenesis71 72 and neurodegenerative diseases.73 However, the functional significance 

of the LSR in the context of pancreatic diseases is not well established.

LYSOSOMAL STRESS IN PANCREATIC ENDOCRINE TISSUE IN THE 

CONTEXT OF DIABETES MELLITUS

Physiological pancreatic lysosomal function

The pancreas consists of endocrine and exocrine glands. The exocrine compartment of 

pancreas consists of acinar and ductal cells to produce and drain the digestive enzymes. The 

endocrine compartment, islets of Langerhans, include α, β, δ, ε and pancreatic polypeptide 

(PP) cells which secrete glucagon, insulin, somatostatin, ghrelin and pancreatic polypeptide, 

respectively.74 Mounting studies have demonstrated that β-cell lysosome-autophagy process 

plays an important role in insulin biosynthesis, secretion and degradation.75–78 Moreover, 

β-cell autophagy plays an important role in fine-tuning organelle homeostasis, such as the 

ER function, to ensure a functional β-cell.79 In addition to serving as the terminal site of the 

autophagy pathway, lysosomes are responsible for monitoring and sensing nutritional flux in 

β-cells. It has been demonstrated that β-cell mTORC1 signalling controls systemic glucose 

homeostasis by regulating β-cell mass, proliferation, apoptosis, insulin secretion and insulin 

secretory granule degradation.80 Moreover, the inactivation of β-cell AMPK elevates insulin 

secretion while the overactivation of β-cell AMPK prevents insulin secretion.67 81 82 Taken 
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together, these studies demonstrated that basal lysosome-autophagy process is essential for 

maintaining β-cell cellular and insulin homeostasis (figure 2). However, thus far there are 

limited studies investigating lysosomal function in other cell types of the pancreas.

Pancreatic β-cell lysosomal stress in type 1 diabetes and type 2 diabetes

Diabetes mellitus (DM) is a common disease that is increasing worldwide. Type 2 diabetes 

(T2D) is characterised by hyperglycaemia due to insulin resistance and impaired insulin 

secretion.83 Mounting studies have shown that autophagy is essential for maintaining the 

structure, mass, survival and cellular homeostasis of β-cells in response to cellular stress,84–

87 and dysregulation of autophagy in β-cells has been linked to an increased incidence 

of T2D.86 88 89 Although numerous studies have demonstrated the pathophysiological 

relevance of dysfunctional autophagy in T2D, less evidence has been provided to support 

this link in the context of type 1 diabetes (T1D). T1D is an autoimmune disease attributed 

to the autoimmune mechanism-induced destruction of β-cells in pancreatic islets.90 Of note, 

several T1D susceptibility genes are known to play critical roles in autophagic degradation 

pathways. For example, in mouse models of T1D, Clec16a, a T1D disease susceptibility 

gene, has been demonstrated to play a critical role in regulating mitophagy, glucose-

stimulated insulin secretion91 and protection of β-cells against cytokine-induced apoptosis.92 

93 Recently, a study by Muralidharan et al further supported the translational relevance of 

lysosomal dysfunction in T1D pathogenesis, demonstrating a blocked autophagic flux in the 

islets of non-obese diabetic (NOD) mice as well as in residual β cells of human donors with 

T1D.94

Cathepsins (CTS) are the most abundant lysosomal proteases with a broad spectrum 

of functions, such as intracellular protein degradation, energy metabolism and immune 

response.95 Increasing evidence suggests that dysregulation of several lysosomal CTS 

are genetically associated with T1D. For example, CTSC has been identified as a 

causal risk gene in T1D,96 and CTSC has been shown to positively regulate cytokine-

induced β-cell apoptosis in the context of T1D.97 Moreover, it has been demonstrated 

that deletion of CTSS, CTSB and CTSL ameliorates T1D development and diabetes 

incidence in mice.98 In terms of T2D, reduced transcription of CTSB and CTSD has 

been linked to β-cell dysfunction and cell death in patients with T2D.99 Lastly, abnormal 

lysosomal glycohydrolase activities, such as β-N-acetylhexosaminidase, β-galactosidase and 

α-glucosidase, have been revealed in patients with juvenile DM.100

In addition to serving as a central site of proteostasis, the lysosome plays an important 

role in modulating intracellular calcium flux.101 For example, lysosomal calcium release via 

transient receptor potential mucolipin 1 (TRPML1) is known to play a key role in inducing 

the nuclear translocation of TFEB, autophagosome fusion, mitophagy and lysosomal 

adaptation during starvation.102 Recent studies have begun to reveal the functional relevance 

of these lysosomal calcium channels in disease progression.103 104 Of note, Park et 
al identified a lysosomal Ca2+-mediated TFEB activation in mitophagy and functional 

adaptation in pancreatic β-cell adaptation to metabolic stress.105 106
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Lysosome stress of pancreatic α cells in DM

It is proposed that one key cause of DM’s hyperglycaemia is the excessive production of 

glucagon (or hyperglucagonaemia), which reflects dysregulated glucagon secretion from 

pancreatic α cells.107 Impaired intracellular trafficking of glucagon has been recognised 

as a mechanism underlying defective glucagon secretion in diabetes.108 Notably, altered 

lysosomal trafficking of glucagon has been proposed as a new pathway for glucagon 

hypersecretion in diabetes.109 110 This is caused by a switch from trafficking lysosome 

(Lamp 2A+) to autophagic lysosomes to secretory lysosomes (Lamp 1+), as well as an 

increase in glucagon trafficking through secretory granules.109

Lysosome stress of immune cells in DM

The pancreas’s endocrine unit comprises a diverse cell population including immune 

cells.111 During T1D progression, immune cells infiltrate the pancreas creating an 

inflammatory environment characteristic of insulitis. In turn, insulitis accelerates T1D 

development by increasing exposure of islet antigens and attacking β-cell.112 113 Both 

adaptive and innate immune systems are involved in the onset and progression of T1D.114 

115 Although the lysosome-autophagy axis plays a crucial role in modulating immunity,116 

the immune cell-lysosomal function in T1D is poorly studied. It has been shown that 

autophagy regulates T cell metabolic flexibility and survival to prevent autoimmune 

attacks on pancreatic β-cells.94 Furthermore, autophagy-deficient DCs display accelerated 

expression of MHC I leading to CD8+ T cell activation.117 It is proposed that B cells 

autophagy might impact intracellular MHC I presentation by reducing the amount of 

neoantigens formed in β-cells.118 At the site of the lysosome, it is reported that T1D elevates 

CTSL expression in peripheral CD8+ T in NOD mice.119 Moreover, it is shown that the 

CTSL-processed granule proteins create chimeric epitopes for diabetogenic CD4+ T cells 

augmenting impairment of peripheral self-tolerance in T1D.120

Another key feature of T1D and T2D immunity is the elevation of islet macrophage 

infiltration. It has been shown that in mice with STZ-induced T1D diabetes, macrophages 

make up to 0.9% of total islet cells compared with 0.5% in normal mice.121 In T2D, it 

is estimated that the average number of islet macrophages is around 1.34 macrophage/islet 

compared with 0.52 macrophage/islet under normal condition.121 In mice with diabetes, the 

elevation of mitochondrial reactive oxygen species (ROS) promotes macrophage polarisation 

towards the proinflammatory M1 phenotype.122 Of note, this process is mediated by 

impairing lysosomal function and autophagic flux in peritoneal macrophages of mice 

with diabetes.122 Sterile stimuli, such as damage-associated molecular patterns, sterile 

particulates and intracellular cytokines released from necrotic cells can trigger sterile 

inflammation by activating the host immune system.123 124 It is well recognised that 

the NLR family pyrin domain containing 3 inflammasomes is the key regulator for 

sterile inflammatory responses.125–127 Aberrant macrophage polarisation and inflammasome 

activation coexist in the pathogenesis and progression of diabetes and its complications.128–

130 Notably, the lysosome plays a crucial role in both the priming and assembly phases of 

the lipotoxic inflammasome in peritoneal macrophages.131 Although it is largely unknown 

to what extent islet macrophage lysosome-modulated inflammasome activity contributes 
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to DM pathologies, lysosomes may be potential targets for therapies to address the 

hyperinflammatory phenotypes observed in patients with diabetes.131

Functional relevance of lysosomal stress in other types of DM

Gestational diabetes mellitus (GDM) occurs when the body cannot respond properly to 

pregnancy-related metabolic challenges and insulin resistance.132 After giving birth, blood 

glucose levels return to normal in most individuals with gestational diabetes. However, 

these patients have a considerable risk of developing T2D in the future.133 Of note, a 

recent human study has identified an inversed correlation between fetal pancreas-autophagic 

markers and GDM-associated maternal metabolic risk.134 Furthermore, using a humanised 

islet amyloid polypeptide transgenic mouse line, Gurlo et al found a compromised β-cell 

autophagy in female mice with GDM.135 However, the pathophysiological relevance of 

pancreatic lysosomal function in the context of GDM has not been explored. Another 

distinct type of DM is cystic fibrosis-related diabetes (CFRD), which is characterised 

by decreased islet mass, β-cell dysfunction, hypoinsulinaemia and systemic insulin 

resistance.136–138 Thus far, there are only a few published studies on lysosomal stress 

in CFRD. High-mobility group box 1 protein (HMGB1) is a non-histone nuclear factor 

which regulates diverse biological processes depending on its subcellular or extracellular 

localization.139 During inflammation, HMGB1 is actively secreted into the extracellular 

space by lysosome-mediated exocytosis.140 Notably, patients with CFRD have elevated 

circulating levels of HMGB1 due to loss of function of cystic fibrosis transmembrane 

conductance regulator.141 However, what are the cell resources for the lysosome-mediated 

HMGB1 secretion and how lysosome stress affects the CFRD pathogenesis remain largely 

unknown.

THE ROLE OF LYSOSOMAL STRESS IN THE EXOCRINE OF THE 

PANCREAS

Pancreatitis is defined by inflammation of the pancreas accompanied by damaged exocrine 

acinar cells, with the postpancreatitis diabetes as the most frequent complication.142 

Autophagy-lysosomal dysfunction is unequivocally the primary initiating event in 

pancreatitis and serves as the convergence point for multiple pathological pathways 

(figure 2).143 Defects in various phases of autophagy, including lysosomal biogenesis, 

autophagosome formation and closure of fusion with lysosomes, can all lead to 

pancreatitis.144 For instance, deletion of the autophagy gene Atg5 led to spontaneous 

pancreatitis.145 Moreover, loss of LAMP2 in mice resulted in spontaneous pancreatitis 

characterised by acinar cell vacuolation, progressive inflammation in the pancreas and 

acinar cell necrosis resulting from lysosomal and autophagic dysfunction.146 In addition 

to acinar cell vacuolation, lysosomal/autophagic dysfunction leads to the accumulation of 

active trypsin in acinar cells, another hallmark response of pancreatitis.147 148 Lastly, recent 

research suggests that pancreatitis impairs lysosomal function through deficient proteolytic 

activity and altered membrane proteins, which has already been reviewed extensively by 

others.143 144
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PERSPECTIVES

The regulatory role of lysosomes in β-cell autophagy in health and diseases has been 

largely studied in the pathogenesis of diabetes. However, our understanding of cell type-

specific lysosome biogenesis, dynamics and autophagy-independent role of lysosomes in 

the pancreas is largely uncovered. Furthermore, the pancreatic islet is composed of multiple 

parenchymal cell types and a diverse set of immune cells. It is essential to determine 

whether a lysosome-related organelles communication exists between parenchymal cells and 

immune cells within the pancreatic microenvironment. Dissecting the roles of lysosomes 

in immunity, inflammation processes and metabolic regulation in diverse sets of DMs will 

advance our understanding of the molecular mechanisms of autophagy in inflammation 

in DM. With recent advances in understanding of lysosomal dysfunction in pathogenesis 

of human diseases, there has been considerable attention in therapeutically targeting 

the lysosome-depended pathways including autophagy.149–151 However, so far there is a 

limited number of lysosome-targeted therapeutics that have progressed towards clinical 

development. Developing cell type-specific and subtype-specific lysosomal activators or 

inhibitors for safely treating diverse types of DM is needed.
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Figure 1. 
The lysosomal function in metabolism and immunity. The lysosome is a critical site for 

maintaining cellular catabolic function, ionic balance, nutrition sensing, metabolic balance 

and immunity balance. DC, dendritic cell.
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Figure 2. 
The pancreatic lysosomal function in health and disease. The lysosome plays a critical 

role in maintaining cellular proteostasis, organelle function, ion balance, immunity as well 

as metabolic sensing and homeostasis in the pancreas. Disruption of the lysosomal stress 

response contributes to immuno-metabolic imbalance in diabetes mellitus. CFRD, cystic 

fibrosis-related diabetes; GDM, gestational diabetes mellitus; T1D, type 1 diabetes; T2D, 

type 2 diabetes.
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