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A B S T R A C T

The living cell can be regarded as an ideal functional material system in which many functional systems are
working together with high efficiency and specificity mostly under mild ambient conditions. Fabrication of living
cell–like functional materials is regarded as one of the final goals of the nanoarchitectonics approach. In this short
review article, material-based approaches for regulation of living cell behaviors by external stimuli are discussed.
Nanoarchitectonics strategies on cell regulation by various external inputs are first exemplified. Recent ap-
proaches on cell regulation with interfacial nanoarchitectonics are also discussed in two extreme cases using a
very hard interface with nanoarchitected carbon arrays and a fluidic interface of the liquid-liquid interface.
Importance of interfacial nanoarchitectonics in controlling living cells by mechanical and supramolecular stimuli
from the interfaces is demonstrated.
1. Introduction

From the nanoscale to macroscopic scale, conversions of materials,
signals, and information are keys for functions in many cases, including
regulation of material functions by external stimuli [1–3], energy pro-
duction from external energy sources [4–6], energy management on
external input [7–10], various information conversions from inputs to
outputs [11–13], and controls of biological responses [14–17]. The
design and fabrication of functional materials and systems for these
conversions with high efficiency and desired specificity are crucial
matters for various social demands such as energy [18–20], environ-
mental [21–24], and biomedical [25–27] issues. The synthetic efforts by
organic chemistry [28–30], polymer chemistry [31–33], supramolecular
chemistry [34–36], and materials sciences [37–41] used to be limited
tools to create desired functional materials. However, rapid de-
velopments of biotechnology [42–44] and nanotechnology [45,46] open
novel ways to understand and control precise nanolevel phenomena.

Biotechnology reveals sophisticated molecular functions in many
biological systems. The living cell can be regarded as an ideal functional
material system for conversions of materials, signals, and information.
Many functional systems are working together with high efficiency and
specificity under mild ambient conditions. In most cases, precisely
designed molecular mechanisms lead to these sophisticated functions
[47,48]. The precise architecture strategy seen in living cells would be
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applicable to design and synthesis of non-biofunctional material systems.
For the latter targets, advanced observation and manipulation of nano-
level structures in nanotechnology probably have indispensable contri-
butions [49–51]. Material fabrications with advanced knowledge of
nanoscience and nanotechnology would be effective approaches to pro-
duce highly functional living cell–like material systems. Therefore, fusion
of nanotechnology with the other research disciplines such as organic
chemistry, supramolecular chemistry, materials science, and biology is
necessary for the revolution of material fabrication.

This task is taken by an emerging concept, nanoarchitectonics [52].
Similar to the nanotechnology concept originated by Richard Feynman
[53,54], the nanoarchitectonics concept was originated by Aono [55],
Ariga et al [56], and Ariga and Aono [57]. There are plenty of unexplored
sciences in nanoscale bottoms as proposed by nanotechnology, but huge
possibilities to produce functional materials actually remain in nano-
architectonics processes from bottom-scale objects to materials. While
nanotechnology mainly focuses on analyses and manipulation of nano-
scale systems, nanoarchitectonics is charged for construction of func-
tional materials from nanoscale objects. The nanoarchitectonics
approach aims to fabricate functional materials with nanoscale units for
final goals to create living creature–like functional systems [58,59].
Functional material systems are architected from nanoscale units through
combined actions and/or selected efforts of nanotechnology-based
manipulation, organic synthesis, self-assembly/self-organization,
ust 2020
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field-induced assembly, nanofabrication and microfabrication, and bio-
related processes [60,61] (Fig. 1). Because this synthetic strategy can be
applicable to a wide range of functional materials, the nanoarchitectonics
concept is proposed to be applied to various fields including
material production [62–64], structure fabrication [65,66], energy [67,
68], catalysis [69,70], sensors [71–73], devices [74,75], and environ-
mental targets [76,77]. Especially, the nanoarchitectonics approaches
coupling with biological basic studies [78–80] and biomedical applica-
tions [81,82] have been paid rather intense attentions.

The construction of functional systems by the nanoarchitectonics
approach shares common features with biological systems such as living
cells, especially from the following two viewpoints. One of them is the
high potential in production of hierarchical structures [83]. Although the
nanoarchitectonics concept uses processes similar to self-assembly,
non-equilibrium and multistep constructions are often included into
the nanoarchitectonics approach unlike the conventional self-assembly
process. This feature of nanoarchitectonics is advantageous for the
fabrication of hierarchical material systems, which is rather close to
complicated self-organization for hierarchical biosystems. Another
distinct feature of the nanoarchitectonics approach is the necessity of
coupling of various interactions with uncertainties in nanoscale phe-
nomena [84]. In the nanoscale regions, various uncertainties such as
thermal fluctuation, static distributions, and quantum effect as well as
complex mutual interaction among individual components cannot be
avoided. Therefore, the combination of many effects and interactions
often becomes important in the nanoarchitectonics approach rather than
simple summation of individual effects. This situation is similar to those
commonly observed in biological systems in which various functional
molecular systems are working with unavoidable thermal fluctuations.

These features make the nanoarchitectonics concept a powerful
approach to fabricate biolike sophisticated functional systems such as
living cells. Although fabrication of living creature–like functional ma-
terials is regarded as one of the final goals of the nanoarchitectonics
approach, the construction of even a single cell–equivalent functional
system is currently a tough target. Instead of constructing the whole
cell–like structures, the conjugation of artificial nanosystems and actual
living cells would be an accomplishable target to control cell behaviors.
From this viewpoint, the material-based approaches for the regulation of
Fig. 1. Outline and features of the nanoarchitecton

2

living cell behaviors by external stimuli are discussed especially in this
short review article. For this focused target, nanoarchitectonics material
approaches on cell regulations by various external inputs such as elec-
tronic, photonic, mechanical, thermal, and magnetic stimuli are exem-
plified in the following sections. These examples indicate indispensable
contributions of interactions at interfaces between cells and materials
despite a huge variety of stimuli inputs. Fundamental consideration on
interfacial features of cell behaviors is undoubtedly important. There-
fore, in later sections, recent approaches on cell regulation with inter-
facial nanoarchitectonics are discussed in two extreme cases using a very
hard interface with nanoarchitected carbon arrays and a completely
fluidic interface of the liquid-liquid interface. The importance of inter-
facial nanoarchitectonics on controlling living cells from mechanical and
supramolecular stimuli from the interfaces is demonstrated. In selected
examples, nanoarchitectonics, structural fabrications, and organization
using nano and molecular units are keys for specific responding behav-
iors of contacting cells.

2. Electronic stimuli

Inputs of electronic stimuli are commonly seen in artificial device
systems and stimulus-responsive materials [85–88]. Similarly, electronic
stimuli are also used in regulation of living cells. Advanced bioelectronic
materials provide new tools to control cell functions by electrical
communication between the interface of the cell and substrate. It is a
challenge to generate bioelectronic materials with the properties of low
impedance, sufficient biofunction, and stimulus responsiveness for
achieving the requirements of efficiently electrical communication,
biocompatibility, and controlling cell behavior [89]. Lin et al. [90]
constructed a dynamic poly(3,4-ethylenedioxythiophene) (PEDOT) film
based on a hydroquinone-functionalized 3,4-ethylenedioxythiophene
(EDOT) and zwitterionic phosphorylcholine–functionalized EDOT. The
dynamic PEDOT film provides a clear electroresponsive oxime switch for
addressing surface functions spatiotemporally based on the benzoqui-
none-hydroquinone electroredox interconversion (Fig. 2). The
phosphorylcholine-grafted dynamic PEDOT material provides strong
resistance to the non-specific interaction in physiological environments,
ensuring stable and efficient electrical communication with cells. More
ics concept for the regulation of the living cell.



Fig. 2. The dynamic poly(3,4-ethylenedioxythiophene) (PEDOT) films spatiotemporally control cell attachment, detachment, and differentiation by a clear elec-
troresponsive oxime switch: [red]; reduction, [ox]; oxidation [90].
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significantly, the dynamic PEDOT film provides an ideal electronic
interface for neural differentiation after 5 days of electrical stimulation
and culturing. It also can spatiotemporally control cell attachment and
detachment by redox-responsive characteristics.

Direct conversion provides an appealing strategy to generate effective
cell therapeutics for neuronal degeneration without using limited stem or
progenitor cells. Non-viral direct conversion accelerated by electrical
stimulation can be considered to enhance the safety issues and conver-
sion efficiency of fibroblasts to induced neuronal cells. The triboelectric
Fig. 3. A triboelectric stimulation platform accelerates non-viral direct conversion w
polydimethylsiloxane.
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nanogenerator is an up-and-coming mechanical energy-harvesting de-
vice, as one of the most prospective candidates for developing implant-
able electronics. It can generate electricity continually from human
motion in a quite simple, cost-effective manner. Jin et al [91] established
a triboelectric stimulation platform to accelerate non-viral direct con-
version with high safety and efficiency for obtaining induced neuronal
cells (Fig. 3). Genes encoding neuronal lineage–specific transcription
factors Brn2, Ascl1, and Myt1l were carried by biodegradable polymeric
nanoparticles and delivered into fibroblasts through electroporation. The
ith high safety and efficiency for obtaining induced neuronal cells [91]. PDMS,



Fig. 4. The two-dimensional ZnO nanosheet–based piezoelectric nanogenerator
can be used for electrical stimulation of living cells. The electromechanical
nanogenerator-cell interactions activate the opening of the Ca2þ channels in the
plasma membrane of cells [94].
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stimulated fibroblasts underwent an accelerated transdifferentiation to
the highly matured neuronal phenotypes of induced neural cells.
Furthermore, this triboelectric nanogenerator platform greatly enhanced
in vivo generation of induced neural cells in the mice skin tissues and
improved electrophysiological functionalities.

Nanogenerators opened new frontiers in biological applications based
on the non-invasive methods for in situ controllable electrical stimulation
[92,93]. As we know, the intracellular tension of living cells can be
transmitted to the underlying nanogenerator substrate by focal contacts.
Consequently, the inherent forces generated by the cell would create an
electric field around the cell plasma membrane. Nanostructured ZnO has
become widely used in piezoelectric nanogenerators with the properties
Fig. 5. (a) The photocontrolled UCNP-based cell-cultured substrates are coated with
on the NIR irradiation, the PEG molecules are released from the cell culture substrates
MSC self-renewal or differentiation to adipocytes or osteoblasts. (c) Immunofluores
multipotency gene, Nanog, Sox2, and Oct4 (*p < 0.05, n ¼ 3). (e) Immunofluorescen
UCNP: please see reference [102]. Copyright 2018, WILEY-VCH. NIR, near-infrared;
stem cell.
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of voltage generation when mechanically stressed. Murillo et al [94]
designed and constructed a network of ZnO nanosheets as piezoelectric
nanogenerators, which can be used for electrical stimulation of living
cells (Fig. 4). A local electric field on the ZnO nanosheet-cell interface
was induced by piezoelectric nanogenerators for modulating living
cellular activity and behavior when cells were cultured on the top of the
ZnO nanosheet surface. The interactions between the electromechanical
nanogenerator and cells can stimulate the motility of macrophages and
induce intracellular calcium transients of osteoblast-like cells (Saos-2).
Importantly, this nanogenerator exhibited excellent cell viability, pro-
liferation, and differentiation when Saos-2 was cultured for up to 14
days. Moreover, this in situ cell-scale electrical stimulation could be
extrapolated to other types of cells such as neural cells or muscle cells.
The ZnO nanosheet–based nanogenerators provide an appealing strategy
based on cell-targeted electrical impulses for the future bioelectronic
medical treatment.

Material-based dynamic biointerfaces offer a prospective strategy to
define cell functions by bioimitating extracellular matrix. However, the
performance and design of artificial biointerfaces cannot be compared
with in vivo cell niches that can temporally and exactly provide reversibly
physical and chemical stimuli from macroscale to nanoscale. Wei et al
[95] constructed a dynamic platform based on reversibly electrochemical
switching of a polypyrrole array between highly adhesive hydrophobic
nanotubes (electrochemical oxidation) and poorly adhesive hydrophilic
nanotips (electrochemical reduction). The polypyrrole array substrate
under electrochemical stimuli can switch the attachment and detachment
the antiadhesive effect of photocleavage molecule–modified PEG. (b) Depending
to regulate cell-extracellular matrix interactions dynamically and then modulate
cence imaging of adipogenic markers (FABP4, red). (d) The expression of the
ce imaging of adipogenic markers (RUNX2, green). Scale bar: 50 μm; DAPI and
PEG, poly(ethylene glycol); RGD, arginylglycylaspartic acid; MSC, mesenchymal
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of mesenchymal stem cells at nanoscale. Moreover, this electrochemical
substrate can dynamically control the mechanotransductive activation
and guide the fate of mesenchymal stem cells. Multicyclic attachment/-
detachment of mesenchymal stem cells on the polypyrrole array substrate
can control cytoskeleton organization, YAP/RUNX2 translocation, and
osteogenic differentiation mediated by intracellular mechano-
transduction without the influence of surface stiffness and chemical in-
duction. This smart surface represents an alternative cell culture
substrate for exploring nanoscaled stimulus-responsive surfaces how to
influence stem cell fate commitment.

There is a great need for bioelectric materials with selective and
efficient capability to provide electrical interfaces for neural regeneration
and without being recognized by the immune system to minimize the
immune response. PEDOT as electrically conducting polymers can pro-
vide excellent and stable electrical communications with adhered cells
and tissues for neural regeneration process. To prevent the inflammatory
response and scar formation, Zhu et al [96] followed a cell mem-
brane–mimicking approach to synthesize PEDOT by polymerizing the
zwitterionic phosphorylcholine–functionalized EDOT and the
maleimide-functionalized EDOT. Then, they achieved conjugation of the
specific peptide sequence Ile-Lys-Val-Ala-Val by ligand-receptor in-
teractions to obtain the biomimetic PEDOT. As neural bioelectronics, the
biomimetic PEDOT devices have the inherent capability to prevent
non-specific binding of proteins and cells. Therefore, this biomimetic
PEDOT substrate presents the capability of integrating biochemical and
electrical stimulation and minimizing the immune response. PC12 cells
cultured on this material largely enhanced neurite outgrowth by elec-
trical stimulation. These designed electrically conducting polymers are
critical and desired bioelectronic devices for the applications of nerve
regeneration, neuroprosthetic devices, and biosensors.

3. Photonic stimuli

Photonic stimuli such as light irradiations are frequently used in a
wide range of stimulus-responsive materials because they are applicable
by adjusting the energy level (wavelength) by space ways without the
need of contacting [97,98]. In cell regulation technology, photonic
stimuli are also useful sources of stimuli inputs [99,100].

Engineering extracellular matrices is an effective way to control
stem cell fate. Smart artificial interface biomaterials are typically easy
to modify with functional molecules, which can dynamically control
stem cell fate from self-renewal to differentiation by a simple physical
or chemical microenvironmental change [101]. Lanthanide-doped
upconversion nanoparticles are good candidates for on-demand
manipulating cell behavior owing to their intrinsic properties of
absorbing near-infrared (NIR) light and converting into high-energy of
ultraviolet (UV), visible, or NIR irradiation. Yan et al [102] designed
and prepared a upconversion nanoparticle-based cell-cultured sub-
strate by molecular engineering (Fig. 5). They modified the anti-
adhesive effect of poly(ethylene glycol) (PEG) on the photocontrolled
upconverted lanthanide-doped upconversion nanoparticle substrate.
Depending on the NIR irradiation, the PEG is released from the cell
culture substrate by the photocleavage process to regulate
cell-extracellular matrix interactions dynamically and then modulate
mesenchymal stem cell self-renewal or differentiation to adipocytes or
osteoblasts. This work provides a new strategy to regulate the mul-
tipotent differentiation of mesenchymal stem cells by using the
NIR-based upconversion materials.

Strategies of controlled and non-invasive cell harvesting are required
in biomedical research, regenerative therapy, and tissue engineering. The
light in the NIR irradiation stands out as one of the most convenient
triggers for cell detachment without irreversibly damaging cells. Giner-
Casares et al [103] designed a two-dimensional gold nanoparticle array
with a broad absorption spectrum range including a wide part of visible
and NIR light to form a versatile platform for cell growth and retrieval.
They functionalized the surface of Au nanoparticles via simple thiol
5

chemistry for growing a variety of cell types. Biofunctionalization with
the cyclic arginylglycylaspartic acid (c-RGD) peptide could regulate the
morphology of integrin-rich cells. In addition, highly efficient detach-
ment of the cell sheet with cell viability was obtained by photothermal
effect by irradiation using a 980-nm NIR laser. This procedure provides a
non-invasive strategy for forming cell organization. Moreover, the pho-
tothermal effect generated by Au nanoparticles was identified as the
main reason of cell detachment. The nanoplasmonic surfaces for cell
culture and highly efficient detachment using non-invasive NIR light
provide a huge potential in regenerative medicine and tissue
engineering.

Biomaterials with temporal and spatial presentation of the bio-
adhesive epitopes using external triggers under in vivo culture conditions
can be exploited to elicit targeted tissue reparative response. Lee et al
[104] developed light-triggered cell-adhesive materials using the c-RGD
modified with a photolabile caging group, 3-(4,5-dimethoxy-2-ni-
trophenyl)-2-butyl ester, on the aspartic acid residue. The ligand RGD can
be spatially controlled to expose in vivo via transdermal light irradiation.
Their results demonstrate that in vivo light triggering the presentation of
the cell-adhesive RGD peptide can promote vascularization and endo-
thelial cell function, and delaying the presentation time of the
ligand RGD can significantly reduce the chronic inflammatory responses
and fibrosis to implanted biomaterials. This non-invasive, transdermal
time-regulated, photoresponsive hydrogels for the temporal presentation
of ligands on implanted biomaterials can regulate cell adhesion,
inflammation, and vascularization of tissue-reparative responses. How-
ever, this research focused on a UV light irradiation–activated photore-
action. The UV light trigger is limited in in vitro applications owing to the
low penetrated depth for biological tissue and targeted biomaterials.

Controlling the size (from the nanometer to micrometer scale) and
arrangement of topographic features as extracellular matrix cues is
known to have a great impact on cell adhesion, morphology, migration
and differentiation, and tissue organization [105]. Recapitulating dy-
namic changes of topography in stimulus-responsive materials has
become an important approach to generate the microenvironment that
closely mimics the biosystem in vivo for cell therapy. Koçer et al
[106] designed light-responsive liquid crystal polymer networks with the
adaptive and programmable nature to generate a new spatial arrange-
ment of patterned biointerfaces for dynamically guiding cell behavior.
The (meth)acrylate-functionalized azobenzene mixed with liquid crys-
talline monomers was used for creating a chiral nematic phase that was
aligned in a flat through shear forces and was then photopolymerized to a
film. Mask irradiation of the film leads to in situ trans-to-cis isomerization
of azobenzene molecules, resulting in an in situ formation of protrusions
in the irradiated areas yielding topographical morphology. In situ tem-
poral changing the nanoroughness and the height of micropile of the
hierarchical structure surface could direct cell migration and adhesion.

The surrounding biophysical environment of cells and tissue can have
a dramatic impact on biological processes involving the recruitment of
cells to a specific site during wound healing or disease development.
However, it is challenging to identify the subcellular, spatial mechanical
stimulation on the microenvironment and to investigate how such
different variations of mechanical stimulation integrate to influence local
cellular activity. Yang et al [107] prepared the photoresponsive cell
culture substrates by using PEG with photolabile linkages (Fig. 6). These
hydrogel substrates allow for local softening of the material modulus to
generate a user-tunable pattern by controlled irradiation exposure
through a photomask. Human mesenchymal stem cells with high
spreading and higher nucleus localization of Yes-associated protein were
observed on hydrogel substrates with a higher density of regularly
patterned stiff regions. However, keeping the density of stiff regions
constant and altering the spatial pattern of the stiff regions from ordered
to random, less active Yes-associated protein with low spreading was
induced in human mesenchymal stem cells. They demonstrated that
compared with ordered patterns, the irregular, disordered matrix me-
chanics lead to maintenance of stemness of human mesenchymal stem



Fig. 6. Photoresponsive cell culture hydrogel substrates are prepared by copolymerizing PEG monoacrylate (PEGA) with the photodegradable cross-linker (PEG
diacrylate [PEGdiPDA]) [107]. This substrate allows locally softening of the material modulus by controlling light exposure to generate a user-tunable pattern for
regulating the fate of human mesenchymal stem cells. PEG, poly(ethylene glycol).
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cells by disrupting the organization of actin, reducing the alkaline
phosphatase activity, and inducing the higher expression of the stem cell
marker CD105.

4. Mechanical stimuli

Mechanical actions are everywhere in all the length scale. Living cells
have many opportunities to be exposed to external mechanical stresses.
Because living cells are sensitive to mechanical forces caused by certain
interactions, mechanical stimuli would be important external inputs to
regulate living cells [108–111].

The physiological microenvironment in living organisms is composed
of diverse biological materials with hierarchically structured assemblies
and varying mechanical attributes. In addition, this microenvironment is
much more complicated than conventional materials owing to the
existing stiffness gradients. It remains a challenge to design a platform
that represents the gradients of extracellular matrix stiffness indepen-
dently of the topographic and compositional factors over a wide lateral
span, which is crucial for understanding the influence of extracellular
matrix stiffness gradients alone to collective cell migration. Cai et al
[112] developed the mechanotactic hybrid that incorporated a micro-
structured SU-8 photoresist replica with high stiffness into a compliant
polyacrylamide hydrogel layer. This bioinspired mechanotactic hybrid
comprised the microstructured rigid layer and superficial compliant layer
to resemble a physiologically effective interface for modulating cell
physiology. The compliant-rigid hybrids enabled programmable lateral
variation of apparent stiffness and established a mechanistic coupling of
epithelial migration with extracellular matrix stiffness alone. This
6

concept of hierarchically mechanical hybrids sheds light on the design of
the next generation of bioinspired scaffolds.

To mimic the function of human's motion memory, Liu et al
[113] developed a mechanical hybrid substrate that was a combination
of the soft polydimethylsiloxane (PDMS)/rigid SU-8 flake–based
stretchable devices with zeolitic imidazolate framework-8 (ZIF-8)–based
memory device. In the hybrid film, rigid SU-8 flakes were embedded in a
PDMS substrate, and then, Au films, patterned ZIF-8 thin films, and Ag
films were coated on the substrates sequentially to fabricate stretchable
memory devices. This hybrid substrate was spatially separated into
patterned domains with different mechanical properties that can exhibit
different localized strain by exerting physical forces. The rigid memory
devices and stretchable strain sensors in these stretchable motion mem-
ory devices are integrated into a single module, which enables them to
work cooperatively in the wearable state for health monitoring and
medical applications. This work provides an instructive and valuable
strategy in designing materials combined with electronic technology to
achieve wearable electronic devices with integrated functions, which
play a critical role in developing smart modules and future intelligent
systems.

Cells in vivo continually interact with their microenvironment. Precise
mechanical properties of cell niches from the subcellular scale up to the
organ scale are important for tissue development, function, and remod-
eling. To mimic vital physiological conditions such as heart beating,
pulsating blood vessels, and breathing, Livne et al [114] studied cell
reorientation in response to cyclic stretching of the underlying substrate
from both the experimental and theoretical viewpoint. From the exper-
imental viewpoint, they observed the reorientation of focal adhesions



Fig. 7. (a) Biocatalytic active reservoir was deposited on the polydimethylsiloxane (PDMS) substrate by layer-by-layer technique. (b) Stretch-reversed reservoir film
leads to fluorescein diphosphate (FDP) controllably hydrolyzing to strongly fluorescent fluorescein by ALP [117]. PLL, poly-(L-LYSINE); HA, HYALURONIC ACID; PDADMA,
POLY(DIALLYLDIMETHYLAMMONIUM); PSS, POLY(SODIUM 4-STYRENESULPHONATE); ALP, ALKALINE PHOSPHATASE.
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and the rotation of stress fibers under applying cyclic stretching. Then,
they developed a new theory, which considers both the passive me-
chanical response of the cells to deformation of the substrate and the
active remodeling response of their stress fibers and focal adhesions. This
theory highlighted the interplay among the structure, elasticity, and
molecular kinetics in the cell reorientation process. They showed that
dissipative relaxation of the cells' passively stored, two-dimensional,
elastic energy to its minimum actively drives the cell reorientation pro-
cess. The theory provides a new first-principles approach that signifi-
cantly enhances our comprehension of cellular mechanosensing.

Targeted delivery of nanoparticles to malignant cells and tissues
provides a platform for next-generation diagnosis and therapy. To
improve the efficiency of targeted delivery, the cellular uptake of
nanoparticles ought to bias toward malignant cells. Compared with
chemotargeting, mechanotargeting (mechanics-dependent cellular up-
take of nanoagents) as a new targeting strategy drives biased uptake
7

based on the difference of cell surface mechanics. Wei et al
[115] developed in vitro experiments to demonstrate the working
mechanism of mechanotargeting. They seeded human cervical cancer
HeLa cells and human colon carcinoma cells on the surfaces of hydrogel
of different stiffnesses to direct these two lines of the cell into different
stress states. Targeted delivery of nanoparticle-based diagnostic and
therapeutic agents to malignant cells and tissues was shown to rely on
mechanotargeting. They demonstrated that increase in cell stress prefers
to suppress cellular uptake, counteracting the enhanced cellular uptake
that occurs with increases in the exposed surface area of spread cells.
Hence, to activate mechanotargeting bias toward malignant cells in the
stiff high-stressed tumor microenvironment, one may first add myosin
contraction inhibitor or alter the local environment of the cells to reduce
the stress state. In addition, one may optimize the size and stiffness of
nanoparticles to modulate the deformation energy of the cell
membrane.



Fig. 8. The tethering mobility of the RGD-grafted
magnetic nanoparticle (MNP) substrate can be
controlled by the magnetic field to regulate human
mesenchymal stem cell behavior [118]. (a) Without
the magnetic field, a high tether mobility of
RGD-bearing MNPs leads to delayed maturation of
focal adhesion (FA) complexes and F-actin filament
assembly. (b) With the continuous magnetic field, the
tether mobility of RGD-bearing MNPs is restricted that
leads to normal maturation of FA complexes and
F-actin filament assembly. PEG, poly(ethylene glycol);
RGD, arginylglycylaspartic acid.
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When external forces were applied to the biological environment,
many proteins presented their denatured or extended ability for exposing
the specific active peptide sequences to involve in mechanotransduction
processes [116]. To mimic the natural mechanotransductive process, a
nanoarchitecture of polyelectrolyte multilayers was developed by
layer-by-layer self-assembly of (PLL/HA)n (PLL: poly-(L-lysine), HA: hy-
aluronic acid) and (PDADMA/PSS)m (PDADMA: poly(-
diallyldimethylammonium), PSS, poly(sodium 4-styrenesulphonate)) as
reported byMertz et al [117] (Fig. 7). The first (PLL/HA)n polyelectrolyte
multilayer is used as a reservoir for loading with enzymes, and the second
(PDADMA/PSS)m polyelectrolyte multilayer is used as a mechanically
sensitive capping barrier. The biocatalytic activity of the film is switched
on/off reversibly by mechanical stretching, which exposes enzymes
through the capping barrier, similar to the mechanisms involved in
proteins during mechanotransduction. The designed mechano-
transductive surfaces enable to induce the biochemical reactions (acti-
vating specific signaling pathways or biocatalytic progress) by
mechanical stress. Cellular adhesion triggered cell function also could be
tuned by stretching when adhesion ligands such as RGD instead of
enzymes.

5. Other stimuli

Similarly, the other stimuli such as magnetic and thermal stimuli have
been used for the regulation of living cells. These stimuli often modulate
materials' environment that contacts with living cells.

Controlling surface conjugation of tethered cell-adhesive anchorage
(e.g. Arg-Gly-Asp/RGD peptide) on non–cell-adhesive substrates is critical
to regulate cell function. There is a highly desirable need for a direct,
8

physical, and tether controllable substrate to minimize other potential
interferences on cells for modulating the tethered cell-adhesivemotifs and
controlling the cell adhesion behavior. Wong et al [118] developed a new
substrate to tune the tether mobility of RGD on the substrate via magnetic
force (Fig. 8). They conjugated a monolayer of RGD-grafted magnetic
nanoparticles on glass substrates using the PEG linker (average molecular
weight (MW): 2000). The large molecular weight of PEG with the flexible
and coiled properties can increase RGD tether mobility. By applying
magnetic attraction onmagnetic nanoparticles, the RGD tether mobility is
significantly reduced. Human mesenchymal stem cells show significantly
better adhesion, spreading, and osteogenic differentiation on restricted
RGD tether mobility substrates than the high RGD tether mobility sub-
strates. This work not only highlights the influence of the dynamically
presented cell-adhesive motifs on cellular behaviors and functions but
also presents a potent non-contact strategy for further investigating
mechanobiological mechanisms of cellular responses.

The magnetic response provides a high potential strategy for
temporally and remotely manipulating cellular functions in vivo owing to
the excellent penetration withminimal cytotoxicity. Therefore, Kang et al
[119] also developed magnetic responsible and reversible uncaging and
caging of nanoparticle-bearing RGD-based biomaterials for in vivo ap-
plications based on deep and safe tissue penetration (Fig. 9). They
designed and constructed a magnetic heterodimer that conjugated
magnetic nanoparticles as nanocages to the underlying RGD-decorated
gold nanoparticle by a flexible and coiled long thiol-PEG linker. This
magnetic nanocage(-gold nanoparticle-RGD) heterodimer can be used as
a magnetic nanoswitch to reversibly and efficiently regulate nanoscale
RGD presentation, thereby controlling stem cell adhesion and spreading,
both in vitro and in vivo. Physical, non-invasive, tissue-penetrative,



Fig. 9. The heterodimeric magnetic nanoswitch consists of the magnetic nanocage (MNC) grafted to RGD motif–bearing gold nanoparticle (AuNP) by a flexible PEG
linker on a substrate (a) [119]. Based on the remote and temporal penetration of the magnetic field, this MNC-(AuNP-RGD) substrate with the magnetic responsible
and reversible properties can regular stem cell adhesion and spreading by blocking or exposing RGD, both in vitro (b) and in vivo (c). PEG, poly(ethylene glycol); RGD,
arginylglycylaspartic acid; NP, nanoparticle.
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biocompatible, and reversible uncaging of RGD motifs by heterodimeric
magnetic nanoswitches holds a high promise in remote and temporal
regulation of cell behavior and function for in vivo applications.
9

Cells are surrounded by dynamically extracellular matrices that are
composed of fibrous cellular matrices with the micrometer-scale
diameter in vivo. Thus, it is particularly important to develop a
Fig. 10. (a) Synthesis of P[(NIPAM)-co-(HEMA)] and
P(CL-co-AC) [120]. The functional groups of acrylate
are labeled in yellow or red. (b) P
[(NIPAM)-co-(HEMA)] and P(CL-co-AC) mixed with
a photoinitiator and electrospun onto the collector.
The microfibrous networks were formed after photo-
crosslinking. (c) The osteogenic differentiation of
human mesenchymal stem cells (hMSCs) can be
induced by the multiple cycles of reversible mechan-
ical stimulation based on the temperature alternations
between of 25 �C and 37 �C. (d) The microfibrous
structure with dynamic and reversible mechanical
changes regulates hMSC behaviors and fate corre-
lating to the cell polarization process. P[(NIPAM)--
co-(HEMA)], poly(-
N-isopropylacrylamide-co-2hydroxyethyl methacrylate);
DMSO; dimethyl sulfoxide, AIBN; azobis(isobutyroni-
trile) , DMF; N,N-dimethylformamide.



Fig. 11. Aligned fullerene nanocrystal substrates for human mesenchymal stem cell expansion with the maintenance of multipotency in vitro [147].
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reversibly dynamic mechanical stimulation of three-dimensional
microfibrous scaffolds to mimic the natural microenvironment to
regulate the responses of cells. Zhang et al [120] designed and con-
structed thermosensitive electrospun microfibrous hydrogels by cova-
lently cross-linking of polycaprolactone (PCL) and
poly(N-isopropylacrylamide) (Fig. 10). The mechanosensing of stem
cells is in situ thermoinduced switched from stiff (37 �C) to soft (25 �C)
for multiple cycles. The deswollen (stiff) states at 37 �C of the hydrogel
prefer to generate mechanical deformation, which can promote cyto-
skeleton rearrangements. The swollen (soft) states at 25 �C of the
hydrogel induce physical stretching, which can promote focal adhesion
elongation of the cell. Multicyclic reversible dynamic mechanical
stimulation results in an increase of human mesenchymal stem cell
spreading, adhesion, nuclear translocation of Yes-associated protein
signaling molecules, and osteogenic differentiation compared with the
cell cultured under normal conditions. Such a cellular response en-
hances mechanical feedback by dynamic mechanical interactions of
cells and the three-dimensional fibrous architecture, which provides an
important platform to explore the mechanics of cellular behavior in
tissue engineering.

It is still largely unknown how the dynamic cues influence stem-cell
spheroids' fate within three-dimensional soft microniches. Zhang et al
[121] prepared thermoresponsive stiffness cyclable hydrogels by
embedding photocrosslinkable gelatin methacryloyl hydrogels in stim-
ulus-responsive poly(N-isopropylacrylamide-co-2hydroxyethyl methac-
rylate) nanogels. Multicyclic altering of the temperature from 25 to 37 �C
and viscosity changes of hydrogels dynamically alter the overall reaction
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force that stem cell spheroids can control the spreading and adhesion in
soft microniches. Moreover, these dynamic cell culture systems can
regulate the stem cell spheroid differentiation to osteogenesis in soft
microniches by enhancing the maturation of focal adhesin complexes,
upregulating the nucleus translocation of the biochemical signal
Yes-associated protein, and increasing the expression of lamin A/C. In
converse, without multicyclic altering of the temperature, the different
viscosities of hydrogels have a negligible influence on the spreading of
human mesenchymal stem cell spheroids under static culture conditions.

Uto et al [122] precisely designed nanoarchitectures by cross-linking
PCL macromonomers. The PCL hydrogel has the shape-memory property
with switching of temperature around a biologically related temperature.
In addition, this PCL hydrogel presents a suitable surface wettability as
the cell culture substrate. Surface topographic and bulk dimensional al-
terations were spontaneously generated by simple stretching the PCL
hydrogel without other complicated fabrication processes. The surface
topographical features completely switched from the wrinkled surface to
the smooth surface, whereas the bulk dimensional deformation remains
initially fixed station via changing the temperature from 32 �C to 37 �C.
This shape-memory PCL hydrogel was used to investigate the effects of
spatiotemporally presented mechanostructural stimuli on cell alignment.
They find that topographical changes drive cell alignment with lower
fixed strain, whereas dimensional changes drive cell alignment with
higher fixed strain. The temperature-responsive shape-memory materials
would become powerful tools for further investigating spatiotemporal
regulation of mechanostructural stimuli to control cell fate. In the other
examples, thermal treatments are widely used for cell regulations. For



Fig. 12. (a) The fibronectin-integrin-F-actin molecular clutch model for human mesenchymal stem cell spreading at a liquid-liquid interface [149] and (b) the
proposed model for the mechanism of human mesenchymal stem cell remodeling of the protein nanosheets for irreversible monolayer-to-fiber transition [150].

J. Song et al. Materials Today Bio 8 (2020) 100075
example, thermally annealed polyelectrolyte multilayers have been used
for regulating cell adhesion [123–126].

6. Effect from the interface

As exemplified previously, behaviors of living cells can be regulated
through modified interactions with contacting material interfaces in
many cases. Even without distinct external inputs such as electronic,
photonic, magnetic, and thermal stimuli, living cells feel mechanical
properties of contacting surfaces and respond accordingly. Therefore,
regulation of living cells and related biosystems by external mechanical
factors has been paid much attention, and an active research field, so-
called mechanobiology, has also been developed [127,128]. Nano-
architectonics approaches to fabricate surface structures with nano-
components [129–132] have certain contributions to these research
fields. Although some examples in the previous sections are actually
related to interfacial phenomena, sections strongly focused on the
interfacial nature had better be separately presented. In the following
sections, some examples on controls of living cell fates at hard surfaces
and soft interfaces are discussed from our recent research accomplish-
ments. As hard surfaces, the nanoarchitected surface with aligned
nanocarbon materials is used for regulation of living cells. In the second
section, investigation of the regulation of living cell fates at a
liquid-liquid interface as a totally soft, flexible, uniform environment is
explained.

6.1. Hard interface

In the following examples, surface aligned arrays of one-dimensional
fullerene assemblies, fullerene nanowhiskers, are used as a hard surface
for cell culture. Fullerene molecules are zero-dimensional objects with a
single-atom component (carbon) that can be regarded as one of the most
fundamental units for self-assembled structures. Upon the liquid-liquid
interfacial precipitation method, fullerene molecules, allotropes of car-
bon whose molecule consists of carbon atoms connected by single and
double bonds, such as C60, C70, and their modified derivatives, can be
assembled into nanostructures and microstructures [133–135] with
various shapes including nanowhiskers [136], nanotubes [137], nano-
rods [138], nanosheets [139,140], microcubes [141,142], and their
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integrated structures [143,144]. Among them, one-dimensional fullerene
nanowhiskers can be easily aligned at the air-water interface and be
transferred as their aligned arrays onto a solid surface by
Langmuir-Blodgett (LB) technique. With the LB method, an ultrathin film
prepared at the air-water interface can be transferred onto a solid surface.
Although the fullerene nanowhiskers have one-dimensional structures
such as carbon nanotubes, less bioharmful natures are expected on the
basis of larger diameters and less aspect ratios for the fullerene nano-
whiskers than carbon nanotubes.

Minami et al. [145] examined differentiation of mouse skeletal
myoblast C2C12 cells on hard surfaces of aligned fullerene nanowhiskers,
which were transferred onto a solid substrate by the LB technique. On the
aligned nanowhiskers, elongated morphologies with high aspect ratios of
the cells were observed. Grown myoblasts exhibited polygonal shapes on
a glass surface and on randomly aligned fullerene nanowhiskers. Fusion
indexes of the cells on the aligned fullerene nanowhiskers were higher
than those observed on the bare glass surface of cells. Upregulation of the
myogenic genes was confirmed, indicating an acceleration of the early
and late stages of myogenic differentiation of the cells on the aligned
fullerene nanowhiskers. These mechanically hard oriented surfaces
significantly affect cell alignment, growth, and differentiation with
reasonable biocompatibility. As more advanced controls of cell align-
ments, Krishnan et al. [146] demonstrated growth of the human osteo-
blast cell line MG63 on curvature-controlled assemblies of hard fullerene
nanowhiskers that were fabricated using a novel method, vortex LB
method. Such interfacial nanoarchitectonics would effectively contribute
sophisticated architectures of living cells in two-dimensional plane and
for three-dimensional organization.

Human mesenchymal stem cell–based therapies provide a great
promise in tissue regeneration owing to their multipotency, easy acces-
sibility, and potent immunomodulatory properties. However, therapeutic
efficacies based on human mesenchymal stem cells are hindered by the
limited volume of cells isolated from human sources for clinical practice.
Song et al. [147] prepared large-area user-defined fullerene substrates to
study cell-material interactions for human mesenchymal stem cell
expansion in vitro (Fig. 11). The diverse assembly of fullerene created
various building units involving nanostructures to microstructures,
which can be used to form different nanopatterned surfaces by the LB
approach. Owing to the highly hydrophobic property and the interaction



Fig. 13. Plausible future directions to create living creature–like functional systems with the aid of cell controls by interfacial nanoarchitectonics, direct cell surface
modifications (cell-surface nanoarchitectonics), cell organization, artificial cell-cell communication, and so on.
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with the protein, continuously tunable fullerene-based nanopatterned
surfaces were expected to present a controllable cell-extracellular matrix
interaction for regulating cell behaviors. They find that the multipotent
maintenance with a high proliferation of human mesenchymal stem cells
happened on the high aligned fullerene nanowhisker substrate surface.
Compared with the flat surface and random fullerene
nanowhisker substrates, high aligned fullerene nanowhisker scaffolds
provided an appropriate cell contractility to decrease but did not
completely disturb mature focal adhesions and polymerized F-actions of
human mesenchymal stem cells. The appropriate cell contractility
recruited the location of Yes-associated protein from the cytoplasm to the
nucleus and then promoted the expression of the stemness genes of
human mesenchymal stem cells. Such large-area nanotopographical
fullerene substrates for stem cell expansion with maintaining multi-
potency in vitro can improve the potential of stem cell technologies in
future tissue-engineering therapies.

6.2. Soft interface

In regular cell culture, living cells are usually grown on solid surfaces
such as glass and plastic. Three-dimensional hydrogels that mimic nat-
ural tissue are attractive for tissue engineering. People are wondering
what stiffness is needed for cells to anchor and spread on the hydrogels.
Ultimate softness for cell culture media, liquid-liquid interface can be
investigated. In fact, recently, Minami et al. [148] demonstrated suc-
cessful culture of C2C12 myoblast cells at liquid-liquid interfaces be-
tween the aqueous culture medium and perfluorocarbon solvents.
Expression of myogenin, myogenic regulatory factors family gene, was
significantly suppressed at the examined liquid-liquid interface even
when reduction of growth factor levels induced expression of MyoD
proteins. Behaviors of the C2C12 myoblast cells at a totally fluidic
liquid-liquid interface are significantly different from those observed at
the hard interface of fullerene nanowhisker arrays.

Jia et al. [149] have recently showed that a protein monolayer
assembled at a perfluorocarbon and aqueous liquid interface can be
strong enough for cells to adhere and spread, giving new possibilities for
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optimizing materials for cell culture (Fig. 12a). The self-assembly be-
haviors of the proteins at the liquid-liquid interface were tailored by
using two different perfluorocarbons: perfluorodecalin and per-
fluorotributylamine. Compared with perfluorodecalin, proteins at the
perfluorotributylamine interface were more significantly denatured and
packed more closely, resulting in a stiffer protein monolayer at the
interface. With insertion of fibronectin into the protein monolayer, they
observed that human mesenchymal stem cells exhibited a greater spread
area and larger focal adhesion patches at the perfluorotributylamine
interface. At the perfluorodecalin interface, the protein monolayer,
which is more pliable, cannot resist the cell traction force and prevents
focal adhesion growth and cell spreading. This study suggests that cells
do not directly sense the bulk stiffness of perfluorocarbon liquid, but the
nanometer level of protein nanosheets at the liquid interface. Therefore,
the biomaterial design can be decoupled of bulk mechanical properties
from those at local levels. It can be considered to attach a stable protein
monolayer to the surface of biomaterials to enable cell adhesion and
spreading.

Stem cells have mutual cooperative interactions with their underlying
substrates, which is responsible for the regulation of stem cell behaviors
and fates. Cell traction forces can rearrange the morphology and stiffness
of the extracellular matrix microenvironment. The remodeling of the
extracellular matrix can result in feedback to modulate stem cell be-
haviors and fates. The currently available dynamic biomaterials largely
rely on an external stimulus–triggered two-state switching of the pre-
sentation and removal of cell-adhesive bioactive motifs. This falls far
short of the dynamic adaptive activities occurring between the native
extracellular matrix and cells, which can continuously mutually adapt to
the other. Liquid can flow and reconfigure its shape to the container. This
provides a unique responsive mechanism that is not possible in their solid
counterparts. Jia et al. [150] have presented a conceptually new adaptive
biomaterial based on a protein monolayer assembled at a liquid-liquid
interface (Fig. 12b). Protein assemblies at a liquid-liquid interface
adapt dynamically to cell-generated forces by interfacial jamming and
nanoscale spatial rearrangement. The elongated fibronectin assemblies in
turn promote the elongated focal adhesion, increase focal adhesion
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kinase activation, and enhance neuronal differentiation. This provides
new scenarios for the elucidation of the feedbackmechanisms connecting
extracellular matrix dynamic mechanics, biological signaling, and
long-term stem cell fate. The ability to enhance neuronal differentiation
of human mesenchymal stem cells in the absence of expensive growth
factors or complex fabrication procedures represents a significant
advance in the field of neuronal tissue engineering.

7. Perspective

Living cells with multitalented capabilities can be regarded as highly
advanced stimulus-responsive material systems. Incredibly, they are
formed through the spontaneous self-organization of numerous kinds of
molecular functional units. Therefore, living cells and related bio-
organisms can be regarded as ultimately well-prepared products of nano-
architectonics. Fabrication of high functional living cell–like systems is one
of the final goals for materials nanoarchitectonics, whereas this target is
quite tough in the current level of technology. Instead of preparing the
whole cell–equivalent structures from molecular bottoms, integration and
fusion of actual living cells and nanoarchitected artificial structures into the
stimulus-responsive system is currently an accomplishable approach.

As per these dreams and realities, nanoarchitectonics approaches for
responsive cellular biosystems upon various external stimuli including
electronic, photonic, mechanical, thermal, and magnetic inputs are dis-
cussed in this short review through the explanation of several examples.
In many cases, interactions from material surfaces to the cell surface are
crucial. Living cells and artificial material systems can communicate with
each other through their interfacial contacts. Even without additional
external stimuli, the mechanical properties of material surfaces can
determine cell fate only through surface contacts. Intelligent mechanisms
from the cell surface into the nuclei can be triggered with appropriate
stimulation upon contact with nanoarchitected interfaces. We can switch
on sophisticated mechanisms of living cells from the cell surfaces.

Based on these features, possible future directions of nanoarchitectonics
research for responsive cellular biosystems are briefly described here
(Fig. 13). Responsive cellular biosystems should not remain at a single
cellular level, and relayed and sequential response in cell organization
becomes important targets. The first step would be direct modification of
cell surfaces. In fact, the covering and decoration of the cell surface by
layer-by-layer assembly has been researched by Fakhrullin et al [151] who
named the decorated living cells as cyborg cells. Recently, Shields et al.
[152] proposed the cellular backpack strategy to attach an engineered
particle to macrophage surfaces for regulation of cellular phenotypes in
vivo. Well-considered nanoarchitectonics modification of the cell surface
leads to living cell systems with responding capabilities to designed
external stimuli. In another direction, the construction of cell organization
with artificial cell-cell communication is an attractive approach to make
multicellular functional systems. Cell assembling methods were already
established as seen in cell sheet technology by Nagase et al [153] and
Kobayashi and Okano [154]. Nanoarchitectonics essence can be introduced
to intercell spaces within cell assemblies to produce artificial cell-cell
communication for the cell-to-cell functional relations. In addition,
material developments for nanoarchitected platforms for cell adhesion such
as self-assembled phosphate-polyamine networks [155] and biocompatible
polymer brushes [156–158] have been continuously researched. These
efforts would bring us much closer to the final goals of nanoarchitectonics,
the creation of living creature–like functional systems. In addition, more
application-oriented directions such as advanced therapeutic approaches
[17,159] and medical devices [86,160] have to be included in these
nanoarchitectonics developments.
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