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Drug resistance represents the major obstacle to get the maximum therapeutic benefit
for patients with esophageal cancer since numerous patients are inherently or adaptively
resistant to therapeutic agents. Notably, increasing evidence has demonstrated that
drug resistance is closely related to the crosstalk between tumor cells and the tumor
microenvironment (TME). TME is a dynamic and ever-changing complex biological
network whose diverse cellular and non-cellular components influence hallmarks and
fates of tumor cells from the outside, and this is responsible for the development of
resistance to conventional therapeutic agents to some extent. Indeed, the formation
of drug resistance in esophageal cancer should be considered as a multifactorial
process involving not only cancer cells themselves but cancer stem cells, tumor-
associated stromal cells, hypoxia, soluble factors, extracellular vesicles, etc. Accordingly,
combination therapy targeting tumor cells and tumor-favorable microenvironment
represents a promising strategy to address drug resistance and get better therapeutic
responses for patients with esophageal cancer. In this review, we mainly focus our
discussion on molecular mechanisms that underlie the role of TME in drug resistance in
esophageal cancer. We also discuss the opportunities and challenges for therapeutically
targeting tumor-favorable microenvironment, such as membrane proteins, pivotal
signaling pathways, and cytokines, to attenuate drug resistance in esophageal cancer.

Keywords: esophageal cancer, drug resistance, tumor microenvironment, chemotherapy, targeted therapy,
immunotherapy, chemoresistance, therapeutic response

INTRODUCTION

Esophageal cancer (EC) is the sixth leading cause of cancer-related death globally, with a dismal
overall 5-year survival of 20% (Lagergren et al., 2017; Bray et al., 2018). EC can be histologically
classified as esophageal squamous cell carcinoma (ESCC) or esophageal adenocarcinoma (EAC),
which has distinct pathogenesis, molecular characteristics, and geographical distribution (Cancer
Genome et al., 2017; Lagergren et al., 2017). Clinically, chemotherapy has been one of the major
therapeutic approaches in the trimodality therapy of EC; molecular targeted therapy and immune
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checkpoint inhibitors have been evaluating in preclinical and
clinical trials (van Hagen et al., 2012; Smyth et al., 2017,
2021; Yang et al., 2020). However, despite recent advances in
multidisciplinary management, the treatment of EC is still a
relentless challenge partly owing to the fact that numerous
patients are intrinsically insensitive or adaptively resistant to
therapeutic agents. Indeed, over 70% of patients with locally
advanced EC did not reach a pathological complete response
(pCR) after the neoadjuvant chemoradiotherapy, ultimately
leading to a risk of tumor relapse and poor prognosis (van Hagen
et al., 2012). These patients suffered from unacceptable adverse-
events and were delayed to surgery with virtually no therapeutic
benefits. Definitive chemoradiotherapy, as an alternative to
neoadjuvant chemoradiotherapy plus surgery, may offer a chance
of cure. Unfortunately, a subset of these patients still require
reintervention because of local relapse or distant metastasis
(Swisher et al., 2002; Ilson and Lordick, 2018). To overcome
these major challenges, the development of chemosensitizers and
combined therapy is urgently needed, which requires further
elucidation of the mechanism of drug resistance in EC.

The mechanism of cancer drug resistance is a complex
multifactor process, including blockage of drug distribution,
increased drug efflux, mutations of the drug target, DNA damage
repair, activation of alternative pro-tumorigenic signaling
pathways, evasion of programmed cell death, etc. (Holohan
et al., 2013). This not only depends on malignant hallmarks
of tumor cells, but also closely related to the aberrant state of
the tumor microenvironment (TME) and the crosstalk between
tumor cells and TME (Dalton, 1999). The solid tumor consists
not only of cancer cells and cancer stem cells but also tumor-
associated stromal cells (tumor-associated fibroblasts, immune
and inflammatory cells, endothelial cells, etc.) and non-cellular
elements (hypoxia, acidity, cytokines, extracellular matrix,
exosomes, etc.), collectively defined as the TME (Hanahan and
Weinberg, 2011; Hanahan and Coussens, 2012). Over the past few
decades, increasing evidence has demonstrated that TME plays
an important role in the initiation, progression, and therapeutic
response of human cancer (Dalton, 1999; Trédan et al., 2007;
Quail and Joyce, 2013). In this review, we mainly focus our
discussion on molecular mechanisms that underlie the role of
TME in drug resistance in EC. We also discuss the opportunities
and challenges for therapeutically targeting tumor-favorable
microenvironment, such as membrane proteins, pivotal signaling
pathways, and cytokines, to attenuate drug resistance in EC.

CELLULAR COMPONENTS

Cancer Stem Cells
It is increasingly evident that carcinogenesis initiates from a
particular subset of cells termed cancer stem cells (CSCs) which
express particular surface markers and have stem-cell-like traits,
including plasticity, quiescence, renewal, and drug resistance
(Batlle and Clevers, 2017). Although the theory of CSCs has not
yet been well-established, a plethora of studies have demonstrated
that CSCs, or cancer cells with stem-cell-like properties, were
more resistant to chemotherapy (Zhao, 2016). In EC, CSCs

protect themselves against cytotoxic agents partly by facilitating
the process of drug efflux. This self-protective mechanism is
frequently found among side population (SP) cells, a subset of
cells identified by flow cytometry that express specific surface
markers (Hadnagy et al., 2006; Huang D. et al., 2009; Zhao
et al., 2014). Although they are rare in TME, SP cells enrich
in CSCs and express high levels of ATP-binding cassette (ABC)
transporters, such as ABCG2 and ABCG5, which are responsible
for drug efflux and multidrug resistance (Gottesman et al., 2002;
Li et al., 2011). Studies demonstrated that expression of ABCG2
was significantly upregulated in esophageal CSCs, leading to
the resistance to cisplatin and 5-fluorouracil, as well as offering
a potential therapeutic target to avert chemoresistance (Cheng
et al., 2012; Yue et al., 2015). Beyond this, esophageal CSCs may
also have the ability to hinder the process of drug influx. A study
demonstrated that p75 neurotrophin receptor (p75NTR) + cells
have stem-cell-like properties, including cisplatin resistance,
and this was possibly due to the downregulation of copper
uptake protein 1 (CTR1), a major copper influx transporter in
mammalian cells (Huang S. D. et al., 2009). Taken together,
esophageal CSCs take advantage of the specific distribution
of membrane transporters to maintain the intracellular drug
concentration at a harmless level and avoid the cytotoxic effect
of chemotherapy (Figure 1A).

The resistance mechanism of esophageal CSCs is driven by
multiple crucial signaling pathways (Figure 1A). Notch signaling
is a cell-fate-determination pathway participating in various
aspects of cell biology and interactions between cancer cells and
TME (Meurette and Mehlen, 2018). Notch signaling also plays a
vital role in the initiation and progression of EC (Song et al., 2014;
Kunze et al., 2020). Notably, Notch signaling was demonstrated
to enhance chemoresistance in both ESCC and EAC (Wang
et al., 2014; Kunze et al., 2020). The aberrant activation of
Notch signaling is partly owing to overexpression of Protein
arginine methyltransferase 1 (PRMT1) which mediates mono and
asymmetric dimethylation of the guanidino nitrogens of arginyl
residues (Tang et al., 2000). Histone H4R3me2a mediated by
PRMT1 promotes proliferation of CSCs and activates Notch and
Wnt/β-catenin signaling, leading to enhanced drug resistance
(Zhao et al., 2019a). Moreover, somatic mutations on the Notch1
gene were commonly found in patients with partial responses or
stable diseases after neoadjuvant chemotherapy (Liu et al., 2020).
Yes-associated protein (YAP), a Hippo pathway coactivator,
confers stem-cell-like properties on EC cells by upregulating
SOX9 (Wang L. et al., 2019). Notably, YAP induces the expression
of EGFR, which is associated with the resistance to 5-fluorouracil
and docetaxel (Song et al., 2015). Inhibition of YAP can reduce
stem-cell-like properties and is a potential therapeutic strategy to
attenuate drug resistance in EC. In addition, the maintenance of
drug resistance in esophageal CSCs also depends on the activation
of various critical signaling pathways, such as Wnt/catenin, TGF,
and hedgehog pathway (Liu et al., 2017; Wang D. et al., 2019;
Zhao et al., 2019b).

Like other cancers, the identification of esophageal CSCs
is based on the specific expression of stemness-related surface
markers, including CD24, CD44, CD90, CD133, CLDN4,
EpCAM, OV6, and p75NTR, some of which are associated with
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FIGURE 1 | Resistance mechanisms of cellular components, including (A) cancer stem cells, (B) cancer-associated fibroblasts, and (C) immune inflammatory cells,
in the tumor microenvironment in EC.

drug resistance and have the potential to predict the therapeutic
response (Yamaguchi et al., 2016; Jiménez et al., 2017; Liu et al.,
2017; Wang et al., 2017; Wang D. et al., 2019; Sun et al., 2018;
Xu et al., 2018; Lin et al., 2019; Figure 1A). p75NTR, also
referred to as CD271, is a receptor of the neurotrophic growth
factor family that mediates various cell outcomes, such as cell
apoptosis during neurodevelopmental processes (Barker, 2004).
In EC, p75NTR is a specific marker for CSCs at mitotic quiescent
periods; p75NTR + cells exhibit enhanced drug resistance and
have the potential to serve as therapeutic targets (Huang S.
D. et al., 2009; Yamaguchi et al., 2016). OV6 + is a potential
marker for esophageal CSCs, which has been demonstrated
to be associated with drug resistance (Wang et al., 2017). In
OV6 + cells, autophagy is significantly activated to maintain
stem-cell-like properties, including drug resistance, by stabilizing
ATG7-dependent B-catenin. Beyond these, CLDN4 is a CSC
marker that has the potential to predict therapeutic response
after chemotherapy, which is of great clinical importance to

select proper candidates for chemotherapy (Lin et al., 2019).
Nevertheless, most of the studies to date only focused on
demonstrating the guilt-by-association between drug resistance
and specific expression of surface markers. In-depth analyses
regarding the causal association and clinical applicability of CSC
markers in the chemotherapeutic setting are urgently needed.

Cancer-Associated Fibroblasts
Cancer-associated fibroblasts (CAFs), characterized by high
expression of α-smooth muscle actin and fibroblast activation
protein-α, represent a dominant component of tumor stroma
in the TME and play prominent functional roles in cancer
progression and drug resistance (Kalluri, 2016). Normal
fibroblasts (NFs) are usually quiescent and can be activated
in response to specific circumstances, such as wound healing,
leading to increased production of TGF-β and a highly contractile
phenotype (Rockey et al., 2013). Like many other cancers, the
tumorigenesis of EC is associated with chronic inflammatory
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and mucosal injury. Mediated by functional molecules, such
as microRNAs and lncRNAs, NFs are transformed into
CAFs and confer drug resistance on surrounding EC cells
by secreting soluble factors and stimulating pro-tumorigenic
signals (Tanaka et al., 2015; Tong et al., 2020). Interleukin 6
(IL-6), a multifunctional cytokine, not only mediate immune
and inflammatory response but also participate in various
hallmarks of cancer, including drug resistance. CAFs are major
sources of IL-6 in the TME, which enhance the chemoresistance
of ESCC cells by upregulating C-X-C motif chemokine
receptor 7 (CXCR7) through STAT3/NF-κB pathway (Qiao
et al., 2018). CAFs-derived IL-6 also confers resistance to
chemoradiotherapy on EAC patients. Interestingly, although
serum IL-6 cannot stratify patients with different response
to neoadjuvant chemoradiotherapy, circulating ADAM12 is
significantly associated with poor response to chemoradiation,
indicating its potential to predict therapeutic response in
patients with EAC (Ebbing et al., 2019). Plasminogen activator
inhibitor-1 (PAI-1) is a well-known cytokine that functions
as a principal inhibitor of vascular fibrinolysis (Ghosh and
Vaughan, 2012). Cisplatin-induced DNA damage in CAFs
promotes the paracrine of PAI-1 and activate AKT and ERK1/2
pathway in EC cells, eventually leading to enhanced cancer cell
proliferation and reduced cytotoxic effect of cisplatin (Che et al.,
2018). Furthermore, TGF-β signaling is involved in crosstalk
between cancer cells and CAFs that protect ESCC cells from
several conventional chemotherapeutic agents, likely due to
the transcriptional activation induced by FOXO1 which can
stimulate TGF-β1 promoter activity (Zhang et al., 2017). In
the context of molecular targeted therapy, FGF in fibroblast
supernatant may play a role in attenuating the effect of lapatinib
on ESCC cells, which can be abrogated by additionally treating
it with FGFR inhibitor (Saito et al., 2015). Taken together,
the CAF secretome, as well as corresponding receptors on
cancer cells, represents attractive therapeutic targets that
hold the promise to address drug resistance in a combined
manner (Figure 1B).

Immune Inflammatory Cells
The programmed death 1 (PD-1) pathway serves as a critical
immune checkpoint to limit immune responses mediated by
T cells in the TME. Tumor cells can evade the immune
responses by two ligands, programmed death ligand 1 (PD-
L1) and programmed death ligand 2 (PD-L2), both of which
engage the PD-1 receptor and inhibit T-cell activation, known
as tumor immune evasion (Freeman et al., 2000; Latchman
et al., 2001; Juneja et al., 2017; Dong et al., 2018; Zhao
and Huang, 2020). The discovery of tumor immune evasion
paves the way to treat cancer in an immune-checkpoint-
based manner, which is now one of the most promising
therapeutic strategies for various types of cancer (Hamid et al.,
2013; Borghaei et al., 2015; Nanda et al., 2016). Currently,
immune checkpoint inhibitors, represented by nivolumab and
pembrolizumab, have achieved initial success in the treatment
of advanced or refractory EC (Hong and Ding, 2019; Kato
et al., 2019; Shah et al., 2019). Due to low response rates
among EC patients, however, further efforts are needed to

elucidate the resistance mechanism of immunotherapy. Among
all the patients with EC, less than 20% of them express PD-
L1 (Okadome et al., 2020), which means a certain number of
patients with EC are hard to get any therapeutic benefit from
immune checkpoint inhibitors. Moreover, the expression of PD-
L1 on the cell surface was found to be highly heterogeneous
in EC (Yan et al., 2019). These facts are responsible for the
low response rates of immunotherapy. On the other hand,
although immune inflammatory cells infiltrating in the TME
are considered as a double-edged sword for tumor progression
(Hanahan and Weinberg, 2011), the lower status of tumor-
infiltrating lymphocytes (TILs) has been demonstrated to be
associated with unfavorable clinical outcomes of patients with
EC (Yagi et al., 2019a; Däster et al., 2020). To overcome
these challenges, identifying reliable biomarkers to select proper
populations who can get the maximum therapeutic benefit is
of great clinical importance. Notably, the combination of PD-
L1 expression and TILs status has the potential to serve as
predictive biomarkers for patients with EC (Yagi et al., 2019a).
PD-L2 has also been demonstrated to be associated with a
worse prognosis in EC (Ohigashi et al., 2005; Okadome et al.,
2020). The identification of these biomarkers contributes not
only to prognosis prediction but also to patient classification and
selection (Baba et al., 2020). Based on PD-L1 expression and
T-cell infiltration, a cancer stratification model including four
types of TME status has been proposed to tailor ideal immune-
based therapeutic strategy (Teng et al., 2015).

Furthermore, combining immunotherapy with conventional
therapy has the potential to overcome drug resistance and
provide better therapeutic benefits (Gotwals et al., 2017; Kelly
et al., 2018). EC cell lines treated with 5-fluorouracil exhibits
a high level of PD-L1, which provides factual bases for the
combination of chemotherapy and immunotherapy to some
extent (Van Der Kraak et al., 2016). It is also evident that
neoadjuvant chemotherapy could induce CD4 and CD8 T cells in
the TME of EC (Tsuchikawa et al., 2012). Moreover, a recent study
found that paclitaxel-nedaplatin could induce the reconstruction
of TILs, which was partly due to the migration of T cells from
peripheral blood to the TME (Zhang et al., 2018). These findings
further unraveled the modulatory role of chemotherapy in T cell
immune response and provided theoretical bases for the rational
combination of chemotherapy and immunotherapy. That is, in
addition to their cytotoxicity, some chemotherapeutic agents also
have the potential to be used as sensitizers for immunotherapy.
Importantly, adverse events (AEs) must be taken into account,
especially in the context of combined therapy. Beyond these,
inducing anti-tumor immune responses by cancer vaccines is
another therapeutic strategy. A recent clinical trial reported
that vaccination with the CPV S-588410 induced functional
CD8 + and CD4 + TILs, as well as PD-L1 expression, in
EC, indicating that S-588410 vaccine combined with PD-L1
inhibitors might be an effective therapeutic option (Daiko et al.,
2020; Figure 1C). Moreover, a recent study found that high
density of tumor-associated macrophages (TAMs) was associated
with increased PD-L1 expression and a worse outcome in EC,
indicating a rational combination therapy targeting TAMs and
PD-L1 (Yagi et al., 2019b).
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FIGURE 2 | Resistance mechanisms of non-cellular components in the tumor microenvironment in EC.

NON-CELLULAR COMPONENTS

Hypoxia
Within the TME, the formation of the hypoxic region is usually
associated with the imbalance between the rapid expansion of
solid tumors and abnormal structure and function of tumor
vasculature (Jain, 2005). Insufficient blood supply, on the one
hand, influences the effective delivery of antitumor drugs, and
on the other hand, alters the local concentration of oxygen
and other nutrients, resulting in compromised metabolism and
reduced drug sensitivity in cancer cells (Tang et al., 2020).
Hypoxia confers drug resistance through various signaling
pathways involved in apoptosis, autophagy, DNA damage repair,
mitochondrial activity, p53, and drug efflux (Graeber et al.,
1996; Jing et al., 2019). Hypoxia-inducible factors (HIFs) are
transcription factors that represent the pivotal mediator of the
hypoxic response in the cellular microenvironment and play key
roles in resistance to conventional anticancer therapy (Rohwer
and Cramer, 2011). In EC, expression of HIF-1 is correlated
with venous invasion, VEGF expression, and microvessel density
(Kimura et al., 2004). Alleviation of the hypoxic condition in EC
is usually accompanied by downregulation of HIF-1 expression
and complete response to chemotherapy (Lee et al., 2015).
Clinically, combined with p53 and p21, overexpression of HIF-
1 is a sensitive indicator to predict treatment response after
chemoradiotherapy (Sohda et al., 2004). However, the effect of
HIF-1 on drug resistance in EC is likely bidirectional (Figure 2).
By single-cell RNA-seq, a recent study found that paclitaxel-
resistant EC cells were characterized with lower expression
of HIF-1 signaling genes, and that the chemoresistance could

be attenuated through activating HIF-1 signaling by using
carfilzomib, indicating a rational therapeutic combination of
carfilzomib and paclitaxel (Wu et al., 2018).

Cytokines
Cytokines serve important roles in intra- or intercellular signal
transduction by autocrine, paracrine, and endocrine fashions. IL-
6 is a principal mediator involved in the acute-phase response
to injury and infection (Xing et al., 1998). Besides its pro-
inflammatory functions, IL-6 also plays a crucial role in drug
resistance in human cancer. As mentioned above, IL-6 derives
from stromal cells in the TME, such as CAFs, and confer
chemoresistance on EC cells via multiple pathways (Qiao et al.,
2018; Ebbing et al., 2019). Indeed, the upregulation of IL-6 can
be found in Barrett’s esophagus, a widely accepted precancerous
lesion of EAC, and enables esophageal epithelia resistant to cell
apoptosis, leading to a higher risk of carcinogenesis (Dvorakova
et al., 2004). EC cells treated with cisplatin exhibit higher
expression of IL-6, which promotes phosphorylation of STAT3
and thereby confers cancer hallmarks, including evasion of
apoptosis and chemoresistance, on themselves or surrounding
EC cells in autocrine or paracrine manners (Sugimura et al.,
2012). Notably, microRNA let-7 can restore the efficacy of
chemotherapy by targeting IL-6/STAT3 prosurvival pathway
activated by cisplatin (Figure 2). Therefore, treating with let-
7 may have the potential to prolong the duration of cytotoxic
effect in the TME, and the functional role of let-7 in tumor-
associated stromal cells requires further investigations. In
addition to IL-6, the serum level of IL-6R is also associated with
chemoresistance (Makuuchi et al., 2013). EC patients with an
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elevated level of serum IL-6R are more resistant to neoadjuvant
chemoradiotherapy, indicating the clinical value of IL-6R to serve
as a biomarker for patient selection. IL-1β, another member of
the interleukin family, promotes tumor development by driving
chronic inflammation, tumor angiogenesis, and induction of
immunosuppressive cells (Bent et al., 2018). In EC, IL-1β

expression was found to be correlated with chemoradiotherapy
response (Chen et al., 2012). The same study also demonstrated
that caffeic acid phenethyl ester (CAPE), a pro-inflammatory
natural chemical compound that can specifically block NF–κB
and attenuate IL-1β expression, increased the sensitivity of EC
cells to cisplatin. However, to date, the resistance mechanism of
IL-1β in EC still lacks in-depth investigation.

Growth Factors
Growth factors typically function as signaling molecules that
mediate intercellular communication and trigger various critical
cellular processes, such as cell proliferation and differentiation
(Werner and Grose, 2003; Hicklin and Ellis, 2005; Normanno
et al., 2006; Pollak, 2008; Turner and Grose, 2010). Unfortunately,
in the context of TME, the blocking effect of growth factors on
cell apoptotic pathways leads to stronger resistance to anticancer
drugs, since the cell apoptotic program is considered a natural
barrier preventing normal cells transform into malignancy
(Adams and Cory, 2007). In EC, IGF-1 inhibits cell apoptosis
induced by a variety of common chemical agents, including
cisplatin, 5-fluorouracil, and camptothecin (Liu et al., 2002).
Mechanistically, IGF-1, partly induced by Id1, can upregulate
the expression of survivin via PI3K/Akt and casein kinase
2 signaling pathways, leading to inhibition of Smac/DIABLO
release and activation of caspases, which are responsible for 5-
fluorouracil-induced cell apoptosis (Juan et al., 2011; Li et al.,
2014, 2016; Figure 2). The secretion of IGF-1 depends on both
autocrine and paracrine manners. Blocking IGF-1R may be a
useful method to not only retard tumor growth, but also make
EC cells more sensitive to chemotherapy. Indeed, cixutumumab,
a monoclonal antibody against IGF-1R, was demonstrated to
significantly inhibited EC progression and metastasis, as well as
chemoresistance to cisplatin and 5-fluorouracil (Li et al., 2014).
Targeting IGF-2 or PI3K/Akt pathway is also a promising way
to enhance chemosensitivity in EC. A study demonstrated that
IGF-2-neutralizing antibody and PI3K/Akt pathway inhibitors
could inhibit capacities of self-renew and chemoresistance to 5-
fluorouracil in CD133-positive esophageal CSCs (Xu et al., 2018).
Apart from the IGF family, EGFR and FGFR also contribute
to drug resistance in EC. As mentioned above, YAP1 can
transcriptionally upregulate EGFR, which is of importance to
chemoresistance in EC (Song et al., 2015). Targeting YAP1
by verteporfin reduces the expression of YAP and EGFR and
makes EC cells more sensitive to cytotoxic agents. Moreover,
FGFR inhibitors can reduce FGF-mediated lapatinib resistance,
although the mechanism is as yet unknown (Saito et al., 2015).

Exosomes
Exosomes are a category of extracellular vesicles comprising
various bioactive molecules, such as proteins, lipids, and nucleic
acids. Recent advances in exosome-based biology processes have

opened up a whole new range of intercellular communications
within the TME (Valadi et al., 2007). Typically, functional
molecules derived from host cells can invade nearby recipient
cells through exosome-based transfer, resulting in the diffusion
of malignant hallmarks (Melo et al., 2014). In EC, microRNAs
and lncRNAs usually take advantage of this mode of action
to facilitate drug resistance. For example, miRNA-193, one of
the upregulated microRNAs in exosomes, was demonstrated
to attenuate cisplatin-induced cell cycle inhibition to enhance
chemoresistance in EC (Shi et al., 2020). Moreover, as mentioned
above, EC-cell-derived lncRNA POU3F3 could enter into NFs
via exosome-based transfer to induce their activation, which
enhanced cisplatin resistance in EC in an IL-6-dependent
manner (Tong et al., 2020). In terms of molecular targeted
therapy, exosome-mediated transfer of lncRNA PART1 could
competitively bind to miRNA-129 in recipient EC cells to
upregulate Bcl-2 and inhibit cell apoptosis mediated by Bax,
caspase-3, and c-PARP, leading to gefitinib resistance (Kang
et al., 2018; Figure 2). Due to intratumoral heterogeneity, the
sensitivity of cancer cells to therapeutic regimens is diverse. The
spread of drug resistance in the TME is, at least in part, ascribed
to exosome-mediated intercellular communication.

CONCLUSION AND FUTURE DIRECTION

It is paramount to understand the underlying mechanism of
drug resistance in EC, of which the TME is an indispensable
participant. TME is a dynamic and ever-changing complex
biological network, whose diverse cellular and non-cellular
components influence specific traits and fates of tumor cells
from the outside, and this is responsible for the development of
resistance to conventional therapeutic agents to some extent. It
is now evident that the formation of drug resistance in EC is a
multifactorial complex process involving not only cancer cells but
CSCs, tumor-associated stromal cells, hypoxia, soluble factors,
extracellular vesicles, etc. CSCs, with multiple upregulated
stemness markers and activated pro-survival signaling pathways,
are a major component of resistant subpopulations in the TME.
Given that chemotherapy or molecular targeted therapy are
difficult to fully eradicate CSCs, poor pathological response and
tumor relapse can be considered as inevitable posttreatment
events. Autocrine and paracrine activities of CAFs and exosome-
mediated intercellular communication can exacerbate the spread
of drug resistance from resistant cells to sensitive cells. This
multipath-dependent resistance makes treatment even trickier.

Looking forward, although adverse events are inevitable,
combination therapy still represents a promising strategy to
overcome the obstacle. By targeting crucial molecules in the TME,
different combinations among chemotherapy, molecular targeted
therapy, and immunotherapy hold the promise to thoroughly
eradicate EC cells, which require a more comprehensive
elucidation of the TME in EC. The heterogeneity within the TME,
as well as individual differences, limit the general implementation
of antitumor drugs to clinical scenarios. Therefore, it is critical
to identify reliable microenvironmental biomarkers that can
predict therapeutic response before initial treatment. Although
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conventional therapy, including surgery, radiotherapy, and
chemotherapy are still predominant in the clinical management
of EC, an increasing number of preclinical and clinical research
will hopefully translate to novel, safe, and effective clinical
treatment options in the foreseeable future.
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