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Abstract: Electrospun nanofiber with interconnected porous structure has been studied as a promis-
ing support layer of polyamide (PA) thin-film composite (TFC) forward osmosis (FO) membrane.
However, its rough surface with irregular pores is prone to the formation of a defective PA active
layer after interfacial polymerization, which shows high reverse salt leakage in FO desalination.
Heat-curing is beneficial for crosslinking and stabilization of the PA layer. In this work, a nanofiber-
supported PA TFC membrane was conceived to be cured on a hot water surface with preserved
phase interface for potential “defect repair”, which could be realized by supplementary interfacial
polymerization of residual monomers during heat-curing. The resultant hot-water-curing FO mem-
brane with a more uniform superhydrophilic and highly crosslinked PA layer exhibited much lower
reverse salt flux (FO: 0.3 gMH, PRO: 0.8 gMH) than that of oven-curing FO membrane (FO: 2.3 gMH,
PRO: 2.2 gMH) and achieved ∼4 times higher separation efficiency. It showed superior stability
owing to mitigated reverse salt leakage and osmotic pressure loss, with its water flux decline lower
than a quarter that of the oven-curing membrane. This study could provide new insight into the
fine-tuning of nanofiber-supported TFC FO membrane for high-quality desalination via a proper
selection of heat-curing methods.

Keywords: forward osmosis; thin-film composite; electrospun nanofiber; interfacial polymerization;
hot-water-curing

1. Introduction

Water reuse is a feasible and effective way to alleviate water scarcity caused by high
population pressure and rapid economic growth. In recent years, membrane technology,
a mild physical process, has become an important class of water treatment methods due
to its high separation accuracy and satisfying effluent quality [1,2]. The forward osmosis
(FO) process, inspired by the natural osmosis phenomenon, can spontaneously occur when
driven by the osmotic pressure difference (i.e., concentration difference) across the selective
semipermeable membrane. It emerges with its distinctive advantages of lower pollution
tendency, higher resilience after cleaning and lower energy consumption than conventional
pressure-driven membrane technologies. FO technology has shown intriguing potentials
in various application fields, such as desalination, wastewater treatment, food and drug
concentration, and power generation [3–6].

Currently, the primary challenge faced by FO technology is the qualified membranes
for long-term practical applications [7,8]. The thin-film composite (TFC) membrane, which
is composed of a dense polyamide (PA) active layer for selectivity and a porous support
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layer, is the mainstream of FO membranes. Typically, the ultrathin (hundreds of nanometers
thick) PA active layer is synthesized by interfacial polymerization between two monomers
in two immiscible phases, amine monomer (m-phenylenediamine, MPD) from the aqueous
phase and acid chloride monomer (trimesoyl chloride, TMC) from the organic phase [9–11].
Conventionally, the support layer featured sponge- and finger-like pores is prepared via
the phase-inversion method. The FO process can be operated under two modes, with
the PA active layer facing feed solution (FO mode) or facing draw solution (PRO mode),
respectively. The distinctive internal concentration polarization (ICP) during FO operation
happens when the draw solution is diluted in the support layer by permeate water under
FO mode or when the solutes from the feed solution are intercepted at the interface between
the support layer and the inner surface of the active layer (PRO mode). Therefore, the phase-
inversion support with tortuous and closed porous structure is prone to severe ICP due to
the resistance to solute diffusion, and thus lead to a decrease in the concentration difference
across the FO membrane and result in a decline of the effective osmotic driving force. The
structural parameter (S = tτ/ε) was used to determine the mass transfer resistance of the
support layer, which is related to its thickness (t), pore tortuosity (τ) and porosity (ε). In
the past decade, electrospun nanofiber membrane with a lower S value, owing to its high
porosity, open and porous structure, which can favor the mass transfer and the alleviation
of ICP inside the membrane, has been emerged as an effective alternative to the traditional
phase-inversion support [12–15].

Nonetheless, the structures and properties of PA layers are often affected by the
beneath porous support during interfacial polymerization [16–19]. The phase-inversion
support normally features a relatively smooth surface with small and uniform pore sizes,
which is more favorable for the stable deposition of an active polyamide layer formed
via interfacial polymerization. The wide pore size distribution and relatively rough mor-
phology of the nanofiber support hinder the formation of stable defect-free PA layers
to some extent, resulting in low salt rejection in desalination [20]. Current studies on
nanofiber-supported PA-TFC FO membranes focus more on the amelioration of surface
structure and property of the nanofiber support, such as electrospinning process control,
nanofiber surface modification, nanomaterials incorporation, phase-inversion or coating
interlayer construction [21–27]. Furthermore, separation performances of TFC membranes
depend mainly on the structures and properties of PA active layers. As the PA layer is
particularly important for the durable high-performance FO operation of an electrospun
nanofiber-supported TFC FO membrane, more fundamental and deeper thoughts and
studies on relevant influential factors need to be focused and implemented to improve the
integrity and stability of PA active layers.

An interfacially polymerized PA active layer normally consists of crosslinked struc-
tures with amide bonds (−CO−NH−) produced by the main reaction of MPD and TMC
and linear chains with carboxyl (−COOH) end groups derived from the side reaction
between TMC and water. A higher crosslinking degree is demonstrated to be linked to
a high rejection performance of TFC membranes [28–30]. Currently, the optimization on
reaction conditions (monomer concentration, solvents, additives, time, temperature and
humidity, etc.) during interfacial polymerization and post surface treatment of the as-made
PA active layer, such as coating/grafting modification and solvent treatment, have been
studied extensively for a better separation performance [31–38]. However, little research
has focused on the effect of heat-curing on the PA layer formation, which was also reported
to play an important role in fabricating less-defective PA layers with modified surface
chemistry and structural properties. This could promote the production of crosslinked PA
with continued polymerization within a suitable time at a moderately high-temperature.
Meanwhile, residual solvents could evaporate quickly to terminate the interfacial reaction
and avoid the formation of carboxylic PA.

Currently, there are two typical heat-curing methods applied to prepare PA active lay-
ers, hot-air-curing (oven-curing) and hot-water-curing. For example, Azizi et al. reported
using an oven to heat-cured the PA layer at 80 ◦C for 10 min after interfacial polymeriza-
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tion, and the salt rejection of the resulting membrane possessing higher crosslinking was
superior to that without heat treatment [39]. Zhan et al. Ghosh et al., and Han et al. respec-
tively investigated the effects of curing conditions (temperature, time) on the morphologies
and performances of the as-prepared PA-TFC membranes in nanofiltration (oven-curing),
reverse osmosis (oven-curing) and FO (specific hot-water-curing) [40–42]. In addition,
several studies demonstrated that conducting different heat-curing methods would make a
significant difference in surface morphologies, physicochemical properties and separation
performances of reverse osmosis membranes [43,44]. However, as almost all related studies
were based on the phase-inversion support, none are on the electrospun nanofiber support.
Though there may be no substantial difference in the PA layer formation with a specific
heat-curing method using phase-inversion support or electrospinning support, essential
studies on the effect of different heat-curing processes on the morphologies, properties and
particularly the FO performances of nanofiber-supported TFC membranes are absent. No-
tably, Obaid et al. found that, compared to hot-air-curing and non-curing, hot-water-curing
endowed the thin PA layer activated nanofibrous membrane with better hydrophilicity
and higher oil/water separation performance. The authors also proposed that the residual
MPD molecules absorbed in nanofibers bulk, or free in voids of nanofiber networks, could
be able to continue to react sufficiently with TMC during heat-curing in the presence of
water [45].

The TFC FO membrane needs an intact and dense polyamide selective layer. Moreover,
research on hot-water-curing seldom notes that whether the membrane was immersed in
hot water or in other ways. Inspired by previous literature, we conceived that floating the
membrane on the surface of hot water might preserve the interface for possible further
strengthened polymerization at high-temperature in the heat-curing process, and thus to
promote the reaction between the residual active monomers to form smooth “patches” at
the interface of the active and support layer, especially at possible defective sites of the
polyamide layer. Specifically, two heat-curing methods (oven-curing and hot-water-curing)
were employed to post-treat the PA layers constructed on the electrospun polyacrylonitrile
(PAN) nanofiber support via interfacial polymerization. Surface morphology, roughness
and hydrophilicity of the as-prepared TFC membranes were characterized by scanning
electron microscope (SEM), atomic force microscopy (AFM) and water contact angle (WCA)
analysis. X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spec-
troscopy (FTIR) spectral measurements were applied to calculate the crosslinking degrees
of the PA layers and their influences on the damage evolution behaviors after tensile tests
were investigated. The structure–activity relationship between the as-prepared membranes
with different heat-curing methods and their FO performances was explored with different
draw solutes (NaCl or MgCl2). The stability of the nanofiber-supported TFC membranes
was evaluated according to the flux decline after 16 h FO operation. Furthermore, possible
formation mechanisms of the nanofiber-supported PA active layers post-treated by dif-
ferent heat-curing processes were proposed. This work aims to offer some references to
the fine-tuning preparation of electrospun nanofiber-supported TFC FO membrane via a
proper heat-curing process.

2. Materials and Methods
2.1. Materials and Chemicals

Polyacrylonitrile (PAN, Mw = 90,000 g/mol) was provided by Kunshan Hongyu
Plastic Co. (Suzhou, China). Analytical grade N, N-dimethylformamide (DMF), N, N-
dimethylacetamide (DMAC), sodium chloride (NaCl), magnesium chloride (MgCl2·6H2O)
and hexane were obtained from Sinopharm Chemical Reagent Co. Ltd. (Shanghai, China).
Chemicals used in PA formation: MPD (>99%) and TMC (98%) were purchased from
Sigma-Aldrich (St. Louis, MO, USA). All water used in this work was deionized (DI) water.
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2.2. Membrane Preparation

The preparation process of the nanofiber-supported TFC FO membrane is shown in
Figure 1, which was divided into three steps: (1) electrospinning of PAN nanofiber support
layer according to our previous work [12]; (2) interfacial polymerization of the PA active
layer; (3) heat-curing (oven-curing/hot-water-curing).
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Figure 1. Schematic diagram of the preparation process of nanofiber-supported thin-film composite
(TFC) forward osmosis (FO) membranes via different heat-curing methods.

In detail, an ultrathin PA active layer was synthesized on the PAN nanofiber support
via interfacial polymerization between MPD and TMC. The aqueous MPD and organic
TMC solutions were freshly prepared in brown screw-capped bottles just before use by
stirring and ultrasonication at room temperature in the dark. First, the nanofiber support
membrane (11 cm × 15 cm) was clamped between a Teflon plate and a frame. 2% (w/v)
MPD solution was poured on the top surface of the membrane to allow submersion for
2 min. Afterward, excess MPD solution was drained from the support surface, and the
wet support was taken out to exclude air bubbles within the membrane and achieve a
proper surface state using an air knife. Then, the nanofiber support was fixed again, and
0.15% (w/v) TMC in hexane was poured onto the upper surface of the support for about
1 min to allow complete reaction. Finally, the obtained TFC membrane was prepared
(1) without curing; (2) curing in a hot-air oven at 80 ◦C for 10 min; and (3) curing by
floating on a hot water bath (60, 70, 80, 90 ◦C) for a certain time (2, 4, 6, 8, 10 min). All the
membranes were stored in DI water at 4 ◦C prior to use, and the non-curing, oven-curing
and hot-water-curing membranes were defined as n-TFC, o-TFC and w-TFC, respectively.

2.3. Membrane Characterization

The surface and cross-section morphology of all the as-prepared nanofiber-supported
TFC membranes via different heat-curing processes were observed with a field emission
scanning electron microscope (FESEM, S-4800, Hitachi, Tokyo, Japan) at an accelerating
voltage of 5 kV. All samples were sputter-coated with a thin gold layer for better imaging.
The ethanol wetted membranes were frozen in liquid nitrogen for a fast brittle fracture to
obtain a smooth cross-section. Images of epoxy resin-embedded and sectioned ultrathin
slices of the cross-sectional structure of the prepared TFC membranes were captured
by transmission electron microscope (TEM, Talos-S, FEI, Hillsboro, OR, USA) under an
operating voltage of 100 kV. The fine microstructure and surface roughness (average
roughness: Ra; root-mean-square roughness: Rq; maximum roughness: Rmax) of the
PA layers were characterized by AFM (Dimension Icon, Bruker, billerica, MA, USA) in
noncontact mode over the projection area of 5 µm × 5 µm. Dynamic WCA on the surface
of the active layers and nanofiber supports over time (s) were determined by a sessile drop
method using a contact angle tester (Precise Test, Dongguan, China) at room temperature,
and the volume of a water droplet was fixed at 2 µL. The surface atomic compositions of
PA layers were analyzed by applying XPS (Axis Supra, Kratos, Manchester, Britain). The
chemical functional groups of all membranes were scanned under Transmission mode
using FTIR (iS10, Thermo, Waltham, MA, USA) in the wavenumber range of 400–4000 cm−1

with a resolution of 2 cm−1, and the number of scans was 16. The tensile tests of TFC
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membranes were conducted on a universal tensile machine (AGS-X, Shimadzu, Kyoto,
Japan). The thicknesses of the membranes were measured using an electronic thickness
gauge, and a span length of 10 cm (L0 = 10 cm) and a crosshead speed of 10 mm/min were
employed for all the tests.

2.4. Forward Osmosis Performance

A lab-scale FO system (as shown in Figure S1) containing a self-made membrane
module with an effective membrane area of 33.56 cm2 was employed to evaluate the
performances of the as-fabricated FO membranes prepared with different heat-curing
methods. The temperatures of feed and draw solutions were kept at 25 ◦C. Simulated
seawater 3.5 wt % NaCl and 0.5 M MgCl2 were used as draw solutions. The initial volumes
of feed solution (DI water) and draw solutions were fixed at 1 L and were co-currently
circulated with a fixed crossflow velocity of 8.3 cm/s using peristaltic pumps (WT600,
Longer, Baoding, China). The feed solution was successively magnetic stirred to keep its
homogeneity. The weight increment of the draw solution and the salt concentration in the
feed solution was monitored by a digital weight balance (SF6001F, Ohaus, Parsippany, NJ,
USA) and a conductivity meter (CON110, Eutech Instruments, Singapore), respectively, and
were both connected to a computer with data logging systems. FO tests were conducted
under both FO mode (active layer facing the feed solution) and PRO mode (active layer
facing the draw solution). Each membrane sample was stabilized for 0.5 h before data
recording.

Water flux (Jw, L m−2 h−1, abbreviated as LMH) and reverse salt flux (Js, g m−2 h−1,
abbreviated as gMH) of the as-fabricated TFC membranes were calculated by the following
Equations (1) and (2), respectively:

Jw =
∆V
A∆t

(1)

Where ∆V (L) is the volume of permeate water collected in the draw solution after ∆t
(h), and A is the effective membrane area (m2):

Js =
CtVt − CiVi

A∆t
(2)

where Ct (mg/L) and Vt (L) are salt concentration and volume of the feed at time t (h),
respectively; Ci (mg/L) and Vi (L) are the initial salt concentration and volume of the feed
solution, respectively.

2.5. Determination of Intrinsic Transport Parameters

Water permeability coefficient (A), salt permeability coefficient (B) of o-TFC and w-TFC
membranes were calculated with “Excel Spreadsheet for Determination of FO Membrane
Parameters” shared by Tiraferri et al. [46]. Specifically, pure water flux and reverse salt flux
in each stage were acquired from a four-stage FO experiment with a gradient concentration
of draw solutions (0.5, 1, 1.5, 2 M NaCl).

3. Results and Discussion
3.1. Surface Morphology

Generally, in the interfacial polymerization process, aqueous MPD monomers ab-
sorbed in the porous support can diffuse across the two-phase interface and react with
TMC in the organic solution above the support surface. The formed rough PA film features
a large number of balloon-like nodules due to the gas nanobubbles trapped between the
PA layer and support layer escaped [30]. Moreover, then the diffusion of MPD monomers
into the organic phase could be hindered by the as-formed PA film, which is called the
“self-inhibiting effect”, which would bring about smoother PA structures. Finally, swollen
balloon-like nodules would partly deflate into leaf-like structures with solvent evaporation.

SEM and AFM analysis were conducted to investigate the surface morphology of the
TFC FO membranes prepared via different heat-curing methods. According to the SEM
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observations (Figure 2a,b), all the active layers synthesized via interfacial polymerization
featured typical ridge-valley surfaces with randomly stacked nodular or leaf-like structures.
As shown in Figure 2a1,b1, the PA layer dried in ambient air without heat-curing pre-
sented disordered surface morphology dominated with irregular wood-ear-like structures
attributed to the quite slow solvent evaporation. More balloon-like nodules were observed
on the active layers of o-TFC (Figure 2b2) and w-TFC (Figure 2b3) membranes with further
enhanced polymerization and timely solvent volatilization in the heat-curing step.
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Moreover, oven-curing was prone to generate an undulating PA layer (as shown in
Figure 2a2) with quite fast solvent evaporation in hot air, as the aqueous/organic interface
collapsed quickly, the as-formed PA chains could cave into the substrate pores, and the
residual reactive monomers could mix randomly through the defective sites of the PA film.
In comparison, when membrane heat-cured on hot water, the PA layer of w-TFC exhibited
finer and more uniform nodular structures (Figure 2a3) for prolonged and enhanced
interfacial polymerization with retained aqueous/organic interface. It is worth noting
that there were some thin PA coatings and filaments on the nanofibers after hot-water-
curing (Figure 2d3), which could be beneficial to strengthen the nanofiber support, and the
interlayer binding between the support and the PA active layer.

The values of surface roughness acquired from AFM analysis could further quantify
the microstructure features of the PA layers observed in the SEM images. Specific rough-
ness values of Ra, RMS, and Rmax are summarized in Table 1. The approximate average
roughnesses (Ra) of the non-curing, oven-curing and hot-water-curing nanofiber-supported
PA layers are 197, 140 and 168 nm, respectively. However, as shown in Figure 3, the PA
active layer of o-TFC concaved into the voids among nanofibers and showed the most
apparent nanofiber skeleton, as the reaction interface disappeared and the solvent evapo-
rated rapidly during oven-curing. In contrast, a more uniform hot-water-curing PA layer
of w-TFC covered the nanofiber support due to the retained two-phase interface when the
membrane floated on hot water. The AFM results corresponded with observations of the
magnified cross-section images of the PA layers (Figure 2c).
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Table 1. Surface roughnesses of the polyamide (PA) active layers of the TFC FO membranes prepared
via different heat-curing methods.

Membrane Ra (nm) Rq (nm) Rmax (nm)

n-TFC 197 226 951
o-TFC 140 175 1128
w-TFC 168 211 1123
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Figure 3. Atomic force microscopy (AFM) images of the nanofiber-supported TFC FO membranes prepared via different
heat-curing methods.

In addition, TEM analysis was employed to deep study the thicknesses and mor-
phologies of the PA layers prepared via different heat-curing methods. As shown in
Figure 4, distinctly, the non-curing n-TFC showed an irregular PA surface with thick-
nesses of 95–234 nm, and the PA layer microstructures of oven-curing o-TFC tended to
be concaved into the voids of the nanofiber support and featured a relatively wide thick-
nesses distribution from 102 to 417 nm, while the w-TFC PA layer exhibited the finest
microstructures within 100–200 nm thicknesses range. Overall, the TEM results were in
good accordance with SEM and AFM analysis.
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3.2. Chemical Analysis

In addition to the effect on the surface morphologies, heat-curing processes could
also significantly affect the chemical properties of the nanofiber-supported PA layers. The
difference between the surface and bulk chemical structures of the polyamide layers can be
evident by the combined XPS and FTIR analysis, respectively.

Complete interfacial polymerization of TMC (acyl chloride, −COCl) and MPD (amine
group, −NH2) produced crosslinked PA with amide bonds (−CO−NH−), while insuffi-
cient polymerization generated linear PA with carboxylic end group (−COOH) originated
from hydrolysis of a residual acyl chloride with water.

Crosslinking degree of the PA layer can be calculated according to Equations (3) and (4):

X + Y = 1 (3)

O/Nratio =
3X + 4Y
3X + 2Y

(4)

where X and Y represent the proportion of crosslinked and linear structure in interfacially
polymerized PA, respectively (as shown in Figure 5); O/N ratio in PA layer can be evaluated
from atomic compositions of XPS results.
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The atomic compositions determined according to the intensity values of C 1s (284.8 eV),
O 1s (531.8 eV), and N 1s (399.8 eV) peaks in XPS wide-scan spectra (Figure 6a), calcu-
lated O/N ratio and crosslinking degree (X/Y%) of the PA films synthesized via different
heat-curing methods, are summarized in Table 2. As shown in Table 2, compared with the
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non-curing n-TFC membrane (O/N ratio: 1.24; X/Y%: 68.11%), the lower O/N atomic
ratio and higher crosslinking degree of o-TFC (O/N ratio: 1.22; X/Y%: 70.55%) and w-TFC
(O/N ratio: 1.13; X/Y%: 81.27%) membranes indicated that further enhanced reaction in
the heat-curing procedure produced PA layers with higher amide contents. Obviously,
hot-water-curing was beneficial for forming a highly crosslinked PA layer on the nanofiber
support, while oven-curing brought about looser active layers, which was attributed to
the complete polymerization when the membrane floated on a hot water bath with a
maintained two-phase interface in the heat-curing procedure.
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Table 2. Atomic compositions of nanofiber-supported PA layers prepared via different heat-curing
methods.

Membrane O% N% C% O/N Ratio Crosslinking Degree%

n-TFC 13.01 10.51 76.48 1.24 68.11
o-TFC 13.37 10.98 75.64 1.22 70.55
w-TFC 12.51 11.04 76.45 1.13 81.27

To further reveal the effect of the heat-curing process on the chemical state of the
surface elements in the nanofiber-supported PA layer, the binding energy shifts of decon-
voluted O 1s peak were investigated. The high-resolution O 1s spectra can be divided
into two peaks: (i) carbonyl oxygen (O=C-O/O=C-N) with the binding energy at 531.6 eV
and (ii) carboxylic oxygen (O=C-O) with the binding energy at 532.8 eV [45]. A lower
carboxylic/carbonyl ratio implies that crosslinking structures dominate in the PA layer.

High-resolution O 1s spectra of TFC membranes prepared via different heat-curing
methods are shown in Figure 6b–d, and curve-fitted results of two peak components are
summarized in Table 3. Notably, the PA active layer dried in ambient air without heat-
curing tended to get much more carboxylic structures with a carboxylic/carbonyl ratio of



Membranes 2021, 11, 237 10 of 19

0.74, since residual water in support evaporated much slower than hexane on PA surface,
and unreacted TMC were more likely to react with water. Despite the enhanced reaction of
residual monomers in the oven-curing process, simultaneously accelerated evaporation of
hexane in residual organic phase on the PA surface and relatively slower removal of water
in bulk or voids of nanofiber support could also facilitate the hydrolysis of TMC monomer
due to the gradual collapse of micro-interfaces with solvents evaporation. Thus, the higher
proportion of carboxylic acid component and less crosslinked portion with a ratio of 0.66 in
the formed PA layer of o-TFC can be verified. Additionally, when the nanofiber-supported
PA layer was heat-treated above a hot water bath, continued crosslinking of PA chains
on the nanofiber support could be promoted by maintaining a two-phase interface to
obtain an active layer with fewer defects, which could be indicated by the lower calculated
carboxylic/carbonyl ratio of 0.47.

Table 3. Two curve-fitted peak components of high-resolution O 1s of nanofiber-supported PA layers
prepared via different heat-curing methods.

Membrane Carboxylic Oxygen
(O=C-O, 532.8 eV)%

Carbonyl Oxygen
(O=C-O/O=C-N,

531.6 eV)%

Carboxylic/Carbonyl
Ratio

n-TFC 42.38 57.62 0.74
o-TFC 39.83 60.17 0.66
w-TFC 31.78 68.22 0.47

FTIR spectra of the nanofiber-supported TFC FO membranes prepared via different
heat-curing methods are shown in Figure 7. The characteristic spectra of all the membranes
clearly confirmed the successful synthesis of PA: vibration peak of −COCl at 1763 cm−1

disappeared; the characteristic peak of −CO−NH− at 1662 cm−1 and 1544 cm−1 attributed,
respectively, to stretching vibration of C=O amide I and N-H amide II the crosslinked PA
appeared; peak at 1737 cm−1 was relevant to stretching vibration of C=O belonged to
the linear carboxylic PA. Furthermore, slight differences among peak intensities of n-TFC,
o-TFC and w-TFC membranes attributed to the PA layers indicated the effects of different
heat-curing methods on the interfacial polymerization processes on the nanofiber supports,
which could be identified by the comparison of I1544/I1737 ratios according to peak intensity
at 1544 cm−1 (N–H) and 1737 cm−1 (HO−C=O) of FTIR spectra [29,43]. The specific values
are summarized in Table 4. The highest I1544/I1737 ratio of 0.141 demonstrated that the
most complete interfacial polymerization between TMC and MPD after hot-water-curing
contributed to more crosslinked PA with more amide contents, which was consistent with
the XPS results mentioned above.

Table 4. Two curve-fitted peak components of high-resolution O 1s of nanofiber-supported PA layers
prepared via different heat-curing methods.

Membrane 1544 cm−1 (N−H) 1737 cm−1

(HO–C=O) I1544/I1737 Ratio

n-TFC 9.29 87.74 0.106
o-TFC 9.43 75.43 0.125
w-TFC 10.54 74.59 0.141
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As a result, clear differences of O/N atomic and carboxylic/carbonyl oxygen ratios
of n-TFC, o-TFC and h-TFC revealed from XPS analysis along with I1544/I1737 ratio from
FTIR spectra suggested that conventional oven-curing might be prone to get a looser and
defective active layer on nanofiber substrates with less dense crosslinking PA networks.
Moreover, the results showed that heat-curing above hot water could be considered as a
chemical modification process with the ability to enhance the crosslinking degree of the PA
layer supported by the nanofiber membrane and thus contribute to a higher rejection to
salt ions in FO application.

3.3. Surface Hydrophilicity

The absorption of water molecules on the membrane surface is driven by hydrophilic
groups in the chemical structure of PA and is affected by the surface morphology and
roughness. The surface hydrophilicity of both layers of TFC FO membranes prepared
by different heat-curing processes was evaluated by determining the contact angles for
deionized (DI) water. As shown in Figure 8, the active layer of w-TFC with more uniform
surface microstructures was completely wetted by the water drop within 2 s, which indi-
cated superhydrophilicity, while the water contact angle of o-TFC stayed above 90◦ after
2 s, which was related to its surface morphology and roughness observed in SEM and
AFM analysis. Notably, all the supports showed excellent superhydrophilicity at 2 s, which
mainly depended on the property of the laminated electrospun PAN nanofiber essentially,
though there are slight differences in the wetting processes attributed to the unavoidable
inhomogeneity of nanofiber membrane from the electrospinning process.
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3.4. Mechanical Property of the Polyamide Layer

As the mechanical property of a TFC membrane was almost determined by the
strength of the support layer, SEM morphologies of the PA active layers of as-prepared
TFC FO membranes after tensile tests were investigated for further study on the effects
of different heat-curing processes on the mechanical properties of the obtained nanofiber-
supported PA layers, which are relevant to the crosslinking degree according to above
discussion of XPS and FTIR results. As can be seen in Figure 9, it can be concluded that
w-TFC with the highest crosslinking degree exhibited the best mechanical strength and
ductility in the tensile test. The SEM images of damaged w-TFC, the PA layer with fewer
cracks wrinkled (as shown in the insert image of Figure 9c2) for resistance to the increasing
tensile force, while there were more significant cracks (Figure 9b2) on the active layer of
o-TFC, and the cracks extended along the stretching direction. Obviously, many large
cracks on the non-curing PA layer showed that the n-TFC had the lowest strain and was
prone to seriously break (Figure 9a2) after stretching. Above all, the high crosslinking
degree of the nanofiber-supported PA layer benefited from the further and complete
interfacial polymerization in the heat-curing process, especially when floating on the
hot water surface, which could be an effective way to enhance the mechanical property
of the PA layer. Thereby, the hot-water-curing PA-TFC membranes based on nanofiber
supports would be expected to serve as stable and durable FO membranes with stronger
active layers.
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3.5. FO Performance

As reported, a highly crosslinked PA network possesses a smaller free volume [27],
which could relieve the reverse salt diffusion and mitigate the decline of effective osmotic
pressure. Pure water flux (Jw) and reverse salt flux (Js) were evaluated under FO, and PRO
modes withdraw solution of simulated seawater (3.5 wt % NaCl) and thus investigating
the effect of different heat-curing methods on the FO performances of the as-prepared
nanofiber-supported TFC membranes with PA active layers of different crosslinking de-
grees. The optimal hot-water-curing conditions (temperature and time) were determined
as 80 ◦C and 5 min according to the results shown in Figure S2a,b.

Figure 10 displayed the FO performances of the nanofiber-supported TFC membranes
fabricated using different heat-curing methods. The specific values of Jw and Js were sum-
marized in Table 5. Obviously, due to the probable defects in the non-curing PA layer, the
water flux and reverse salt flux of the n-TFC FO membrane was not stable, which is rele-
vant to its uneven surface morphology as observed in the SEM images and the incomplete
polymerization verified by XPS and FTIR analysis. In comparison, the oven-curing and
hot-water-curing TFC FO membranes exhibited much more stable water flux and reverse
salt leakage. Specifically, the o-TFC membrane showed higher water fluxes and reverse salt
fluxes in both FO and PRO modes, while w-TFC exhibited moderate water flux and signifi-
cantly mitigated reverse salt diffusion (FO: 0.3 gMH; PRO: 0.8 gMH) because of the denser
active layer with more crosslinked PA structure on the nanofiber support. Jw/Js, which
indicates the volume (L) of produced clean water along with certain reverse leakage (g) of
draw solute, could provide a reasonable assessment of membrane separation efficiency in
FO operation [47]. As shown in Figure 10c, the w-TFC FO membrane presented the best
separation efficiency with the highest specific water flux (Jw/Js) values (FO: 23.8 L/g; PRO:
12.9 L/g).
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Table 5. Atomic compositions of nanofiber-supported PA layers prepared via different heat-curing
methods.

Membrane
FO Mode PRO Mode

Jw (LMH) Js (gMH) Jw/Js (L/g) Jw (LMH) Js (gMH) Jw/Js (L/g)

n-TFC 8.0 ± 2.7 2.1 ± 1.0 4.6 ± 2.50 10.9 ± 0.45 3.6 ± 1.3 3.3 ± 1.09
o-TFC 12.3 ± 1.4 2.3 ± 0.3 5.5 ± 1.20 15.3 ± 0.5 2.2 ± 0.2 6.9 ± 0.33
w-TFC 6.7 ± 0.95 0.3 ± 0.03 23.8 ± 5.39 8.3 ± 0.6 0.8 ± 0.4 12.9 ± 7.68

Therefore, when NaCl was used as a draw solute, hot-water-curing was proven
to be truly preferable for the preparation of a nanofiber-supported TFC FO membrane
with better selectivity. Furthermore, the FO performances of o-TFC and w-TFC over
gradient concentration (0.5, 1, 1.5, 2 M) of NaCl draw solution were tested to acquire
their intrinsic transfer properties, and the results are shown in Figure S3. It was found
that w-TFC always exhibited acceptable water fluxes and superior salt rejections to o-
TFC with increasing concentration of draw solution. It suggested that using a higher
concentration of draw solution is expected to achieve a higher water flux while a still
excellent salt rejection with the w-TFC membrane. The comparison of simulated water
permeability (A, L m−2 h−1 bar−1) and salt permeability (B, L m−2 h−1) of o-TFC and
w-TFC FO membranes are shown in Table S1. Notably, the o-TFC FO membrane showed
nearly five times water permeability that of the w-TFC FO membrane, while the latter
exhibited four times water/salt permeability that of the oven-curing TFC FO membrane.

High-rejection PA active layers would contribute to more stable water flux during FO
operation since the osmotic pressure drop caused reverse salt leakage can be effectively
reduced. As seen in Figure 10d, the water flux of the o-TFC FO membrane significantly
declined due to its higher initial water flux and severer salt leakage, which would lead to
the faster dilution of draw solution and ensuing lower osmotic pressure. In comparison,
the w-TFC FO membrane with highly crosslinked PA layers and high rejection for NaCl
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draw solutes contributed to a more stable water flux for 16 h FO operation. The water flux
decline ratio of the w-TFC FO membrane was only 10%, which was significantly superior
to 40% of the o-TFC FO membrane. Therefore, hot-water-curing would be a preferable
heat-curing process for constructing a durable FO membrane with stable water flux and
excellent salt rejection.

Furthermore, considering the good water permeability and undesirable salt perme-
ability (NaCl) of the o-TFC FO membrane, as well as the possible high rejection for divalent
ions, MgCl2 was applied as a draw solute to get a better FO performance for the o-TFC
FO membrane. It could be seen in Figure S4, both the o-TFC and w-TFC FO membranes
operated under FO mode using 0.5 M MgCl2 as draw solution showed quite low reverse
salt flux, while the o-TFC FO membrane performed with 2 times water flux of that of the
w-TFC FO membrane. Therefore, oven-curing would be suggested to fabricate preferable
nanofiber-supported TFC FO membranes for desalination of di- or multi-valent ions with
proper draw solute, such as MgCl2.

3.6. Influence Mechanism of Heat Curing Method on the Formation of PA Active Layer

The influence mechanism of the heat-curing method on the formation processes of
interfacially polymerized PA active layer on electrospun nanofiber support was deducted
based on the experimental results mentioned above. Figure 11 illustrated the speculative
formation process of PA active layers via interfacial polymerization of MPD in DI water
with TMC in hexane using different heat-curing methods (curing in the hot-air oven
and on hot water bath), which referred to the discussion in the literature [44]. PAN
nanofiber exhibited good hydrophilicity with swelling behavior, which could first absorb
an aqueous solution into the bulk or voids of the nanofiber support. Then, when organic
TMC/hexane solution was poured onto the surface of nanofiber support soaked by MPD
aqueous solution, the MPD molecules would diffuse into the organic phase and react with
TMC molecules at the two-phase interface in a short time. After this, when the excess
TMC/hexane solution was removed, the residual TMC could continue to react with the
remaining MPD.
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In the heat-curing step, on one hand, the interfacial polymerization could be acceler-
ated and finalized by raising the reaction temperature, and on the other hand, the reaction
could be terminated due to the evaporation of the rest solvents of hexane and water at
the same time. Thus, heat-curing could be regarded as a necessary balance between the
“repairing/healing” by further reaction of residual TMC with MPD and the termination of
interfacial polymerization with the removal of excess hexane and water. Moreover, it is
also effective to avoid the residual −COCl of TMC to react with water and produce linear
carboxylic PA. After interfacial polymerization, the heat-curing above hot water could
maintain an intact interface between the water with residual hexane, which is conducive
for obtaining a highly crosslinked and less defective PA layer on the nanofiber support.
More important, the aqueous monomer MPD in the nanofiber bulk could diffuse freely to
have more chance to contact with the residual TMC. However, in the oven-curing process,
water in the nanofiber support would evaporate quickly, which leads to the destruction of
the water/organic two-phase interface, and the PA layer with defects tends to be formed,
so the oven-curing TFC membrane showed higher reverse salt leakage.

Particularly, when the hyperbranched PEI with larger free volume was used as a
substitute of MPD for fabricating a high-permeability NF-like PA layer, using oven-curing
was also prone to get a more defective PA active layer. The preparation, characterization
and FO performance of PEI/TMC-PA TFC membranes heat cured in an oven or on hot
water were displayed and discussed in the Supporting Information (Figures S5–S7). It
clearly showed that hot-water-curing could be expected to decrease membrane defects
in the PA layer with certain aqueous monomers and improve the FO performance with
appropriate draw solution.

4. Conclusions

In this work, it was proved that hot-water-curing (heat-curing on hot water with
phase interface) could be considered as an effective way to “repair” or “heal” latent de-
fects in the nanofiber-supported PA active layer. The further high-temperature interfacial
polymerization during hot-water-curing enabled the PA active layer to have finer surface
morphology, stronger superhydrophilicity, higher crosslinking degree and better tensile
resistance. While in the oven-curing process, the quick collapse of the reaction interface
due to the evaporation of solvent could contribute to the PA active layer with more linear
carboxylic PA structures concaved into the nanofiber skeleton. Accordingly, in contrast
with the oven-curing o-TFC FO membrane, the hot-water-curing endowed the w-TFC
FO membrane with less reverse salt diffusion and higher selectivity under both FO and
PRO modes when simulated seawater (3.5 wt %) was used as a draw solution. Notably,
the o-TFC FO membrane showed advantages of higher water flux and comparable salt
rejection compared to the w-TFC FO membrane when MgCl2 with divalent salt ions was
used as a draw solution. Furthermore, the hot-water-curing nanofiber-supported TFC
membrane with NF-like PA layer synthesized by hyperbranched PEI and TMC showed
high water permeability and excellent selectivity with MgCl2 draw solution. In this pre-
liminary study, the structure–activity relationship between physicochemical properties
and separation performances of nanofiber-supported TFC FO membranes prepared with
different heat-curing methods were revealed, and the formation mechanism of PA active
layers on the electrospun nanofiber support was supposed. Deeper and further studies
on the electrospinning support, monomers of interfacial polymerization, heat-curing pro-
cesses, and draw solutes would greatly enhance fabricating high-performance electrospun
nanofiber-supported TFC FO membranes for practical applications.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/membranes11040237/s1, Figure S1: Schematic diagram of the lab-scale FO setup. Figure S2:
Water fluxes (Jw) and reverse salt fluxes (Js) of the nanofiber supported TFC FO membranes prepared
via hot-water-curing at different (a) curing temperatures; (b) curing time. Figure S3: Water fluxes
(Jw) and reverse salt fluxes (Js) of o-TFC and w-TFC with increasing NaCl concentration. Figure
S4: Comparison of water fluxes (Jw) and reverse salt fluxes (Js) of o-TFC and w-TFC under FO
mode (Feed solution: DI; Draw solution: 0.5 M MgCl2). Figure S5: Comparison of water fluxes (Jw)
and reverse salt fluxes (Js) of the nanofiber supported PEI/TMC-PA TFC FO membranes prepared
via hot-water-curing and oven-curing under FO mode (Feed solution: DI; Draw solution: 0.5 M
MgCl2). Figure S6: SEM images of the PEI/TMC-PA layer and the nanofiber support of TFC FO
membranes prepared via (a1, b1) oven-curing; (a2, b2) hot-water-curing: (a) active layer; (b) support
layer. Figure S7: The changes of water contact angles (WCA) of nanofiber supported PEI/TMC-PA
TFC FO membranes prepared via (a) oven-curing and (b) hot-water-curing over time. Table S1: Water
Permeability and salt Permeability of o-TFC and w-TFC.
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