Wei et al. BMC Genomics 2013, 14:534

http://www.biomedcentral.com/1471-2164/14/534
p BMC

Genomics

RESEARCH ARTICLE Open Access

Nannochloropsis plastid and mitochondrial
phylogenomes reveal organelle diversification
mechanism and intragenus phylotyping strategy
in microalgae

Li Wei'?", Yi Xin"#, Dongmei Wang', Xiaoyan Jing', Qian Zhou', Xiaoquan Su', Jing Jia' Kang Ning',
Feng Chen*, Qiang Hu® and Jian Xu'"

Abstract

Background: Microalgae are promising feedstock for production of lipids, sugars, bioactive compounds and in
particular biofuels, yet development of sensitive and reliable phylotyping strategies for microalgae has been
hindered by the paucity of phylogenetically closely-related finished genomes.

Results: Using the oleaginous eustigmatophyte Nannochloropsis as a model, we assessed current intragenus
phylotyping strategies by producing the complete plastid (pt) and mitochondrial (mt) genomes of seven strains
from six Nannochloropsis species. Genes on the pt and mt genomes have been highly conserved in content, size
and order, strongly negatively selected and evolving at a rate 33% and 66% of nuclear genomes respectively. Pt
genome diversification was driven by asymmetric evolution of two inverted repeats (IRa and IRb): psbV and clpC in
IRb are highly conserved whereas their counterparts in IRa exhibit three lineage-associated types of structural
polymorphism via duplication or disruption of whole or partial genes. In the mt genomes, however, a single
evolution hotspot varies in copy-number of a 3.5 Kb-long, coxI-harboring repeat. The organelle markers

(e.g. coxl, cox2, psbA, rbcl and rr16_mt) and nuclear markers (e.g., ITS2 and 18S) that are widely used for
phylogenetic analysis obtained a divergent phylogeny for the seven strains, largely due to low SNP density. A new
strategy for intragenus phylotyping of microalgae was thus proposed that includes (i) twelve sequence markers that
are of higher sensitivity than /TS2 for interspecies phylogenetic analysis, (ij) multi-locus sequence typing based on
rps11_mt-nad4, rps3_mt and cox2-rrn16_mt for intraspecies phylogenetic reconstruction and (iij) several SSR loci for
identification of strains within a given species.

Conclusion: This first comprehensive dataset of organelle genomes for a microalgal genus enabled exhaustive
assessment and searches of all candidate phylogenetic markers on the organelle genomes. A new strategy for
intragenus phylotyping of microalgae was proposed which might be generally applicable to other microalgal
genera and should serve as a valuable tool in the expanding algal biotechnology industry.

Keywords: Nannochloropsis, Plastid phylogenomes, Mitochondrial phylogenomes, Intragenus phylotyping strategy

* Correspondence: xujian@gibebt.ac.cn

"Equal contributors

'BioEnergy Genome Center and Shandong Key Laboratory of Energy
Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology,
Chinese Academy of Sciences, Qingdao, Shandong 266101, China
Full list of author information is available at the end of the article

- © 2013 Wei et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
( B|°Med Central Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.


mailto:xujian@qibebt.ac.cn
http://creativecommons.org/licenses/by/2.0

Wei et al. BMC Genomics 2013, 14:534
http://www.biomedcentral.com/1471-2164/14/534

Background

Microalgae include many evolutionarily diverse lineages
of unicellular photosynthetic eukaryotes that range in
size from a few to several hundred micrometers. They
contribute significantly to the primary production and
the biogeochemical cycle of our biosphere [1]. They
have also found increasing applications for production
of lipids, sugars, bioactive compounds and in particular,
biofuels [2].

Cellular functions of present-day microalgae are under-
pinned by plastid (pt), mitochondrial (mt) and nuclear
(nc) genomes. Pt and mt play important roles in the evolu-
tion of microalgae and higher plants. The origin of pt has
been traced to an endosymbiosis event between eukaryotic
cell and cyanobacteria, which occurred around 1.2 Ga ago
[3]. The engulfed photosynthetic unicellular cyanobacteria
adapted to the environment inside the host cells and even-
tually became the present day eukaryotic pt [4]. The
pt genome, in multiple copies, is inherited in a non-
Mendelian fashion. Therefore, the genetic information
from pt genome can provide an independent view of the
phylogeny of its host organisms. Mt, according to the ser-
ial endosymbiosis theory, is the direct descendant of a bac-
terial endosymbiont (likely an alpha-proteobacterium) that
became established in the early evolution of a nucleus-
containing (but amitochondriate) host cell [5]. Analysis of
microalgal organelle genomes has revealed their endosym-
biotic origins [6], frequent gene transfers from organelles
to nucleus [7] and the phylogeny among genera [8]. How-
ever, evolutionary dynamics of organelle genomes that
drive microalgal speciation (i.e., within the genus) remains
poorly understood.

Due to their asexual reproduction, slow evolution, few
recombination, and relatively simple gene structure and
dominance of single-copy genes, organelle genes have
often been employed as phylogenetic markers [9], which
are essential tools in algal research and biotechnology.
Several molecular markers are frequently used for
phylotyping algae, including the second internal tran-
scribed spacer (IT7S2) of nuclear ribosomal DNA (18S
rRNA), mitochondrial cytochrome oxidase subunit
I (coxI), and plastid ribulose-1-5-bisphosphate carboxyl-
ase/oxygenase (rbcL). However, limitations of the strategy
are apparent: (i) different markers frequently gave different
phylogenetic scenario (ie., sub-specificity); (ii) most
markers could not distinguish strains within a given spe-
cies (i.e., sub-sensitivity); (iii) currently available markers
could not be applied to microalgae of all kinds (i.e., sub-
applicability) [10,11]. For instance, cox! is useful mainly
for identification of red and brown algae [12-15],
whereas tufA (encoding plastid elongation factor Tu
gene) and rbcL serve as the primary DNA barcodes for
green algae and diatoms respectively [11,16,17]. How-
ever the genomic basis of such practices remains largely
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unknown. Exhaustive search and comparative assessment
of phylogenetic markers have not been possible, largely
due to the paucity of complete organelle genomes from
phylogenetically closely related strains and species.
Nannochloropsis (Eustigmatophyceae) is a genus of uni-
cellular photosynthetic microalgae, ranging in size from 2
to 5 um and widely distributed in marine, fresh and brack-
ish waters [18-21]. It is an emerging model for photosyn-
thetic production of oil (triacylglycerol; TAG) because of
its ability to grow rapidly, synthesize large amounts of
TAG and polyunsaturated fatty acids and tolerate a wide
range of environmental conditions [22-24]. Traditional
approaches for identifying species in Nannochloropsis
include morphology observation, pigment and fatty acid
composition and 18S rRNA sequence analysis [25].
However previous analysis based on I18S (a nuclear
gene) and rbcL (a pt gene) resulted in conflicting phy-
logenies among microalgae lineages that include
Nannochloropsis [25]. Moreover, the intragenus re-
lationship of Nannochloropsis spp. (especially among
N. oculata, N. limnetica, N. granulata and N. oceanica)
was inconsistent among 18S-based phylogenetic trees
[20,21]. In this study, using Nannochloropsis genus as a
model, we assessed current intragenus phylotyping
strategies by producing the complete pt and mt ge-
nomes of seven strains from six Nannochloropsis spe-
cies. This first comprehensive dataset of organelle
genomes for a microalgal genus was employed to dissect
the evolutionary dynamics of organelle genomes at the
genus, species and strain levels. Furthermore, the dataset
enabled exhaustive exploration of novel phylogenetic
markers suitable for inter-species and intra-species identi-
fication of microalgae. A new strategy for intragenus
phylotyping of microalgae was therefore proposed.

Results and discussion

Global structural features of the organelle genomes in
Nannochloropsis

To capture a comprehensive picture of microalgal organ-
elle evolution at the strain-, species- and genus-levels, two
N. oceanica strains (IMET1 and CCMP531) and one strain
from each of other five known species in Nannochloropsis
Genus: N. salina (CCMP537), N. gaditana (CCMP527),
N. oculata (CCMP525), N. limnetica (CCMP505) and
N. granulata (CCMP529) were chosen for sequencing
(Methods). The pt and mt genomes of IMET1 were first
assembled from whole-genome shotgun reads and then
manually finished (Methods). Draft sequences of the other
organelle genomes were extracted from whole-genome
contigs by BLAST using IMET1 as a reference. Long-
range PCR was used to test the orientation of large repeats
and bridge the remaining gaps. The four junctions be-
tween the inverted repeats and single-copy segments were
confirmed by sequencing PCR products. The seven sets of
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organelle genomes were manually inspected and com-
pletely finished (Table 1).

The circular pt genomes ranged in length from 114,867
to 117,806 bp, with an average GC content of 33.3%.
Each pt genome was divided into four structural domains
(Figure 1A): a large single copy (LSC), a small single copy
(SSC), and inverted repeats (IR) which are present in pin-
point duplicate separated by the two single-copy regions.
Such a quadripartite structure was previously found in
many other algal pt genomes including the primary endo-
symbiotic Chlamydomonas reinhardtii and secondary
endosymbiotic diatoms Phaeodactylum tricornutum and
Thalassiosira pseudonana [26,27].

Each pt genome encodes 152 unique genes including 26
tRNA, three rRNA and 123 proteins. In addition, eight
genes (clpC-1, psbV;, pet], rrnl6, trul(gat), trnA(tgc), rrn23
and rrnS5) were duplicated in the IR of CCMP505,
CCMP525, CCMP531, CCMP529 and IMET1, while only
five genes (rrnl16, trnl(gat), trnA(tgc), rrn23 and rrnS) were
duplicated in the IR of CCMP527 and CCMP537.
The overall genome structure and gene content of
Nannochloropsis pt are similar to those of T. pseudonana,
P. tricornutum and Ectocarpus siliculosus [8,26].

The circular mt genomes were 38,057 ~ 42,206 bp in
length (Figure 1B), with an average GC content of 31%.
The coding potential (for proteins and RNAs) was
80.9%-87.5%. Each consists of 63 genes and 5,422-
9,600 bp non-coding sequences. The coding regions of
the seven mt genomes were similar in size to those of
T. pseudonana and P. tricornutum [28], yet the coding
potential of Nannochloropsis mt genomes was higher,
suggesting a relatively compact genome structure. Al-
though most regions of the seven mt genomes were con-
served, a pair of 3.5Kb-long, coxI-harboring repeats were
found only in CCMP527 and CCMP537. Two segments of
genes (rps8-rpl6-rps2-rps4, rpl2-rpsl19-rps3-rpll6) were
conserved in previously reported stramenopiles including
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diatoms and brown algae. However in Nannochloropsis,
the bacterial S10 operon block (rpl2-rps19-rps3-rpl16)
was interrupted by rp/22 which inserted between rpsi19
and rps3.

Neither group I nor group II type introns were present
in any of the Nannochloropsis organelle genes. Although
the pt and mt genomes of CCMP529 and CCMP525 pos-
sessed increased numbers of small dispersed repetitive
sequences compared to other Nannochloropsis pt and mt
genomes, overall there were fewer repeats in the
Nannochloropsis pt and mt genomes compared to those of
diatoms. Moreover, the seven sets of pt and mt genomes
were highly conserved in gene content and gene size
(Figure 1A and B). In addition, the aligned regions
(representing 96.89% and 97.16% of pt and mt genome
lengths, respectively) showed high similarities (Figure 1C
and D), with protein-coding regions generally more con-
served than noncoding regions. Therefore, compactness in
pt and mt genome organization is a shared feature among
the seven Nannochloropsis strains.

Protein complements of the organelle genomes

Organelle genomes were thought to have undergone
size- and functional reduction [29,30], and frequent
genetic exchange via endosymbiotic gene transfer
(EGT) and homologous recombination [31,32]. The
present-day microalgal pt genomes mainly encode the
components of photosystems, carbon assimilation,
photosynthetic electron transport and gene translation
machinery [33], while the mt genomes encode genes
mostly involved in respiratory electron transport, oxida-
tive phosphorylation, ATP synthesis and ribosome bio-
synthesis [5,34]. In Nannochloropsis, brown algae and
diatoms, nearly all the photosystem I and photosystem
II genes encoded by the pt genomes were retained in a
high degree of consistency (Figure 2). However, a photo-
system I gene (psaM) was lost in Nannochloropsis pt

Table 1 Features of the Nannochloropsis organelle genomes (Plastid/Mitochondria)

N. oceanica N. oceanica N. salina N. gaditana N. oculata N. limnetica N. granulata
IMET1 CCMP531 CCMP537 CCMP527 CCMP525 CCMP505 CCMP529
Size (bp) 117,548/38,057 117,634/38,057 114,883/41,907 114,867/42,206 117/463/38444  117,806/38,543 117,672/38,791
LSC length (bp) 57,360/- 57,387/- 56,882/- 56,925/- 57,287/- 57444/- 57,352/-
SSC length (bp)  45,235/- 45,240/- 47,364/- 47,698/- 45,227/- 45,259/- 45,247/-
IR length (bp) 7/485/- 7,496/~ 5,320/- 5122/- 7476/- 7,549/- 7,527/-
Number of 160/63 160/63 156/64 156/64 160/63 160/63 160/63
genes
Protein-coding  126/35 126/35 123/36 123/36 126/35 126/35 126/35
genes
Structure RNAs  34/28 34/28 33/28 33/28 34/28 34/28 34/28
GC content (%) 33.6/319 33.6/319 33.1/314 33.0/314 334/31.8 33.5/31.7 334/32.0
Coding regions  83.5/87.5 83.4/87.5 83.6/814 83.8/80.9 83.5/84.7 83.7/84.6 84.5/84.1

(%)
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Figure 1 Plastid and mitochondrial genomes of seven Nannochloropsis strains. (A) Genome map of the complete pt sequence of

N. oceanica IMET1. (B) Genome map of the complete mt sequence of N. oceanica IMET1. Genes shown outside the outer circle are transcribed
clockwise and those inside are transcribed counter clockwise. Genes belonging to different functional groups are color-coded. Alignment of the
Nannochloropsis plastid (C) and mitochondrial (D) genomes were also shown respectively. Genomic regions are color-coded as protein-coding
(blue), rRNA/tRNA-coding (cyan) and conserved noncoding sequences (red). * CCMP527 and CCMP537 do not contain the region. **Two copies
of coxT are present in CCMP527 and CCMP537. ***In CCMP529, trnD-GUC was translocated to the interval between cox2 and rmié.

genome. A photosystem II gene (psbM) was also absent
in the pt genomes of Nannochloropsis as in other red
algae, but was present in the green algae lineage
[35-39]. In addition, all of the cytochrome components
found in other stramenopiles and the red lineage of
algae (with the exception of petL) have been retained in
Nannochloropsis pt genomes [40-46].

All of the ATP synthase genes (i.e..atpA, atpB, atpD,
atpE, atpF, atpG, atpH and atpl) were found in pt ge-
nomes of stramenopiles [8,26,47,48], except the seven
Nannochloropsis strains in which atpD was missing. The
chlorophyll biosynthesis genes chiB, chlL and chIN
were believed to be transferred to nucleus via EGT in
Thalassiosira, Odontella and Heterosigma [26,48], however
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Figure 2 Comparison of functional complements of organelle genomes. Among Nannochloropsis, brown algae and diatoms, shared and
lineage-specific genes from plastid and mitochondrial genomes are compared via Venn diagrams. (A) Shared and lineage-specific genes of
different plastid genomes. (B) Shared and lineage-specific genes of different mitochondrial genomes.
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four chlorophyll biosynthesis genes (chiB, chll, chiL
and chIN) are still present in the pt genomes of
Nannochloropsis, Ectocarpus, Fucus, Vaucheria and
Aureoumbra (Additional file 1: Table S1 and Figure 2)
[8,47]. RbcR (ycf30), which was usually encoded by pt
genomes and autonomously governs transcription of
Rubisco operon in red algae [49], is present in either pt
or nuclear genomes of all known stramenopiles except
Nannochloropsis. The organization of pt ribosomal-
protein genes in Nannochloropsis was also similar to that
of Thalassiosira, Odontella, Heterosigma, Ectocarpus and
Fucus, although rpl9 and pl24 were lost in the
Nannochloropsis pt genomes. In addition, Synechococcus
phage S-SM2 gene segment was found in the
Nannochloropsis pt genomes, which is likely a signature of
their cyanobacterial origin.

To identify the functional distinction of Nannochloropsis
mt genomes, the gene repertoires of 25 algal mt genomes
were compared (Additional file 1: Table S2). The protein
profiles of Nannochloropsis mt genomes are largely similar
to those of T. pseudonana and P. tricornutum. However,
atpl was retained only in Nannochloropsis mt genome (as
are the cases in non-photosynthetic oomycetes such as
Phytophthora spp. (another subgroup of stramenopiles)
and Saprolegnia ferax) [50,51]. In P. tricornutum and
T. pseudonana, atpl were thought to be transferred to the
nuclear genome via endosymbiotic gene transfer [28].
Therefore Nannochloropsis exhibit an ancient feature, as is
in the case of Phytophthora. On the other hand, the rrn5
gene which encodes the 5S rRNA component was lost in
Nannochloropsis and Thalassiosira mt genomes (but
present in other stramenopiles such as Heterosigma,
Ectocarpus and Fucus), suggesting structural diversity in
mitochondrial translation systems of stramenopiles.

One prominent feature shaping organelle evolution is
the targeting of certain nuclear-encoded proteins to or-
ganelles, which functionally complement the reduced gene
content of pt/mt genomes [52]. Analysis of subcellular
localization (with PredAlgo; [53]) of 9,756 putative pro-
teins in IMET1 suggested that 973 and 1,620 proteins
were targeted to mt and pt, respectively. They mainly in-
clude tRNA synthetases, ribosomal proteins, DNA poly-
merases, eukaryotic translation factors, transcription
factors, TATA-box binding proteins and ATP synthases.
These proteins might participate in the transcription
and translation of organelle-encoding genes. In
addition, 26 pentatricopeptide repeat-containing pro-
teins (PPRs) were annotated, with six (g707, gl422,
g2743, g3644, g3813 and gl0257) targeting to mt and
five (g2850, g3634, g3565, g8976 and g9207) to pt. In
higher plants PPRs were likely involved in RNA editing,
a process of post-transcriptional modification of RNA
primary sequences through nucleotide deletion, inser-
tion, or modification [54,55]. Thus in Nannochloropsis
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these proteins might participate in organelle RNA
editing, which is an activity that has not been reported
in microalgae.

Evolution of organelle genomes

Organelle-based phylogeny of Nannochloropsis
Phylogenetic trees based on pt genomes were
constructed by Maximum-Likelihood (ML), Maximum
Parsimony (MP) and Neighbor-Joining (NJ) methods
using a dataset of 39 conserved proteins (7,406 amino-acid
positions) encoded by the pt genomes of four taxa of red
algae and 13 green-algal taxa (the green cladeViridiplantae
as outgroup; Additional file 1: Figure S1A). Firstly, red-
and green-algal pt genomes respectively formed a dis-
tinct cluster. Secondly, within the red algae lineage,
stramenopile species formed a monophyletic cluster.
Thirdly, Nannochloropsis as a representative of
Eustigmatophyte was closely related to the diatom
Thalassiosira. Similar analysis of the mt genomes using a
dataset of seven protein-coding genes (2,101 amino-acid
positions) present in the lineages of green and red algae
revealed that the stramenopile lineages were clustered des-
pite weak support among Nannochloropsis, Thalassiosira
and Heterosigma (Additional file 1: Figure S1B). Thus both
pt and mt genomes suggested that Nannochloropsis are
phylogenetically close to diatoms and brown algae.

Evolution of conserved coding regions in organelle
genomes

In the coding regions of the seven pt genomes, 11,749
SNPs were identified (6,856 transitions, 4,871 trans-
versions and 22 indels), representing a density of 152
SNPs/Kb (Additional file 1: Figure S2). Each of these 22
indels was a triplet of bases, which may not disrupt the
open reading frames, reflecting a mechanism by which
the cells fine-tune structure and function of encoded
proteins. Among the SNPs, 8,845 were synonymous and
2,904 nonsynonymous, with a nonsynonymous/syn-
onymous rate of 0.326.

In the coding region of the seven mt genomes, 4,990
SNPs (2,985 transitions, 1,997 transversions and 8
indels) were identified. The SNP density was 200 SNPs/
Kb (Additional file 1: Figure S2), which is about 1.3
times higher than that of their pt counterparts. Similar
to pt, indels in mt coding regions did not disrupt the
open reading frames. Several parameters describing
SNPs were similar between pt and mt, including SNP
density (0.152 in pt and 0.200 in mt) and transition/
transversion (1.408 in pt and 1.495 in mt).

To test the selection pressure of organelle protein-
coding genes, ratio of nonsynonymous (Ka) versus syn-
onymous substitution (Ks) was analyzed, which suggested
a strong negative selection might have occurred in
Nannochloropsis organelles. Ka/Ks of most pt genes were
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below 0.09 (except psbK, psbN, psbW, atpF and ycf49;
Additional file 1: Figure S3A). Among the 38 mt-encoded
genes, Ka/Ks were mostly no more than 0.1 (except orf228,
orf51, rps10, rplS, atp8, rpsl4 and orf321, Additional file 1:
Figure S3B). Notably, the mt orf228 (0.225) and pt psbK
(0.098) were of the highest Ka/Ks ratios among all
organelle genes. In Nannochloropsis, mean evolutionary
rates of pt genes (at 0.031) and mt genes (at 0.064) were
significantly lower than those of nuclear genes (at 0.093)
(Additional file 1: Figure S3C; [56]), suggesting pt genomes
have been evolving at a rate 50% and 33% of that of mt
and nuclear genomes respectively.

Hotspots of structural and sequence polymorphism in
plastid and mitochondrial genomes

Hotspot of structural polymorphism in plastid genomes
Despite the slow evolution of the Nannochloropsis organelle
genomes, a single hotspot of structural polymorphism was
found in the pt genomes. A large inverted repeat (IR), as a
canonical structure of pt genome, was present in the vast
majority of higher plants and algae studied so far [57].
In many stramenopile algae such as H. akashiwo,
Thalassiosira oceanica and Skeletonema costatum, the IRs
are large in size (22 kb, 18 kb and 20 kb, respectively) and
include 17 ~ 20 genes (including rRNA genes such as rrn5,
rrml6 and rrn23, ribosomal protein genes such as rpl32,
rpl21 and rpl34, and photosynthetic genes such as psbA,
psbY and psbC; [48,58]). However, a pair of short IRs (IRa
and IRb) each of 5,122 ~ 7,380 bp in size was found in
each of the Nannochloropsis pt genomes (Figure 3),
suggesting dramatic IR-size contraction. This may be due
to the fewer number of genes harbored in the IRs: the
ribosomal operon (rrn5, rrnl6 and rrn23) was present
while ribosomal protein and photosystem genes were
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absent in each of the Nannochloropsis strains; moreover,
psbV; pet] and clpC-I (which were absent in the IRs of dia-
toms and brown algae [8,26]) were present in only a sub-
set of the strains (Figure 3A).

Interestingly, among the different Nannochloropsis spe-
cies, evolutionary patterns of the two IRs (IRa and IRb;
Figure 3A) were distinct: IRb were highly conserved, while
IRa were extraordinarily hypervariable. There were three
types of IRa in Nannochloropsis (Figure 3A): (i) Type I,
found in CCMP527 and CCMP537, did not contain a re-
gion of pet/-psbV-clpC-I. (ii) Type II, found in CCMP529,
CCMP525 and CCMP505, possessed a pet/-psbV-clpC-1
that was an exact duplicate of that in IRb. (iii) Type III,
present in CCMP531 and IMET1, encompassed a
fragmented pet/-psbV-clpC-1, which differed from that in
IRDb due to a disruption of open reading frame (Additional
file 1: Figure S4). The particular type of IRa that a given
strain carries appeared to correlate with its specific
lineage in Nannochloropsis genus, suggesting ancient
IRa-diversifying events that likely have driven the spe-
ciation from the common ancestor of present-day
Nannochloropsis strains.

Alignment of Type II and Type III IRa (in the five
strains) revealed that the structural polymorphism lead-
ing to different IRa types was mainly due to hyper vari-
ation of sequences in two of the genes: c/pC-I_I and
psbV_1. Length of the two genes varied greatly as differ-
ent start and stop codons were adopted among the
strains (Additional file 1: Figure S4). Compared to Type
II (CCMP529, CCMP525 and CCMP505), two bases
were missing in Type III (IMET1 and CCMP531),
resulting in a truncated psbV_1. Moreover, clpC-I_1
ORFs were altered due to several intragenic insertions
and deletions.
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genomes. (B) Structural and sequence polymorphism of the hotspot in the mt genomes. Within each sub-figure, genomic features were drawn
proportionally to their actual length. Grey solid lines, inserted for alignment purposes, were not actual sequences.
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In the pt genome of higher plants, the border between
SSC, LSC and IR exhibited a large degree of variation,
in that many genes located in the junction are often lost
and thus IR is reduced [59,60]. IR is important in higher
plants because (1) it might stabilize ptDNA organiza-
tions [61], (2) it could mediate intra-molecular homolo-
gous recombination and (3) it may increase the relative
copy number of rRNA genes [40]. The identification of a
variable region located in the junction between IR and
SSC in Nannochloropsis suggested an evolutionarily con-
served link in hypervariable loci between higher plants
and microalgae, however their differences are profound
(Figure 3A): (i) Despite the presence of two IR copies in
all higher plants and microalgae studied so far, the
structural polymorphism is symmetric in higher plants
(i.e., both IRs can be polymorphic; [57]) yet is strictly
asymmetric in Nannochloropsis: only IRa were found as
polymorphic while IRb were strictly conserved across
all the seven strains tested. (ii) Unlike higher plants
where the outer-most gene of IR underwent contraction
[62,63], the internal gene of IR underwent contraction
in Nannochloropsis. (iii) In higher plants the mechanism
driving IR expansion/contraction was believed to be
gene conversion and double-strand DNA breaks based
on the observation of recombination points and tRNA du-
plication in IR [57,64]; however these observations were
absent in any of the Nannochloropsis IR, suggesting a dif-
ferent and previously unappreciated mechanism for IR di-
versification in microalgae.

Single hotspot of structural polymorphism in mitochondrial
genomes

A single hotspot of sequence variation was also discov-
ered in mt genomes of the seven Nannochloropsis
strains (Figure 1D). A pair of large repeats (~3,500 bp
long), arranged as direct repeats, was found in N.
gaditana CCMP527 and N. salina CCMP537. However
only one such copy was present in each of the other
strains (Figure 3B). Each of these regions was amplified
by long-range PCR and fully sequenced to confirm the
copy number variation.

Interestingly, in N. gaditana CCMP527 and N. salina
CCMP537 mt genomes, each copy in the pair of large
repeats harbors one intron-free cox! (encoding cyto-
chrome ¢ oxidase I). Such a duplication producing two
99%-identical copies of coxl was not found in either dia-
toms or brown algae. In diatom mt genomes (Synedraacus,
T. pseudonana and P. tricornutum), a single copy of cox1
(not found within repeats) contained ORFs-harboring in-
trons [28,65], while in brown algae (Dictyota dichotoma,
Fucus vesiculosus and Desmarestia viridis) a single intron-
less cox1 was present [66]. Therefore the observed direct
repeats that harbor coxI was likely due to a duplication
event in Nannochloropsis before the branching point of
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N. gaditana and N. salina (Figure 3B; the presence of two
large repeats was also noted in N. gaditana CCMP526 mt
genome [20]). Whether the event conveyed any biological
consequence to the lineage is unknown.

Strategy for sensitive and reliable intragenus phylotyping
Inter-species markers

Molecular markers (DNA barcoding) are a powerful tax-
onomy tool as compared to morphology-based classifica-
tion [67]. The seven pairs of complete pt and mt genomes
in Nannochloropsis enable the first exhaustive search
and full assessment of organelle genes for introgenus
phylotyping in microalgae. A pt (and mt) genome based
reference phylogenetic tree was first constructed based on
the concatenated nucleotide sequences of all protein-
coding genes on the pt (and mt) genomes of the seven
Nannochloropsis strains. Then each orthologous set of the
intragenic and intergenic sequences from mt and pt ge-
nomes was extracted (a total of 230 individual regions) for
construction of individual sequence based phylogenetic
trees (Methods). Those orthologous sequence-sets consist-
ent with the reference trees were analyzed further for their
sensitivity and specificity in phylotyping. The Euclidean
distance between two trees (each represented by one
p-distance matrix) was used to quantify the similarity of
the encoded phylogeny (Methods).

A total of 54 candidate phylogenetic markers were iden-
tified whose nucleotide-sequence-based phylogenetic trees
were consistent with the reference trees (Figure 4A).
Forty-nine potential markers provided on average 1.5
times higher resolution (with SNP-density above 27%)
than the seven commonly used phylogenetic markers
(ITS2, cox1, cob, cox2, rbcL, rrnl6_mt and 18S) in the in-
terspecies taxonomy (Figure 4A; Table 2). Of these 49 can-
didates, twelve exhibited higher sensitivity than ITS2,
which is the most commonly used microalgal phylogenetic
marker at present and in effect provided the highest reso-
lution among presently used phylogenetic markers in
microalgae (Figure 4A; Table 2). Among these 12 markers,
eight belonged to coding regions and another four to non-
coding regions. Those encoded by mt included rpsi4,
rps4, rpl6, rplS, orf53, rpli4 and rpsl4-atp9 while those
encoded by pt were yc¢f34, clpA, ycf34-psbD, trnQ(uug)-
groEL and trnL(uag)-trnW(cca). Among them, rpsi4 mt
shows the highest resolution with interspecies difference
of 37.71% and the Euclidean distance of 0.403 (Table 2),
representing a sensitivity of 36.3% higher than /752 (inter-
species difference of 27.67%).

Furthermore, these new sequence markers yielded a
phylogeny consistent with the reference trees. Among
those presently used markers, however, only coxl (but
not psbA, rbcL, cox2 and rrnlé_mt) produced a phyl-
ogeny in consensus with the reference trees (Figure 4B).
The psbA, rbcL, cox2 and rrnl6_mt are not suitable for
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Figure 4 New inter-species phylogenetic markers for Nannochloropsis. (A) Comparison of the sensitivity and specificity among candidate
regions/markers for inter-species phylogenetic reconstruction. The regions/markers derived from genic and intergenic sequences of pt and mt of
the seven strains were listed on the X axe. The % nucleotide difference of each region/markers was calculated as the index for sensitivity. The
average bootstrap values of all branches in the sequence-specific phylogenetic trees (maximum parsimony; MP) were shown as the index for
specificity. *: presently used markers. Arrow: candidate phylogenetic markers that provided higher sensitivity than /7S2. (B) Phylogeny of
Nannochloropsis strains reconstructed from the presently used and our proposed sequence markers. Phylograms were derived using MP analysis.
*: reference trees based on the concatenated sequences of all pt/mt protein-coding genes. **: presently used markers. Blank box: presently used
markers whose phylogenetic reconstructions are not consistent with the reference trees. CCMP537 was assigned as the root for each of the trees.
J

distinguishing closely related species due to their low SNP-
density (4.16%-13.53% among the six Nannochloropsis
species; Table 2), especially among N. oceanica (IMET1
and CCMP531), N.oculata CCMP525 and N.granulata
CCMP529 (SNP-density ranging from 0.64% to 3.74%).
Thus the newly identified candidate markers may be more
suitable than current markers for species classification in
Nannochloropsis.

To test their wider applicability, these new candidate
markers (rps14, rps4, rpl6, rpl5, orf53, rpll4, ycf34 and
clpA) were searched in available organelle genomes from
other algal genera: they were rarely present in mt or pt ge-
nomes of the green lineage (e. g. Chlamydomonas, Volvox
and Dunaliella). ITS2 and 18S rRNA are universally found
and widely used for species-level identification in higher
plants and algae, however their resolution is limited as
shown in this study. Moreover, being localized on the nu-
clear genomes, I7S2 and 18S rRNA genes can become di-
vergent paralogous copies as a result of incomplete
concerted evolution and sexual incompatibility among

individuals [68,69]. Our proposed new organelle markers
provide certain advantages: higher discriminatory power,
clonal modes of evolution and non-Mendelian inheritance
[70,71]. Our analysis also suggested different microalgal
lineages may require different sets of organelle marker
genes for reliable and sensitive intragenus phylotyping.

Intra-species phylogenetic markers

Intraspecies divergence of microalgal genomes can be
significant: despite their close phylogenetic relation-
ship, the comparison of nuclear genomes revealed sig-
nificant differences in coding sequences between the
two N. oceanica strains IMET1 and CCMP531 (2.6%
IMET1-specific genes; Methods). Therefore sensitive
and reliable phylogenetic markers for intraspecies
phylotyping are crucial. We tested the presently used
markers and the candidate species-level markers identi-
fied above on the two N. oceanica strains IMET1 and
CCMP531. All presently used phylogenetic markers
were not sufficiently sensitive to distinguish IMET1
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Gene Origin Size Difference*% Euclidean SD#***#
Interspecies Intraspecies** distance**

rps14_mt mt 297 37.71 034 0.397 0.046
ycf34 pt 252-261 33.72 0.00 0409 0.038
rps14_mt-atp9 mt 102-195 32.83 0.00 0.500 0.048
rps4_mt mt 726 32.09 041 0.260 0.031
ol6_mt mt 552 3207 0.36 0.263 0.036
ycf34-psbD pt 204-224 31.72 0.13 0211 0.018
pl5_mt mt 525-540 3167 057 0.299 0.037
clpA pt 447-450 29.33 0.22 0328 0.040
orf53 mt 156-162 29.01 0.00 0258 0.041
pl14_mt mt 381 2835 0.79 0.167 0.023
trnQ(uug)-groEL pt 269-274 28.00 0.00 0.253 0.032
trnL(uag)-tmW(cca) pt 648-673 27.99 0.46 0.234 0.021
752 nc 385-499 2767 0.52 - -
rps2-rpoC2 pt 162-193 25.63 1.04 0.281 0.036
pl16_mt mt 432 24.54 0.00 0.098 0018
nad4 mt 1578 23.76 063 0.038 0.008
atp9-rps13_mt mt 215-233 23.50 043 0.107 0.022
ccsl pt 1260-1272 22.90 0.00 011 0010
ol pt 687 22.56 0.00 0.114 0.012
ilvB pt 1479 21.37 0.00 0.084 0.008
ole pt 543 20.99 0.18 0.054 0.008
CCsA pt 918-921 2096 022 0.105 0.015
chIN pt 1326-1335 20.37 0.00 0.062 0.008
ycf59 pt 1044 20.31 0.00 0.054 0.007
cbbX pt 0om 19.88 0.10 0.053 0.008
chiL pt 867 19.26 0.12 0.026 0.005
1ps4 pt 627 19.14 0.00 0.029 0.005
rpoB pt 3168 19.10 0.03 0.034 0.004
dnak pt 1809 19.02 0.1 0.030 0.004
clpC-Il pt 1155 18.87 0.09 0.020 0.004
atp8-orf228 mt 1294-1413 18.55 0.29 0.140 0012
chlB pt 1521-1524 1837 0.00 0.023 0.005
ThiS-rbcl. pt 314-330 18.15 0.00 0.052 0.011
nad3 mt 369 17.89 027 0.108 0.009
ycf36-petN pt 391-397 17.84 0.00 0.055 0.010
rps16 pt 255 17.65 0.00 0.119 0.025
coxl mt 1521 17.55 0.13 0.144 0018
ycf49 pt 294-297 16.84 0.00 0.035 0.007
ycf3 pt 504 1647 0.00 0.059 0.009
pl23 pt 360 16.11 0.00 0.062 0.007
cob mt 1161 15.25 0.00 0.207 0.024
ilvB-rpI35 pt 504-512 15.04 0.00 0.091 0.019
nad?2 mt 1482 14.71 034 0.039 0.005
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hyp.protein pt 645-699
psi3 pt 372
cox3 mt 813
cox2 mt 909
tufA pt 1230-1275
ps7 pt 456-477
atpG pt 477-483
rbcl. pt 1464
psak pt 204
rr23_mt mt 2235
rrnl6_mt mt 1491-1494
psbA pt 1083
185 nc 1790-1792

14.57 0.14 0.086 0.009
14.25 0.00 0.107 0.011
13.65 0.12 0.221 0.021
13.53 0.00 0.215 0018
13.36 0.08 0.067 0.009
12.55 0.00 0.160 0017
11.18 0.00 0.171 0014
10.04 0.00 0213 0.021
9.80 0.00 0.199 0.017
8.18 0.18 0.365 0.038
6.87 0.00 0.381 0.035
4.16 0.00 0.364 0.036
251 0.16 - -

Note: “-" indicated that the gene was not encoded by the organelle genomes. *Difference = SNP/Size; **Difference between IMET1 and CCMP531; ***A measure of
the similarity between two trees calculated from the two p-distance matrixes that each represents a phylogenetic tree; ****Square deviation of the corresponding

p-distance between two matrixes.

and CCMP531 due to their low SNP density (e.g. 0, 0,
2, 1 SNPs were respectively detected in cox1, rbcL, 18S
and ITS2). In fact, between IMET1 and CCMP531,
merely 87 and 129 SNPs were found in pt and mt ge-
nomes respectively. Moreover the SNP loci were phys-
ically distributed in a scattered manner, confounding
their utilization via PCR followed by sequencing for
phylogenetic analysis (Figure 1C, 1D).

To identify the most variable regions between IMET1
and CCMP531, the full lengths of IMET1 and CCMP531
organelle genomes were aligned. Only three highly vari-
able regions (rpsl1_mt-nad4, rps3_mt and cox2-rrnl6_mt)
were found (Table 3), each with at least 5 SNPs per 1,000
bases. There were 8, 7 and 14 SNPs in rpsli-nad4, rps3
and cox2-rrnl6, respectively and all these SNPs were syn-
onymous substitutions. On IMET1 and CCMP531, the
combined sequences of these three regions provided at
least two-fold higher resolution than the above-mentioned
presently used and new markers (Figure 5A). Thus com-
bination of the three regions, as Multiple-Locus Sequence
Typing (MLST) markers, can provide higher resolution
for intraspecies discrimination.

To further test whether these MLST markers can be
used for intraspecies phylogenetic reconstruction, we
PCR-amplified and sequenced the three candidate MLST
loci in CCMP1779, another N.oceanica strain whose nu-
clear genome along with partial plastid and mitochondrial
genomes was recently released [21]. Despite significant di-
vergence in the encoded proteome between IMET1 and
CCMP1779 (1.8% IMET1-specific genes and 7.2%
CCMP1779-specific genes; Methods), one of the presently
used markers and our newly proposed Nannochloropsis
species-level markers were able to discriminate the two
strains. However, one high-quality SNP (confirmed by re-

sequencing on both directions) was found in the cox2-
rrnl6_mt region of the IMET1 and CCMP1779 mt ge-
nomes. Thus our proposed MLST marker-set consisting
of rpsl1_mt-nad4, rps3_mt and cox2-rrnl6_mt, were able
to discriminate the three closely related N. oceanica
strains (Figure 5B). Moreover the reconstructed phylogeny
based on the marker-set was consistent with that based on
the whole-genome comparison (Figure 5B). These findings
thus suggested a strategy for high-resolution intra-species
typing of microalgae.

On the other hand, a total of 26 simple short repeats
(SSRs; or microsatellites) were identified in the organelle
genomes of IMET1 and CCMP531. Eleven of these SSRs
were from pt genomes and 15 from mt genomes (Table 4).
Between the two strains, 11 of the SSRs were shared.
However two strain-specific SSRs were found in IMET1
pt genome: one poly (G) 14 mononucleotide intergenic se-
quence between psbV and clpB and one multiple (TA) 7
dinucleotide sequence located in truK(uuu)-trnG(gcc).
Moreover a specific poly (A) 12 mononucleotide genic se-
quence located in rps3 was found specifically in CCMP531
mt genome. SSRs offer potential advantage for strain dis-
crimination as they are locus-specific, PCR-friendly and
highly polymorphic [72]. Thus the three specific SSRs
identified can be used to identify CCMP531 and IMET1.
As SSR loci can be strain-specific, a searchable database of
microalgal SSRs such as those reported here can be
established for high-resolution microalgal strain-typing.

Conclusion

The complete organelle genome sequences of seven strains
from six Nannochloropsis species enabled the first system-
atic analysis of organelle evolution within a microalgal
genus. Both pt and mt genomes of Nannochloropsis were
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Table 3 Intraspecies phylogenetic markers of the three Nannochloropsis oceanica strains of CCMP531, CCMP1779 and

IMET1

Region Location CCMP531

IMET1

CCMP1779 Synonymous/nonsynonymous

8512 G
8513 @
8555
8577

rps11_mt-nad4

A A -

nad4 8710
8720
8941

8956

synonymous
synonymous
synonymous

Synonymous

21403
21488
21583
21637
21682
21940

rps3_mt

synonymous
synonymous
Synonymous
Synonymous
synonymous

Ssynonymous

34621
34727
34756
34801
34866
34867
34870 -
34871 -
34880 A
34885 A
34898 T
34927

34934 @
34971 G
34995 A

cox2-rrlé6_mt

> N > O >» > > 4 ol N o 410

> >» 4 4 o 4 o 44> o o 4 0 O 4 > > 0> O -
> > 4 4 o 4 66 44> o o 4 0 Oj4 > > 0> o -

> > 4 > 0N
-4 > 4 > N

Note: “-" indicated that the mutation was located at a non-protein-coding region.

among the most compact known in stramenopiles, with
the absence of introns, tight packaging of genes and a pau-
city of disperse repeats. Being highly conserved in gene
content, gene size and gene order and strongly negatively
selected in protein-coding regions, the pt and mt genomes
were evolving at a rate 33% and 66%, respectively, of that
occurred in nuclear genomes.

In Nannochloropsis, the pt genome diversification
was driven by asymmetric evolution of two copies of
inverted repeats (IRa and IRb), while mt genome evo-
lution was shaped by a single evolution hotspot varied
in copy-number of a 3.5Kb-long, coxI-harboring re-
peat. Genomic engineering of plastids, the primary
energy production site in the cell, offers many op-
portunities to improve algal feedstock productivity.

Transgene integration into a plastid genome may occur
via homologous recombination of flanking sequences
used in vectors. However, plastid transformation vec-
tors are usually species-specifically designed, leading to
low efficiency and even intractability in other species
[73]. The high degree of conservation of pt and mt ge-
nomes suggested the feasibility of “universal vector”
based on the highly conserved intergenic spacer re-
gions. On the other hand, discovery of the evolutionary
hotspots (i.e. IR in the pt genomes and the large repeats
harboring coxI in the mt genomes) and the mechanism
underlying the polymorphism should guide rational
genetic engineering of plastids for possible phenotypic
trait improvement and even for de novo design of or-
ganelle genomes for a synthetic algal cell [74].
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Figure 5 Multiple locus sequence tag for high-resolution
phylotyping of three closely related N. oceanica strains. (A)
Comparison of the sensitivity and specificity among candidate
regions/markers for intra-species discrimination. The regions/markers
derived from genic and intergenic sequences of pt and mt of the
N.oceanica strains (IMET1 and CCMP531) were listed on the X axe.
The % nucleotide difference of each region/markers was calculated as
the index for sensitivity. The bootstrap values of the IMET1-CCMP531
branches in the sequence-specific phylogenetic trees (maximum
parsimony; MP) were shown as the index for specificity. *: presently
used markers. Arrow: the three regions (rps11_mt-nad4, rps3_mt and
cox2-rri16_mt) for Multiple-Locus Sequence Typing (MLST). (B)
Phylogeny of IMET1, CCMP531 and CCMP1779 as reconstructed from
three MLST loci. Grey background: identical loci in two strains. Blank
box and *: A base that is different between CCMP1779 and IMETT.
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This organelle phylogenome dataset, the most compre-
hensive for a microalgal genus to-date, also provided a first
opportunity to evaluate existing phylogenetic reconstruc-
tion and strain-typing strategies in microalgae. Our ana-
lysis showed that, despite their wide uses in distinguishing
among different microalgal genera, existing organelle gene
markers (cox1, cox2, psbA, rbcL and rrnl6_mt) and nuclear
gene markers (/752 and 18S) have limited power in
distinguishing closely related species due to the low SNP
densities in these genes. Exhaustive searches and evaluation
of all coding and non-coding sequences on the organelle ge-
nomes enabled us to propose the strategy for intra-genus
phylotyping of microalgae: (i) twelve sequence markers of
higher sensitivity than I7S2 (the most widely used
microalgal phylogenetic marker at present) for interspecies
phylogeny, (ii) genus-specific multi-locus sequence tag of
rpsll_mt-nad4, rps3_mt and cox2-rrnl6_mt for intraspecies
phylogenetic analysis, and (iii) several SSR loci for reliable
strain identification. As a result, new community resources
such as databases of genus-specific phylogenetic markers
and strain-identifier sequences (e.g. SSRs) should be devel-
oped for microalgae. The intragenus analysis strategy devel-
oped in this study may be generally applicable to other
microalgal genera. As screening, development and protec-
tion of microalgae frequently demand species-, strain- and
even isolate-level resolution, our findings may be valuable to
the expanding algal biotechnology community.

Methods

Algal culture and genomic DNA extraction
Nannochloropsis strains including N. oceanica CCMP531,
N. salina CCMP537, N. gaditana CCMP527, N. oculata
CCMP525, N. limnetica CCMP505 and N. granulata
CCMP529 were from the Provasoli-Guillard National
Center for Culture of Marine Phytoplankton (CCMP).
Nannochloropsis oceanica strain IMET1 was from the
University of Maryland Biotechnology Institute. All of
them were cultivated in liquid modified f/2 medium
containing sterilized seawater (salinityl.5%, w/v) at 25°C
under light—dark cycles of 12 h:12 h at an exposure inten-
sity of 40 pmol/m®sec. Genomic DNA was then extracted
via a published protocol [75].

Sequencing and finishing of the 14 organelle genomes

All the organelle genomes were extracted from the whole-
genome sequencing project of seven Nannochloropsis
strains. Firstly, the high-quality draft genome sequence of
Nannochloropsis oceanica strain IMET1 was generated
using a hybrid sequencing and assembly strategy that
combines the powers of pair-ended reads from 454 and
Solexa. The pt and mt genomes of IMET1 were assembled
from whole-genome shotgun reads using Newbler-v2.5.3
(Roche, Switzerland) and SOAPaligner-v2.21 [76] and then
were manually finished using the Phred-Phrap-Consed
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Table 4 Simple sequence repeat (SSRs) for intra-species discrimination

Repeat Length Region Locus Organelle Strain

A 10 Intergenic psbB-petF pt IMETT, 531
T 10 Genic rpsi2 pt IMETT, 531
T 10 Intergenic rpl16-rps3 pt IMETT, 531
A 10 Intergenic secA-rpl34 pt IMET1, 531
G 14 Intergenic psbV-cipC pt IMET1

TA" 14 Intergenic trnK(uuu)-trnG(gcc) pt IMET1

T 10 Intergenic tufA-rps7 pt 531

T 11 Genic cox! mt IMETT, 531
A 11 Genic atpl mt IMETT, 531
A 10 Intergenic orf321 mt IMETT, 531
A 10 Genic pl14 mt IMETT, 531
T 10 Intergenic trnD(gtc)-trnG(tcc) mt IMET1, 531
A 10 Genic rpsi13 mt IMETT1, 531
T 10 Intergenic trnK(ttt)-nad4L mt IMETT, 531
A 12 Genic 1ps3 mt 531

*

SSRs that are specifically present in IMET1 or CCMP531.

package [77-79]. The IMET1 pt and mt sequences were
circled into complete genomes with the support of high-
quality reads. The IMET1 organelle genomes then served
as a reference for assembly of other organelle genomes.
Secondly, draft sequences of the other six Nannochloropsis
strains were extracted from their whole-genome assem-
blies by blast using IMET1 sequence as a reference. Long
Range PCR Kit (Takara) was employed using total gen-
omic DNA as template to identify, confirm or bridge the
gaps. Direction of single- and large-copy segments were
also confirmed using PCR. Moreover the four junctions
between the single-copy segments and inverted repeats
were confirmed based on PCR product sequencing. Se-
quences from PCR products were assembled into the
shotgun assemblies using CodonCode Aligner-v3.7.1
(CodonCodeCorp., USA).

Sequence annotation and analysis

The organelle genomes were firstly annotated using
DOGMA [80]. Genes not detected by DOGMA were iden-
tified by Blastx (http://www.ncbinlm.nih.gov/BLAST) and
OREF Finder (http://www.ncbinlm.nih.gov/gorf). Ribosomal
RNA genes were identified using RNAmmer [81]. Transfer
RNA genes were identified using DOGMA and tRNAscan-
SE 1.21 [82], and then confirmed by ERPIN [83] and TFAM
Webserver-v1.3. Short repeat sequences including direct
and inverted repeats in pt genome were discovered using
REPuter [84] at repeat length of at least 30 bp and with a
Hamming distance of 3. Tandem repeats were detected by
Tandem Repeat Finder V4.0.4. Multiple sequence align-
ments of pt or mt genomes were performed via MEGA-
v4.1-ClustalW [85]. Full alignments with annotations were

visualized with VISTA [86]. The genetic divergence repre-
sented by p-distance was calculated by MEGA-v4.1. The
circular gene maps of organelle genomes were drawn by
GenomeVx [87] followed by manual modification.

Phylogenetic analysis

To reconstruct whole-organelle based phylogeny, pt and
mt datasets were assembled on the basis of genomes avail-
able in public databases and those newly sequenced in this
study. Deduced amino acid sequences of each set of
orthologous protein-coding genes were aligned using
MUSCLE 3.7 (multiple sequence alignment by log-
expectation) [88]. The ambiguously aligned regions in each
alighment were removed and optimized using GBLOCKS
0.91b [89] with the -b2 option (minimal number of se-
quences for a flank position) set to 13. The concatenated
protein alignments were used to infer phylogenetic trees
using PhyML 2.4.4 [90] with the approximate likelihood ra-
tio test [91]. Maximum Parsimony (MP) and Neighbor-
Joining (NJ) analysis was performed with MEGA4.1 [85].

Estimation of nucleotide substitution rate

A total of 37 mt and 110 pt protein-coding sequences
among the seven Nannochloropsis strains were respect-
ively aligned with MEGA-v4.1-Clustal W, using a max-
imum of 1,000 iterations for alignment refinement.
Nonsynonymous substitutions rate (Ka), synonymous sub-
stitutions rate (Ks) and their ratio were estimated using
the yn00O program of the PAML 4.4c [92] with the codon
frequencies model F3 x 4 as substitution matrix. Ka and
Ks were determined by the Nei-Gojobori method as
implemented in yn00.
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Identification of phylogenetic markers

To mine the SNPs, the two sets (pt and mt) of genome
sequences were respectively aligned with MEGA4.1-
ClustalW. The SNPs were validated manually. To con-
struct the phylogeny based on individual sequences, a total
of 230 pt and mt coding and non-coding regions were
employed to reconstruct phylogenetic trees by Maximum
Parsimony (MP) via Phylip-v3.69 [93]. CCMP537 was
assigned as the root for each of the trees. Then each of the
sequence-based phylogenetic trees was individually com-
pared with the corresponding pt or mt reference trees by
Topd (TOPological Distance; [94]). The Euclidean dis-
tance of p-distance matrixes was used as the quantitative
measure of the similarity between two trees (e.g. the test
tree and the reference tree). Those trees consistent with
reference trees were extracted to further analyze their
power of discrimination.

To screen for intra-species markers for the N. oceanica
strains, the organelle sequences of IMET1 and CCMP531
were aligned with MEGA4.1-ClustalW. Scatter diagram of
variable-site distribution was drawn by DnaSP 4.10.7 [95],
with a window length of 500 sites and a step size of 25 sites.
Those sections with S-value of at least 6 were selected as
highly variable regions. SNPs were validated by manual in-
spection and if necessary via targeted sequencing.

Accession numbers

The complete sequences of the 14 plastid and mitochon-
drial genomes were deposited at GenBank: KC598086 and
KC568456 for IMET1, KC598085 and KC568456 for
CCMP529, KC598088 and KC568458 for CCMP537,
KC598089 and KC568459 for CCMP505, KC598087 and
KC568460 for CCMP525, KC598084 and KC568461 for
CCMP527, and KC598090 and KC568462 for CCMP531.

Additional file

Additional file 1: Table S1. Comparison of gene contents in algal
plastid genomes. Table S2: Comparison of gene contents in algal
mitochondrial genomes. Figure S1: Whole-organelle-genome phylogeny
of Nannochloropsis. All available mt and pt genomes of algae in public
database to-date were included for the comparison. The trees were
based on concatenated protein sequences encoded on pt (A) or mt (B).
Numbers on the internal nodes represent bootstrap values (=50%) of
Maximum-Likelihood (ML), Maximum Parsimony (MP) and Neighbor-Joining
(NJ). Figure S2: Distribution of plastid (A) and mitochondrial (B) SNPs
among the seven Nannochloropsis strains. Figure S3: The nonsynonymous
(Ka) and synonymous (Ks) substitution rates of Nannochloropsis organelle
genes. (A) Plastid genes. (B) Mitochondrial genes. (C) Comparison of
sequence evolution rates among plastid, mitochondrial and nuclear genes.
Figure S4: Fine-scale structural variation of plastid IRa among the
Nannochloropsis strains. Insertions and deletions within the coding regions
of psbV and clpC were shown. Dot: bases that are identical among the five
strains. Grey background and dash: indels among the five strains. Blank box:
protein-coding regions.
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