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Abstract: Diabetes and high blood pressure are the primary causes of Chronic Kidney Disease (CKD).
Glomerular Filtration Rate (GFR) and kidney damage markers are used by researchers around the
world to identify CKD as a condition that leads to reduced renal function over time. A person with
CKD has a higher chance of dying young. Doctors face a difficult task in diagnosing the different
diseases linked to CKD at an early stage in order to prevent the disease. This research presents a novel
deep learning model for the early detection and prediction of CKD. This research objectives to create
a deep neural network and compare its performance to that of other contemporary machine learning
techniques. In tests, the average of the associated features was used to replace all missing values in
the database. After that, the neural network’s optimum parameters were fixed by establishing the
parameters and running multiple trials. The foremost important features were selected by Recursive
Feature Elimination (RFE). Hemoglobin, Specific Gravity, Serum Creatinine, Red Blood Cell Count,
Albumin, Packed Cell Volume, and Hypertension were found as key features in the RFE. Selected
features were passed to machine learning models for classification purposes. The proposed Deep
neural model outperformed the other four classifiers (Support Vector Machine (SVM), K-Nearest
Neighbor (KNN), Logistic regression, Random Forest, and Naive Bayes classifier) by achieving 100%
accuracy. The proposed approach could be a useful tool for nephrologists in detecting CKD.

Keywords: chronic kidney disease; feature selection; recursive feature elimination; support vector
machine; machine learning

1. Introduction

Chronic kidney disease is a disorder that occurs when a patient’s kidney function
deteriorates. As a result, their overall quality of life suffers. Chronic kidney disease
affects one out of every 10 people worldwide (CKD). CKD is on the rise, and by 2040, it is
expected to be the fifth leading cause of death worldwide [1]. It is one of the leading causes
of high medical costs. In high-income nations, the cost of transplantation and dialysis
accounts for 2% to 3% of the annual medical budget [2]. Most people with renal failure
in low- and middle-income countries have insufficient access to life-saving dialysis and
kidney transplants [3]. The number of kidney failure cases is expected to rise unexpectedly
in developing countries such as China and India [4]. Chronic kidney failure makes to
difficulties in removing extra fluids from the body blood. Advanced chronic kidney disease
can cause dangerous levels of fluid, electrolytes, and wastes to build up in the body. It may
lead to complications such as high blood pressure, anemia, weak bones, and nerve damage.
The strongest indicator of renal function is the Glomerular Filtration Rate (GFR) [5]. Doctors
also determine kidney disease through glomerular filtration rate (GFR). The criteria for
defining CKD are a kidney damage for ≥3 months with or without decreased GFR or
glomerular filtration rate (GFR) less than 60 mL/min/1.73 m2 for ≥3 months with or
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without kidney damage. GFR [6] is the most accurate predictor of kidney function for
detecting different phases of CKD, with each phase indicating a more severe reduction in
glomerular filtration rate.

The GFR [6] is also used to detect renal failure; if GFR < 15 mL/min, then it means
kidney has failed or near to failure. This is the last (fifth) stage of chronic kidney disease.
The diagnosis of CKD is a difficult task in medicine because it is based on a variety of
symptoms. Clinical judgments are primarily dependent on physicians’ expertise and
experience during the examination of the patient’s symptoms [7]. As the health care
system evolves and new medicines become accessible, physicians are finding it increasingly
challenging to stay up with current clinical practice changes [8].

The machine learning technique provides valid decision-making approaches for
computer-assisted automatic disease identification [9]. Machine learning is being used to
intelligently interpret available data and transform it into useful knowledge to increase
the diagnostic process efficiency [1]. Machine learning is already being used to assess
the state of the human body, analyze disease-related aspects, and diagnose a variety
of disorders [10]. Heart disease has been diagnosed using models based on machine
learning techniques [11]. Diabetes, heart disease, and retinopathy [12], acute renal in-
jury [13], and cancer [14] were all diagnosed using models created by machine learning
algorithms. Many researchers have used supervised algorithms, such as Random For-
est [15], Fuzzy C Means [16], Naive Bayes [17], Support Vector Machine [18–21], Gradient
Boosting [19–22], Logistic Regression [20] classifiers in detecting chronic kidney disease.
Machine learning can also help to enhance the quality of medical data, reduce the frequency
of hospital admissions, and save money on medical expenses. As a result, these models are
more commonly utilized in diagnostic analytic research than other older approaches [23].
The only way to reduce chronic disease (CD) mortality is to diagnose it early and treat it
effectively [24]. The feature extraction and classification processes in traditional machine
learning involve two separate methods. As a result, typical machine learning approaches
take a long time to compute. Because of this, the traditional technique is no longer viable
for real-time diagnostic applications.

The ability of Artificial Neural Networks (ANN) to learn about fault tolerance, general-
ization, and the environment is becoming more widespread in the area of medical diagnostics.

In many cases, the Neural Networks (NN) method outperforms standard machine
learning techniques. The resource learning architecture can be enhanced to boost its
performance even more. The neural networks [25–29] models have been used for the
detection of kidney disease. The majority of currently available CKD models have a low
classification accuracy. As a result, this research introduces a novel model for Chronic
Kidney Disease.

The main contributions of this paper are:
Deep neural networks have been proposed to detect and diagnose CKD.
Apply feature selection to improve efficiency and efficacy of deep neural network.
The computational accuracy of the proposed model is compared with existing classifi-

cation methods from the literature.
Furthermore, the performance is evaluated through the various performance measures.
The following is a breakdown of the paper structure: The related works on machine

learning approaches in the fields of CKD are presented in Section 2. Section 3 presents
the proposed deep neural model for early detection of CKD. The results are discussed in
Section 4, along with a full explanation. Section 5 wraps up the findings and looks ahead to
the future.

2. Related Works

Machine learning models have been shown to be effective in predicting and diag-
nosing serious diseases. Early detection of chronic diseases, particularly the search for
new treatments for chronic kidney disease, has gotten a lot of attention from doctors
and researchers in recent years. Several recent research has demonstrated that machine
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learning and deep learning models may be used to successfully diagnose chronic kidney
disease (CKD). Table 1 presents a detailed comparison of machine learning methods for the
diagnosis of Chronic Diseases from the existing literature.

Z. Chen, X.et al. proved the reliability of multivariate models in clinical practice risk
assessment for patients with CKD [30]. The Chronic Renal Failure (CFR) data bank at UC
Irvine was used in this investigation. In their comparison investigation, they used the KNN,
SVM, and Soft independent modeling of class analogy. In comparison to the other two
models, the SVM model processed noise within the data set better. In this comparison, the
SVM accuracy was 99%. The author of [31] developed a decision-making tool for doctors
to forecast the occurrence of CRF in patients. The authors employed KNN, Naive Bayes,
LDA, random subspace, and tree-based classification techniques on the CRF data set from
the UCI repository. The random subspace with the KNN classifier has a 94% accuracy rate,
according to the researchers. The authors of another study [32] created decision support
similar to [31]. The authors classified CRF using Artificial Neural Networks (ANN), Naive
Bayes, and decision tree algorithms in this paper. The performance of various machine
learning algorithms was examined on Jordan’s Prince Hamza Hospital data set. The
decision tree is predicted the most accurate when compared to two other approaches.
Song et al. [22] created a gradient boosting-based prediction model to detect CKD using
diabetes patient’s EHR and billing data. The authors of [33] published a study on UCI CKD
data sets that used SVM, decision trees, Nave Bayes, and KNN to detect CKD. The authors
developed a ranking algorithm to choose features. With a score of 99.75, the decision tree
outperformed three alternative machine learning methods. The authors of [34] presented
a hierarchical multiclass classification technique for detecting chronic renal disease in an
unbalanced data set.

As a baseline, the authors used naive Bayes, logistic regression, decision trees, and
random forests classifiers. Within each patient, the proposed classification approach dis-
covered severe cases. A chronic renal disease diagnosis system was proposed in [35] to
diagnose CKD at an early stage. For preparing the data, the authors used the K-means
technique. On processed data, the KNN, SVM, and Naive Bayes classification algorithms
were used. Classification algorithms produced the greatest accuracy of 97.8%. Almasoud
and Ward [36] reported a study on CKD that used logistic regression, SVM, random forest,
and gradient boosting techniques. Four categorization techniques were applied to selected
features. Gradient boosting has the highest accuracy of 99%. E M Senan et al. [37] rec-
ommended a study on early-stage CKD diagnosis. The RFE method was used to select
characteristics from the CKD data set. The outcomes of the SVM, KNN, random forest and
decision tree algorithms were compared.

Krishnamurthy S. et al. [38] developed various artificial intelligence models to predict
Chronic Kidney Disease. The LightGBM model selected the most important features for
CKD prediction: age, gout, diabetes mellitus, use of sulfonamides, and angiotensins. The
convolutional neural networks achieved the best performance and the highest AUROC
metric, 0.954, compared to other models. Mohamed Elhoseny et al. [19] presented an
intelligent prediction system for Chronic Kidney Disease. The density-based Feature
Selection method eliminates the irrelevant features and then passes selected features to the
Ant Colony-based Optimization classifier to predict CKD. Singh and Jain [39] presented
novel hybrid approach for diagnose CKD and achieved 92.5 % of prediction accuracy.
An artificial neural network for CKD diagnosis was proposed by Neves et al. [25]. The
diagnostic sensitivity values ranged from 93.1% to 94.9%, and the diagnostic specificity
values ranged from 91.9% to 94.2% in this work.

Vasquez-Morales et al. [27] used large CKD data to generate a neural network classifier,
and the model was 95% accurate. Makino et al. [28] used textual data to extract patients
diagnoses and treatment information in order to forecast the course of diabetic kidney
disease. Ren et al. [29] developed a predictive model for the identification of CKD from
an Electronic Health Records (EHR) data set. This proposed model is based on a neural
network framework that encodes and decodes the textual and numerical information
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from EHR. Ma F. et al. [40] develop a deep neural network model to detect chronic renal
disease. The presented model obtained the highest accuracy compared to ANN and SVM.
Almansour et al. [41] devised a way for preventing CKD using machine learning. The
SVM and ANN were among the machine learning classification algorithms used by the
researchers. The results of the experiments revealed that ANN had a greater accuracy of
99.75% than SVM.

J. Qin et al. [42] presented a machine learning method for the early detection of CKD.
They used logistic regression, random forest, SVM, naive Bayes classifier, KNN, and feed-
forward neural network to develop their models. The most accurate classification model
was random forest, which had a 99.75% accuracy rate. Z. Segal et al. [43] presented a
machine learning technique based on an ensemble tree (XGBoost) for the early diagnosis of
renal illness. The presented model was compared against Random Forest, CatBoost, Regres-
sion with Regularization. The proposed model showed better performance in all matrices,
including c-statistics 0.93, sensitivity 0.715, and specificity 0.958. Khamparia et al. [44] de-
veloped a deep learning model for early detection of CKD, in which features were selected
from multimedia data using a stacked autoencoder model. The authors used A SoftMax
classifier to predict the final class. It was observed that the proposed model achieved the
highest performance in comparison to conventional classification techniques on the UCI
CKD data set.

Polat, H. et al. [45] presented a study on the role of effective feature selection methods
in the accurate prediction of CKD. In this paper, wrapper and filter feature selection ap-
proaches were used to select the dimension of the Chronic Kidney Disease data set. The
selected features are then passed to Support Vector Machine to classify Chronic Kidney
Disease for diagnosis purposes. The experimental results presented that Support Vector
Machine generates better results on selected features by the Best First search method with
filtered subset evaluator. SVM achieved an accuracy rate (98.5%) in comparison to fea-
tures selected by other wrapper and filter methods. Ebiaredoh-Mienye Sarah A. et al. [46]
presented a robust model for the prediction of CKD that integrates an enhanced sparse
autoencoder (SAE) and Softmax regression. In this proposed model, autoencoders achieved
sparsity by penalizing the weights. The Softmax regression was optimized for the classifi-
cation task; therefore, the proposed model achieved excellent performance. The proposed
model obtained an accuracy of 98% on the chronic kidney disease (CKD) data set. The
proposed model achieved comparable performance with other existing methods. Zhiyong
Pang et al. [47] proposed a fully automated computer-aided diagnosis system to classify
malignant and benign masses using breast magnetic resonance imaging. The texture fea-
tures were selected by integration of support vector machine with ReliefF feature selection
method. This system achieved an accuracy of 92.3%. Chen et al. [21] presented a model
in which Hepatitis was diagnosed with a hybrid method that integrates a Fisher discrimi-
natory analysis algorithm and an SVM classifier. As a result of comparing the proposed
method with the existing methods, the hybrid method outperforms the other methods, and
the highest classification accuracy of 96.77% is achieved. The authors presented a breast
cancer diagnosis model in this study [48]. The selected features by sequential forward
selection and the backward selection methods are passed to Artificial Neural Networks to
classify breast cancer. SBSP + NN achieved the highest accuracy of 98.75%.

Table 1. Comparative Accuracy analysis of the diagnosis of Chronic Diseases from literature.

Chronic Diseases Diagnosis Model Accuracy Achieved (%) Reference

Kidney Renal Failure Artificial Neural Networks 91.9%–94.2% [25]

Diabetic Kidney Disease Convolutional Model 71% [28]

Chronic Kidney Disease Neural Network Classifier 95% [27]

Breast Cancer SBSP + NN 98.57% [48]
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Table 1. Cont.

Chronic Diseases Diagnosis Model Accuracy Achieved (%) Reference

Hepatitis Disease FDA and SVM 96.77% [21]

Breast Cancer SVM + ReliefF 92.3% [47]

Chronic Kidney Disease KNN, SVM 99% [30]

Chronic Renal Failure Fisher Discriminatory Analysis and SVM 96.7% [21]

Chronic Renal Failure KNN, Naive Bayes, LDA, Random Subspace and
Tree-Based Decision 94% [31]

Chronic Kidney Disease SVM, KNN, and Naïve Bayes Decision tree, 99.7% [33]

Chronic Kidney Disease Logistic Regression, Decision Tree, Naïve Bayes,
and Random Forests 93% [34]

Chronic Kidney Disease KNN, SVM, and Naïve Bayes 97.8% [35]

Chronic Kidney Disease SVM, KNN, and decision tree 99.1% [37]

Chronic Kidney Disease Convolutional Neural Networks 95.7% [38]

Chronic Kidney Disease SVM, Random Forest, and Gradient Boosting 99% [36]

Chronic Kidney Disease Logistic regression, KNN, SVM, Random Forest,
Naive Bayes and ANN 99.7% [42]

Chronic Kidney Disease XGBoost 95.8% [43]

Chronic Kidney Disease SVM 98.5% [45]

Chronic Kidney Disease Softmax Regression 98% [46]

3. Materials and Methods
3.1. Data Set Description

The University of California Irvine (UCI) Repository was used to gather CKD data.
There are 400 patient records in the data set, and some values are missing. It comprises
24 clinical qualities that emerge in the prognosis of chronic kidney disease, with one class
attribute serving as a result of the patient’s presence of chronic renal failure being predicted.
There are two types of values in the expected feature diagnostic: “ckd” and “notckd.” The
data set contains 250 values of the “ckd” class (62.5%) and 150 values of the “notckd” class
(37.5%). The characteristics of the UCI CKD data collection are listed in Table 2.

Table 2. Characteristics of the UCI CKD data.

Features Specification Value

AGE AGE (IN YEARS) 0–90
AL ALBUMIN 0–5

ANE ANAEMIA NO, YES
APPET APPETITE POOR, GOOD

BA BACTERIA PRESENT, NOTPRESENT
BGR BLOOD GLUCOSE RANDOM 0–490
BP BLOOD PRESSURE 0–180
BU BLOOD UREA 0–391

CAD CORONARY ARTERY DISEASE NO, YES
CLASS CLASS NOTCKD, CKD

DM DIABETES MELLITUS NO, YES
HEMO HAEMOGLOBIN 0–17.8
HTN HYPERTENSION NO, YES
PC PUS CELL NORMAL, ABNORMAL

PCC PUS CELL CLUMPS PRESENT, NOTPRESENT
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Table 2. Cont.

Features Specification Value

PCV PACKED CELL VOLUME 0–54
PE PEDAL EDEMA NO, YES

POT POTASSIUM 0–47
RBC RED BLOOD CELLS NORMAL, ABNORMAL
RC RED BLOOD CELL COUNT 0–8
SC SERUM CREATININE 0–76
SG SPECIFIC GRAVITY 0–1.025

SOD SODIUM 0–163
SU SUGAR 0–5
WC WHITE BLOOD CELL COUNT 0–26,400

3.2. Data Processing

The estimation of missing values and the removal of noise such as outliers, as well as
the normalization and validation of unbalanced data, were all part of the preprocessing
stages. When assessing a patient, some measurements could be missing or incomplete.

3.2.1. Handling Missing Values

There are 158 completed cases in the data collection, with the remainder missing.
Ignoring records is the simplest technique to deal with missing values; however, this is not
practical for small data sets. The data set is examined during the data preparation process
to see whether any attribute values are missing. The missing values for numerical features
were estimated using the statistical technique of mean imputation. The mode technique
was used to replace the missing values of nominal features.

3.2.2. Categorical Data Encoding

Because most machine learning algorithms only accept numeric values as input,
category values must be encoded into numerical values. The binary values “0” and “1” are
used to represent the characteristics of categories such as “no” and “yes”.

3.2.3. Data Transformation

Data transformation is the process of transforming numbers on the same scale so
that one variable does not dominate the others. Otherwise, learning algorithms perceive
larger values as higher and smaller values as lower, regardless of the unit of weight. Data
transformations alter the values in a data set so that they can be processed further [49]. To
improve the accuracy of machine learning models, this research employs a data normaliza-
tion technique. It converts data between the −1 and +1 ranges. The converted data has a
standard deviation of 1 and a mean of 0.

The standardization formula is given below:

w =
(x − x)

σ
(1)

where,
w = Standardized score
x = Observed value
x = Mean
σ = Standard deviation

3.2.4. Outlier Detection

Outliers are observation points that are isolated from the rest of the data. An outlier
could be caused by measurement variability or signal an error in the experiment. An outlier
can distort and mislead the learning process of the machine learning algorithm. It leads
to longer training times, less accuracy in the model, and ultimately to poorer results. This
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paper uses the Interquartile Range (IQR) [49] based approach to remove outliers before
transferring data to the learning algorithm.

3.3. Feature Selection

Recursive Feature Elimination (RFE) removes features recursively, building a model
based on other features [50]. It applies greedy search to find the most efficient subset
of features. Use model accuracy to determine which features are most appropriate for
predicting a feature. It develops models iteratively, determining the best or worst feature
for each iteration. The traits are then classified based on the sequence in which they were
removed. If the data set contains N functions, recursive feature elimination will eagerly
search for a combination of 2N features in the worst-case scenario.

3.4. Classifiers
3.4.1. Support Vector Machine

The SVM constructs a separation hyperplane that splits the labeled data into classes
and determines whether a new data value belongs above or below the line. There may be
several hyperplanes, and the one with the largest margin between data points is chosen.
Figure 1 shows the maximum hyperplanes and maximum margin of the support vector
machine. The equation of hyperplane that separates two classes is given by:

D(x) = w0 + w1a1 + w2a2 (2)
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However, the equation of the maximum-margin hyperplane can be written

x = b + ∑i ∝i yia(i) × a (3)

Here, i is the support vector, and yi is the training instance a(i) class value. The learning
algorithm determines the numeric value b and αi, respectively.

3.4.2. K-Nearest Neighbor

The KNN algorithm recognizes similarities between new and previous data points
and categorizes fresh test points into existing related groups. The KNN method is a slow
learning algorithm since it is not parametric. This means that instead of learning from
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the training data set, it should be secured. It uses K to categorize the data. The distance
between the new location and the saved training point was determined using the Euclidean
distance. Figure 2 depicts K-Nearest neighbor classification based on K values.

dij = ∑n
t=1

(
xtest

it − xtrain
jt

)2
(4)
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3.4.3. Decision Tree Classifier

Decision trees are a nonparametric method of supervised learning [51]. This is a
classified structured tree that defines the characteristics of a data set. It represents internal
rules for decision-making through internal nodes and tree branches. It has two types of
nodes, the decision, and the leaf nodes. The decision nodes take some decisions, and the
outcomes of such decisions are leaf nodes. A decision tree has presented in Figure 3.
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3.4.4. Random Forest Classifier

The random forest algorithm is based on ensemble learning, improving the model’s
performance, and solving complex problems by combining several classifiers. A classifier
named after the algorithm that contains multiple decision trees averaged over a database
subset to improve predictions. In the forecasting process, it does not rely on a single
decision tree, and the random forest algorithm creates forecasts from each decision tree that
predicts the conclusion based on the majority of decision votes. The usage of several trees
decreases the possibility of the model overfitting. To predict the classes in the database, the
algorithm includes many decision trees, some of which can predict the proper outcome
while others cannot. As a result, there are two assumptions regarding the prediction’s
accuracy. To forecast a more accurate outcome than an estimate, the algorithm must first
include the actual value of the feature variable. Second, there must be an extremely low
correlation between the forecasts for each tree. As a result, there are two requirements for
high forecast accuracy. Figure 4 shows a Random Forest Classifier.
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Figure 4. Random Forest.

3.5. Model Development

Figure 5 depicts the model’s framework. Preprocessing, model hyper tuning, and
classification are the three phases of the proposed model. Because the data set may contain
noise and redundant values, the preparation step is the most important.

This phase applied different methods such as handling missing values, categorical
data encoding, data transformation, removing outliers and extreme values, and feature
selection. The CKD data set is separated into training and testing data sets after being
preprocessed. Only a few features are selected using Recursive Feature Elimination out
of a total of 24 features in this study. The RFE algorithm evaluates each feature’s value
based on its significance, which helps to lower the method’s processing complexity. Finally,
redundant and unrelated characteristics are filtered away. The learning model is then fed
with the most important characteristics. Figure 6 shows the pseudo-code for the proposed



Diagnostics 2022, 12, 116 10 of 22

methodology. Initially, a method was introduced to prepare and standardize the data in the
data set. The processed data is further passed for processing.
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Figure 6. Pseudo-Code of the proposed model.

There are 12 layers in the proposed model architecture: an input layer, five dense
layers, five drop layers, and an output dense classifier layer. In Figure 7, the layered
architecture’s exact specifications are depicted. Each dense layer is connected directly in a
feed-forward method in this architecture. The layer is built in such a way that the outputs
of its activation maps are handed on to all following levels as input. A dropout layer is
placed between two dense layers in this model, with drop rates of 0.5, 0.4, 0.3, 0.2, and 0.1.
Figure 7 presents the layered architecture of the proposed model.

The CNN model has several hyperparameters that need to be optimized. The optimal
hyperparameters selection process is experimental; however, it is time-consuming and
difficult. Adam [52,53] optimizer initiates hyperparameters with smaller parameters during
the training phase.

Adam uses adaptive assessment to determine individual learning rates for various
hyperparameter grades ranging from first to second-order gradients. Stochastic Gradient
Optimization (SGD) [54] is less efficient than Adam. It necessitates minimal learning time
and memory. The classification performance is enhanced by the CNN correct activation
function. Neural network’s standard activation functions are sigmoid, tan, Rectified Linear
Unit (ReLU) [55], Exponential Linear Unit (ELU) [56], and Self-Normalized Linear Unit
(SELU) [57]. This paper tested the different activation functions on the CKD data set and
selected the preferred one in all the models.
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4. Results and Discussion
4.1. Experiment Setup

The proposed model was created using data from a variety of situations. The configu-
ration of the system of the developing model is shown in Table 3.

Table 3. Experimental setup details.

Resource Specification

Processor Intel Core i5 Gen7
Random access memory 16 GB
Graphics processing unit 4 GB

Language Python

4.2. Evaluation Parameters

The proposed model accuracy was calculated by making the CKD class value positive
and the notCKD class value negative. The confusion matrix was utilized to evaluate the
performance by using True Positives (TP), True Negatives (TN), False Positives (FP), and
False Negatives (FN) [58]. According to TP, CKD samples have been accurately categorized.
The findings of the FN test show that CKD samples were misclassified. The notCKD
samples were not accurately identified, as indicated by a false-positive result (FP). True
negative (TN) samples have been accurately categorized as not CKD.
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4.2.1. Accuracy

It refers to the proportion of correct guesses to total predictions. Accuracy can be
described as the ability to accurately predict the outcome of a situation.

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

4.2.2. Recall

The recall calculates the proportion of accurately predicted positive observations to
the total number of observations in the class, as shown in the following equation.

Recall =
TP

TP + FN
(6)

4.2.3. Specificity

The specificity estimates the number of well-scored negative patterns. The higher the
specificity value, the more negative the classifier. It can be defined as:

Specificity =
TN

TN + FP
(7)

4.2.4. Precision

As stated in the equation below, this metric represents the proportion of accurately
predicted positive observations to total predictive positive observations.

Precision =
TP

TP + FP
(8)

4.2.5. F-Measure

Precision and Recall are weighted averaged in the F-measure [58]. False positives and
false negatives are part of the process. F-measure is a term that is defined as

F-Measure =
Two × (Precision × Recall)

(Precision + Recall)
(9)

The F-Measure values lie from 0 to 1.

4.3. Comparative Analysis of Results

The findings of the proposed model are presented in this section. The CKD data sets
are split into 75% training and 25% test data sets. The hyperparameter settings for the
proposed model are shown in Table 4. The confusion matrices are shown in Figure 8. It
demonstrates that the suggested model correctly identified all genuine positive and true
negative events. The CKD class reports recall, precision, sensitivity, F1 score, and accuracy.

Table 4. Hyper-parameter settings.

Hyper-Parameter Setting

Epochs 850

Batch size 15

Dropout rate 0.5 to 0.1

Activation Function relu

Activation output layer sigmoid

Optimizer Adam

Loss binary_crossentropy
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The proposed model is compared with other classifier algorithms, including logistic
regression, KNN, SVM, Decision tree, and Random forest. No parameter adjustments
were made for these algorithms to show the improved performance of the proposed
model. Therefore, the default value for a parameter was used in scikit-learn. All models
are evaluated using the F1-score. Tables 5 and 6 showed experimental results when the
proposed model was tested on CKD data sets. In contrast,

Table 5. Comparative analysis of the proposed model with existing classification techniques on CKD
data set.

Method Accuracy Recall Precision F-Measure

Logistic Regression 0.99 1.0 0.98 0.99

K-Nearest Neighbor 0.92 0.88 0.98 0.92

Naïve bayes 0.95 0.92 1.00 0.95

Support Vector
Machines 0.92 0.87 0.96 0.92

Decision Tree 0.97 0.95 1.00 0.97

Proposed Model 1.00 1.00 1.00 1.00

Table 6. Comparative analysis of the proposed model with existing models from the literature on the
UCI data set.

Authors Model Accuracy (%)

Elhoseny et al. [19] Ant Colony-based
Optimization Classifier 95

Vasquez-Morales et al. [27] Neural network 95

M Senan et al. [37] KNN 98.33

Krishnamurthy et al. [38] Convolutional Neural
Networks 95.4

Polat, H et al. [45] Support Vector Machine 98.5

Sarah A. et al. [46] SAE and Softmax Regression 98

Proposed Model Deep Neural Network 100

Figures 9 and 10 depict accuracy graphs comparing the performance of existing
classification algorithms to the proposed approach for chronic kidney disease prediction.
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The accuracy of KNN, SVM, Naïve Bayes, Decision tree, logistic regression, and
the proposed model is 92%, 92%, 95%, 97%, 99% and 100%, respectively. The proposed
model was found to be the most accurate, with a 100% accuracy rate. Because it optimally
identified positive samples as 250 samples (TP) and all 150 samples as negative samples,
the suggested model appropriately classifies all positive and negative samples (TN). True
Positive samples were graded 99%, 92%, 95%, 92%, and 97% by Logistic Regression, KNN,
Nave Bayes, SVM, and Decision Tree, respectively, with a margin of error of 1%, 8%, 5%,
8%, and 3%, respectively. The results of all five classifiers are shown in Table 5.

The proposed model outperforms the other classifiers by scoring 100% on all measures.
The F1-score, accuracy, precision, and recall of the Logistic regression were all 99%, 99%,
100%, and 98%, respectively. Then Decision Tree obtained an F1-score, Accuracy, Precision,
and Recall of 97%, 97%, 95%, and 100%, respectively. The Naïve Bayes F1-score, Accuracy,
Precision, and Recall values were 95%, 95%, 92%, and 100%, respectively. The F1-score,
Accuracy, Precision, and Recall values of Naïve Bayes were 92%, 92%, 88%, and 98%,
respectively. The Support Vector Machines classifier performed the lowest with F1-score,
Accuracy, Precision, and Recall values of 92%, 92%, 87%, and 96%, respectively.

Table 6 compares the proposed model to several recent scholarly studies, such as
Ant Colony-based Optimization Classifier by Elhoseny et al. [19], Neural network by
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Vasquez-Morales et al. [27], KNN by M Senan et al. [37], Convolutional Neural Networks
by Krishnamurthy et al. [38], SVM by Polat, H. et al. [45], and SAE and Softmax Regression
proposed by Sarah, A. et al. [46]. The proposed model has obtained an accuracy of 100%,
while the exiting works obtained the accuracy from 85% to 98.5%. Finally, it should be
noted that the proposed model is more efficient than existing classification methods.

4.4. Feature Importance from RFE

This section of the paper presents the most important feature selected by the RFE algo-
rithm based on their ranking. The figure shows the chosen features and their importance
during the classification of CKD disease. The most critical risk factors are Hemoglobin,
Serum Creatinine, Specific Gravity, Packed Cell Volume, Red Blood Cell Count, Hyperten-
sion, and Albumin, as presented in Table 7. The nephrologists should focus on these risk
factors while diagnosing CKD disease patients. Figure 11 shows feature selected by RFE
with their importance.

Table 7. The most critical risk factors from CKD data.

Risk Factor Name

Hemoglobin

Serum Creatinine

Red Blood Cell Count

Packed Cell Volume

Albumin

Specific Gravity

Hypertension
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4.5. Receiver Operating Characteristic (ROC)/Area under Curve (AUC)

The bottom of the square and the ROC curve define the area of the AUC. AUC scores
closer to 1 indicate good performance, whereas AUC scores closer to 0.50 indicate poor
performance. Figures 12–17 shows the ROC/AUC curve of the proposed model, logistic
regression, Decision tree, SVM, KNN, and Naïve Bayes respectively. The proposed model
achieved the highest AUC score value 1.0.
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5. Conclusions and Future Work

A deep learning model for the early diagnosis of chronic disease is presented in this
work. In this research, the authors looked at the Recursive Feature Elimination approach
to identify which features are the most important for prediction. The most essential
CKD features are packed red blood cell count, albumin, cell volume, serum creatinine,
specific gravity, hemoglobin, and hypertension. Classification algorithms are fed with a
set of features. Different metrics, including classification accuracy, recall, precision, and
f-measure, are used to estimate the comparative analysis. The proposed deep neural model
outperformed the other five classifiers (Support Vector Machine (SVM), K-Nearest Neighbor
(KNN), Logistic regression, Random Forest, and Naive Bayes classifier) by achieving 100%
accuracy. The accuracy of KNN, SVM, Naïve Bayes, Decision tree, Random Forest, logistic
regression is 92%, 92%, 95%, 97%, and 99%, respectively.

The performance of the proposed model compared with several recent scholarly
studies, such as Ant Colony-based Optimization Classifier by Elhoseny et al. [19], Neural
network by Vasquez-Morales et al. [27], KNN by M Senan et al. [37], Convolutional Neural
Networks by Krishnamurthy et al. [38], SVM by Polat, H. et al. [45], and SAE and Softmax
Regression proposed by Sarah A. et al. [46]. The exiting works obtained the accuracy from
85% to 98.5%, while the proposed model has obtained an accuracy of 100%. The proposed
approach could be a useful tool for nephrologists in detecting CKD.

The limitation of the proposed model was that it had been tested on small data sets.
To improve the model performance, significant volumes of increasingly sophisticated and
representative CKD data will be collected in the future to detect disease severity. The
clinical data to be collected from pathologist’s experts. The performance of the proposed
model will be evaluated on a large clinical data set based on acid-base parameters, hyper-
parathyroidism, inorganic phosphorus concentration, and night urination in the future.
Additionally, new features will be applied to get a broader perspective on the informative
parameters related to CKD disease to test the prediction accuracy.
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